Final Preassessment Data Report *M/T ATHOS I* Oil Spill, Delaware River

June 2006

U.S. Department of Commerce National Oceanic and Atmospheric Administration

State of New Jersey Department of Environmental Protection

Commonwealth of Pennsylvania

Department of Conservation and Natural Resources Department of Environmental Protection Fish and Boat Commission Game Commission

State of Delaware Department of Natural Resources and Environmental Control

U.S. Department of the Interior U.S. Fish and Wildlife Service

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	OVERVIEW OF THE INCIDENT AND PREASSESSMENT ACTIVITIES	1
3.0	CHARACTERISTICS OF THE SPILLED PRODUCT	_5
4.0	PREASSESSMENT DATA COLLECTION METHODS AND RESULTS.	_7
	4.1 Aquatic Resources	8
	4.1.1 Water Quality	8
	4.1.2 Sediment Quality	13
	4.1.2.1 Subsurface Oil Observations	13
	4.1.2.2 Subtidal and Intertidal Sediment Sampling	14
	4.1.2.3 Sediment Toxicity Triad	17
	4.1.3 <u>Oysters</u>	18
	4.1.4 <u>Fish</u>	19
	4.1.5 Horseshoe Crabs and Whelks	_22
	4.2 Shorelines	23
	4.2.1 Shoreline Cleanup Assessment	_23
	4.3 Birds and Wildlife	26
	4.3.1 Wildlife Response and Rescue Operations	27
	4.3.2 Wildlife Ground Surveys	27
	4.3.3 Aerial Bird Surveys	29
	4.4 Lost Recreational Use	<u>_</u> 31
5.0	REFERENCES	32

List of Figures

Figure 1.	Approximate location of the <i>Athos</i> oil spill incident on the Delaware	
C	River	2
Figure 2.	Submerged objects recovered from the vicinity of the Athos	
	grounding location	3
Figure 3.	Aerial view of Athos listing to the port side following grounding incident	3
Figure 4.	Key resources exposed to Athos oil	4
Figure 5.	Example of asphalt tar mats (a) and tar balls (b) that washed up on the	
	shorelines following the Athos incident	6
Figure 6a.	Water sample locations in the upper Delaware River	_10
Figure 6b.	Water sample locations in the middle Delaware River	_11
Figure 6c.	Water sample locations in the lower Delaware River	12
Figure 7a.	Sediment samples and total PAHs (ng/g) in the lower Delaware River	_15
Figure 7b.	Sediment samples and total PAHs (ng/g) in the upper Delaware River	_16
Figure 8.	Ten day percent survival of Leptocheirus plumulosus	18
Figure 9.	Oyster sample locations and total PAHs (ng/g) in the Delaware Bay	_20
Figure 10.	Fish trawl sampling locations and total PAHs (ng/g) in the Delaware	
	River	_21
Figure 11.	Maximum shoreline oiling, as reported in May 2005	_25
Figure 12	Representative examples of shoreline oiling observation	_26
Figure 13.	Observed oiled birds	_27

List of Tables

Table 1.	Characteristics of Venezuelan crude oil	6
Table 2.	Sediment toxicity sample locations and dates	17
Table 3.	Incidence of oiled horseshoe crabs and whelks	23
Table 4.	Approximate length in miles of shoreline habitat by oiling degree	24
Table 5.	Summary of data on recovered birds from the rehabilitation center	28
Table 6.	Most common birds observed oiled during ground surveys	29
Table 7.	Aerial bird survey summary for Delaware River segments	30

List of Appendices

- APPENDIX A Source Oil Analyses APPENDIX B – Water Sample Analytical Results APPENDIX C – Submerged Oil Report APPENDIX D – Subtidal Sediment Analytical Results APPENDIX E – Intertidal Sediment Analytical Results APPENDIX F – Oyster Tissue Analytical Results APPENDIX G – Fish Tissue Analytical Results APPENDIX H – Shoreline Assessment Results
- APPENDIX I Bird and Wildlife Survey Data

List of Preparers

Jim Hoff, Ph.D., National Oceanic and Atmospheric Administration Joe Steinbacher, National Oceanic and Atmospheric Administration David Bean, New Jersey Department of Environmental Protection Rob Hossler, Delaware Department of Natural Resources and Environmental Control Stan Sneath, Pennsylvania Department of Environmental Protection Sherry Krest, U.S. Fish and Wildlife Service Greg Challenger, Polaris Applied Sciences, Inc. Ann Shellenbarger Jones, Ph.D., Industrial Economics, Inc.

1.0 INTRODUCTION

On 26 November 2004, the *M/T ATHOS I (Athos)* struck a large, submerged anchor while preparing to dock at a refinery in Paulsboro, New Jersey. The anchor punctured the vessel's bottom, resulting in the discharge of nearly 265,000 gallons of crude oil into the Delaware River and nearby tributaries.

Federal, state, and local agencies responded to the incident to supervise and assist in clean-up and begin assessing the impact of the spill on natural resources. The U.S. Coast Guard (USCG), States of New Jersey and Delaware, and Commonwealth of Pennsylvania created a Unified Command for directing clean-up efforts. The National Oceanic and Atmospheric Administration (NOAA), U.S. Fish and Wildlife Service (USFWS), and natural resource agencies within Delaware, New Jersey, and Pennsylvania (collectively referred to as the natural resource trustees) began collecting "preassessment" data to determine whether natural resource damage assessment (NRDA) actions under the Oil Pollution Act of 1990 (OPA) (33 U.S.C. §2706(b)) were justified and make preliminary determinations regarding the type of injury assessment and restoration actions that might be pursued.

This preassessment data report presents the preliminary information and data collected by the natural resource trustees as part of the preassessment efforts. The trustees will use this information to determine the type of injury assessment efforts required to quantify the nature and extent of injuries and scale of appropriate restoration actions.

2.0 OVERVIEW OF THE INCIDENT AND PREASSESSMENT ACTIVITIES

The *Athos* is a 750-foot, single bottom, double-sided tanker that was built in 1983. At the time of the incident, the vessel was registered under the flag of Cyprus, owned by Frescati Shipping Company, Ltd., and operated by Tsakos Shipping & Trading, S.A.

The *Athos* departed Venezuela for the Citgo Asphalt Refinery in Paulsboro, New Jersey (Figure 1) on 20 November 2004, carrying approximately 13 million gallons of crude oil. At approximately 9:30 pm on 26 November 2004, tug operators assisting the *Athos* with docking at the refinery notified the USCG that the tanker was leaking oil. The vessel had struck several submerged objects (Figure 2) while maneuvering through Anchorage #9 to its berth. Within minutes, the ship lost power and listed approximately eight degrees to the vessel's port side (Figure 3).

Surveys of the river bottom following the incident found several submerged objects in the area, including an 18,000 pound anchor, large concrete block, and pump casing. The USCG's investigation of the incident determined that the anchor punctured the vessel's number seven center cargo and port ballast tanks (USCG 2006). The bulkhead between the cargo and ballast tanks was also damaged, allowing product to migrate into the ballast tank and then into the river (USCG 2005).

Figure 1. Approximate location of the *Athos* oil spill incident on the Delaware River. East of the River, Camden, Gloucester, and Salem counties are in New Jersey. West of the River, Philadelphia and Delaware counties are in Pennsylvania; New Castle County is in Delaware.

Figure 2. Submerged objects recovered from the vicinity of the *Athos* grounding location.

Figure 3. Aerial view of the *Athos* listing to the port side following grounding incident.

The Unified Command initially estimated that 30,000 gallons of oil spilled into the River. This estimate was revised to 473,500 gallons based on "worst-case" assumptions once the vessel was stabilized several days after the incident. Following a more comprehensive analysis after lightering of the remaining oil, the USCG provided a final estimate of 264,335 gallons that spilled into the Delaware River.

At the time of the incident, the tide was incoming, and the current was approximately one and a half to two knots (USCG 2005). Within the first few hours, thick oil covered the River and moved upriver with the flood tide to about the Walt Whitman Bridge, approximately six miles north (Figure 1). Over the following weeks and months, oil from the ruptured tanker spread downriver, exposing natural resources over 115 river miles of the Delaware River (280 miles of shoreline), as well as its tributaries, from the Tacony-Palmyra Bridge to south of the Smyrna River in Delaware. Key resources exposed to the spilled oil include shorelines (marshes, sandy beaches, tidal flats, etc.), aquatic organisms (fish, shellfish, etc.), birds and other wildlife that use the Delaware River and Bay (Figure 4), and recreational use. The incident also forced the USCG to close the Delaware River to commercial traffic for over a week, and submerged oil resulted in contamination of water intakes and the closure of the Salem Nuclear Power Plant.

a.

c.

Under OPA, state and federal agencies are designated as natural resource trustees, responsible for assessing natural resource losses and restoring those losses to baseline conditions, that is, the conditions that would have existed had the incident not occurred. Regulations promulgated under OPA provide a framework for conducting a natural resource damage assessment (NRDA), including preassessment, restoration planning, and restoration implementation (15 C.F.R. Part 990). Funds to assess losses and to plan and implement appropriate restoration are provided by either the responsible party (RP) or, if an RP does not exist or exceeds its limit of liability, the Oil Spill Liability Trust Fund established under OPA.¹

The trustees and representatives of the ship owner and ship operator initiated preassessment activities under OPA on 27 November 2004. A "cooperative" work group was formed,

¹ Under OPA, the limit of liability is established by the gross tonnage (GT) of the vessel. The GT of the *Athos* is 37,895 GT. Accordingly, the limit of liability is \$47,474,000 (\$1,200 per GT) (USCG 2005).

consisting of ship owner/ ship operator representatives (Entrix, Inc. and Polaris Applied Sciences, Inc.), the U.S. Department of Commerce, NOAA; U.S. Department of the Interior, USFWS; Pennsylvania Department of Conservation and Natural Resources, Department of Environmental Protection, Game Commission, and Fish and Boat Commission; New Jersey Department of Environmental Protection (NJDEP); and Delaware Department of Natural Resources and Environmental Control (DNREC). While the work group was a cooperative process, the trustees maintained formal decision-making authority

Specific preassessment activities included shoreline (aerial and ground) and resource (*e.g.*, bird and wildlife, horseshoe crab) surveys and ephemeral data collection (*e.g.*, water, sediment, and fish and shellfish tissue samples). This report describes these preassessment data collection efforts, and provides laboratory results and supporting documentation in Appendices A through I. The full laboratory reports, including quality control and quality assurance documentation (*e.g.*, matrix spike, surrogate recovery), are also available upon request.²

The preassessment data presented in this report are used by the trustees to make an initial determination as to whether natural resources or services have been injured or are likely to be injured by the release. If preassessment efforts indicate natural resources may have been injured, the trustees have authority to pursue more detailed studies to quantify the nature and extent of losses and implement appropriate restoration to compensate for those losses.

3.0 CHARACTERISTICS OF THE SPILLED PRODUCT

The *Athos* was carrying a heavy Venezuelan crude oil (Bachaquero), a slightly buoyant, very viscous, and sticky cargo that is heated during transport. This oil weathers slowly, has high asphalt content, and readily forms tar balls (Figure 5). The general physical properties of Venezuelan crude oil are provided in Meyers (2004) and summarized in Table 1.

Several source oil samples were taken from the *Athos* for analyses to identify the exact composition of the oil and allow for comparison of chemical "fingerprints" to oil collected in the Delaware River environment. The USCG collected source oil samples on 28 November 2004 and 3 December 2004, both from tank center seven, the compromised compartment. The 28 November samples were sent to:

- (1) Geochemical and Environmental Research Group (GERG) at Texas A&M University for analysis of polycyclic aromatic hydrocarbons (PAHs) and biomarkers (*e.g.*, steranes, diterpanes, and triterpanes);
- (2) B&B Laboratories (an affiliate of TDI-Brooks International, Inc.) in College Station, TX, for analysis of PAHs and trace metals; and
- (3) Lancaster Laboratories in Lancaster, PA, for analysis of aromatics.

The 3 December 2004 samples were archived at B&B Laboratories.

² Documents will be available on-line at http://www.darrp.noaa.gov/northeast/athos/admin.html.

a.

b.

Figure 5. Example of asphalt tar mats (a) and tar balls (b) that washed up on the shorelines following the *Athos* incident.

Results of the analyses of the 28 November 2004 sample are presented in Appendix A. In general, the data and analyses indicate that the *Athos* oil is composed of large amounts of asphaltenes and other high molecular weight compounds. The PAH content is low (0.5 percent), and the oil has a very low dissolved fraction. The significant oil-fingerprinting biomarker compounds, hopanes and steranes, were detected, but at naturally occurring very low levels.

Additional source oil samples were collected by NOAA on 6 December 2004 and 9 December 2004. These samples were sent to Louisiana State University (LSU) for fingerprinting analysis, as well as a determination of density, viscosity, evaporative weathering, and standard distillation curve analysis.

Crude oil parameters:			
Density (°API)	33.3		
Sulfur (% by weight)	1.2		
Nitrogen (% by weight)	0.12		
Vacuum residuum characteristics: (1000° F + [538° C +])			
Yield (LV %)	21.2		
Density (^o API)	10.9		
Sulfur (% by weight)	2.8		
Nitrogen (% by weight)	0.56		
Asphaltenes (% by weight)	16.0		
Nickel + Vanadium (ppm)	666		
Iron (ppm)	5		

Table 1.	Characteristics of Venezuelan crude oil (Table 14.1.1 in Meyers (2004)).
	······································	

Analytical results of the LSU source oil samples are also presented in Appendix A. In general, these samples displayed a fingerprint pattern similar to heavy crude oil (normal alkane ranges from nC-10 to nC-26), with the 9 December sample exhibiting a higher degree of weathering. The normal alkane distribution in oil contained few individual peaks and a large amount of unresolved hydrocarbons. The oil density of the samples was 0.943, 0.973, and 0.978 grams per milliliter (g/mL), lighter than both fresh water (1.00 g/mL), and oceanic seawater (1.025 g/mL). The viscosity was greater than 5,000 centistokes (cSt) at 100°F and at ambient water temperature greater than 50,000 cSt, meaning that the oil was very viscous and poured only at high temperature.

The fresh source oil was "evaporatively weathered" by heating it to 90°C under vacuum and less than three percent was lost by evaporation after four hours. Therefore, the weathered oil after evaporation was still expected to float (Appendix A).

On a wet weight mass basis, specific PAHs in the source oil represented 0.5 percent of the total oil mass (*i.e.*, average total PAH in source oil Tank 7 = 4596.2 ng/mg = 0.0046 g PAH/g neat \approx 0.5 percent). In other words, 99.5 percent of the source oil, on a mass basis, was something other than specific target PAHs. Presumably, this material was composed of asphaltenes and other high molecular weight refractory organics. These compounds have limited aqueous solubility and, therefore, toxicity, especially during cooler temperatures. Despite their limited solubility and aqueous toxicity, these compounds can be and apparently were present as a non-aqueous phase liquid that became dynamically attached to the bottom. When this happens, oxygen transfer to the bottom is inhibited and benthic aquatic life can smother and die.

Despite the low percentage of specific PAH compounds in the source oil, the PAHs in the oil were nevertheless inherently toxic and capable of causing harm to aquatic life. The estimated potency of the PAH mixture was 41.9 acute toxicity units and 213 chronic toxicity units (Appendix A).³ About 33 percent of this toxicity was due to naphthalenes, another 37 percent was due to fluorenes and phenanthrenes, 17 percent was due to dibenzothiophenes, and the balance was due to other specific PAHs (Appendix A).

4.0 PREASSESSMENT DATA COLLECTION METHODS AND RESULTS

The cooperative work group focused preassessment data collection efforts on four groups of resources: aquatic (including water column and benthic), shorelines, birds and wildlife, and recreation. Each of the resource categories was subject to a variety of sampling efforts and field surveys to characterize and document potential impacts resulting from the *Athos* incident. These efforts included:

³ The acute and chronic toxicity units (TUs) measure narcotic toxicity to benthic aquatic organisms exposed in sediment porewater. Using partition coefficients, the dissolved phase concentration of each PAH is calculated from the sorbed phase concentration. The acute TUs for each compounds are calculated as the ratio of the dissolved phase concentration to the acute narcotic toxicity. These are summed to give the overall acute TUs, and a chronic:acute ration applied to calculate overall chronic TUs. A TU greater than 1 indicates that the PAH exposure concentration in the sediment pore water exceeds the narcotic toxicity threshold for benthic aquatic organisms. A complete discussion of the equilibrium partitioning and narcotic toxicity approach can be found in DiToro *et al.*, 1991 and DiToro *et al.* 2000.

- Collection and analysis of water (surface and bottom) and sediment (intertidal and subtidal) samples;
- Observations of submerged oil;
- Collection and analysis of fish and shellfish tissue samples;
- Assessment of sediment toxicity;
- Surveys of shorelines;
- Surveys of birds and wildlife; and
- Interviews and surveys of recreation resources (*e.g.*, marina operators).

This section describes these preassessment data collection efforts.

4.1 Aquatic Resources

Numerous natural resources, including aquatic habitat and animals and the recreational uses they support, were exposed to the toxic and smothering effects of the oil discharged from the M/TAthos. Aquatic resources of concern include water column and benthic resources, ranging from interstitial sediment dwellers to larger mobile predators. Numerous adult and larval fish and shellfish are supported by the River, including the federally-endangered shortnose sturgeon (Acipenser brevirostrum) that winter in certain areas of the Delaware River. The waters around Little Tinicum Island are also known to contain high numbers of pre-spawn and spawning striped bass (Morone saxatilis) in April and May. The Bay supports commercial and natural oyster beds (Crassostrea virginica), commercial blue crab (Callinectes sapidus), horseshoe crab (Limulus polyphemus), and whelk (Busycon sp) fisheries, as well as a variety of recreational fisheries. Other important aquatic resources include red-bellied turtles (Pseudemys rubriventris) and eastern painted turtles (Chrysemu picta picta). Several rare tidal marsh plants are also found in the region, including wild rice (Zizania aquatica), waterhemp ragweed (Amaranthus cannabinus), Walter's barnyard grass (Echinochloa walteri), swamp-beggar-ticks (Bidens bidentoides), and marsh fleabane (Pluchea odorata). Bird and wildlife resources at risk include migrating marsh birds, egret and heron rookeries, eagles and osprey, and migratory shorebirds. The federally-threatened piping ployer inhabits the Lower Delaware Bay. A variety of mink, otter, turtles, and terrestrial fauna use the affected area. Many types of recreation are also popular along the Delaware River in the areas affected by the spill, including waterfowl hunting, boating, fishing, and crabbing, as well as beach and other shoreline use.

4.1.1 <u>Water Quality</u>

In the first two weeks following the incident, 66 surface water and 13 bottom water samples were collected to characterize PAH concentrations. Surface water samples were collected on 27,

28, and 30 November: (1) at the Commodore Barry Bridge; (2) near Marcus Hook and in the Schuylkill River, PA; and (3) in and at the mouths of Big Timber, Woodbury, and Mantua Creeks, NJ. Surface and subsurface water samples were collected on 7 and 8 December: (1) upstream of the Tacony-Palmyra Bridge; (2) in the vicinity of Tinicum Island, PA; (3) in and at the mouths of Big Timber, Woodbury and Mantua Creeks, NJ; (4) Liston Point, DE, (5) the entrance to the Chesapeake and Delaware Canal; (6) the mouth of the Christina River, DE; and (7) at Marcus Hook, PA.

Surface water samples were collected by inserting a capped, one liter amber glass bottle immediately below the water's surface to avoid collecting whole oil on the surface layer. The bottle cap was removed underwater, the bottle allowed to fill and the cap replaced. Subsurface water samples were collected using a two and a half liter Go-Flo bottle with messenger. The bottle was lowered below the water's surface in a closed position and opened at approximately one meter off the bottom and 30 ft depth. Two one liter amber bottles were filled with the water from the Go-Flo bottle. The Go-Flo bottle was washed with Citra-Solv cleaner between samples and rinsed five times with distilled water. All water column samples were stored on ice, packed into a field cooler, and sent to B&B Laboratories for analysis under proper chain of custody. All samples were analyzed for total and individual PAHs. Lists of components included in the total PAH measurement for each lab are in Appendix A. Additional analyses included total suspended solids (TSS) for the samples collected on 7 and 8 December 2004, and volatile monocyclic compounds (VOC) in samples collected on 27 November 2004.

Figures 6a-c show the locations and total PAH results for surface and subsurface water samples collected in the Delaware River from 27 November to 8 December 2004.⁴ Laboratory data for concentrations of total and individual PAHs in the water samples are found in Appendix B. Total PAH in the samples ranged from 25 to 26,634 ng/L (parts per trillion) total PAHs.⁵ Using chronic toxicity thresholds (Neff *et al.* 2005), only two samples (at Marcus Hook and downstream of the mouth of the Schuylkill) had exceedances, both for alkylated chrysenes and alkylated phenanthrene/anthracenes.⁶ No volatile organics were detected within the reporting limits. Results of the TSS and VOC analyses are also presented in Appendix B. Because background levels of PAHs are found in many bays and estuaries, further analysis of these data would be necessary to determine the nature and extent of *Athos* oil in these water samples.

⁴ Coordinates were not reported for six samples: W-DER-01, W-DER-02, W-MAN-01, W-MAN-02, W-MAN-03, and W-MAN-04. Site descriptions and values for these samples were included in the sample log in Appendix B. Additionally, the reported coordinates for sample W-WOOD-05 place it in Big Timber Creek, while other WOOD samples are in Woodbury Creek.

⁵ Two values are given in the laboratory data for sample WMH #1-S (also listed as WMH #1-5). The two values are 26,634 ng/L and 293 ng/L, and only one sample is listed in the collection log with no explanation for the duplicate values. The remaining water samples were all below 5,000 ng/L total PAHs.

⁶ Analysis did not evaluate whether the PAHs in the water samples were in the dissolved phase or were associated with particulates. Aqueous toxicity thresholds are based on dissolved phase concentrations.

Figure 6a. Water sample locations in the upper Delaware River. Total PAH values (ng/L) are presented in boxes below sample identification code. Box color represents sample collection date: 28 November 2004 (green); 30 November 2004 (red); 7 December 2004 (blue); 8 December 2004 (yellow).

Figure 6b. Water sample locations in the middle Delaware River. Total PAH values (ng/L) are presented in boxes below sample identification code. Box color represents sample collection date: 27 November 2004 (orange), 28 November 2004 (green); 30 November 2004 (red); 8 December 2004 (yellow). The green star is the approximate spill location.

Figure 6c. Water sample locations in the lower Delaware River. Total PAH values (ng/L) are presented in boxes below sample identification code. Box color represents sample collection date: 7 December 2004 (blue) and 8 December 2004 (yellow).

4.1.2 <u>Sediment Quality</u>

While analyses of the *Athos* oil (see Section 3.0) indicated that the oil would float, oil was observed suspended throughout the water column and on the river bottom, and some shorelines were periodically re-oiled following cleanup activities. Response and preassessment strategies, therefore, included locating subsurface oil and collecting subtidal and intertidal sediment samples for analyses.

4.1.2.1 Subsurface Oil Observations

Subsurface oil was observed as pooled stranded oil and mobile suspended oil. Pooled stranded oil settled into natural depressions and was trapped due to the cohesive forces. Mobile suspended oil was negatively buoyant oil that was observed moving within the water column and/or rolling along the river bottom. Distinct assessment strategies were developed for the different types of subsurface oil.

Sonar, coring, sorbent probes, and the Vessel-Submerged Oil Recovery System (V-SORS) were used to search for pooled stranded oil in likely accumulation areas using US Army Corps of Engineers bathymetric maps of the channel and adjacent areas. The locations that were searched for stranded oil included:

- The shallow bay north of Tinicum Island, including two deep depressions,
- Four depressions on the south side of the channel across from Tinicum Island,
- Tinicum Range channel, and
- Shallows around Tinicum and Chester Islands.

Pooled stranded oil was found only at the collision site, in a trench six to eight feet wide, two feet deep, and 41 feet long. On 9 December 2004, a diver surveyed the trench area and measured the oil thickness as between one and a half and two feet deep. A second trench was also detected and estimated to be two feet wide by two feet deep by 15 feet long.

A sample of the oil from the trench floated in fresh water (density of 0.943 g/ml). It was tested for cohesiveness and found to adhere to sediments and did not refloat, even though it should based on density. It is believed the oil in the trench at the collision site was "injected" into the sediment under the pressure of the release and became immobile due to highly cohesive forces exerted by the viscous oil. Divers used viscous oil pumps to recover pooled oil from these two trenches on 12-16 December 2005.

The vertical distribution and the geographical extent of mobile suspended oil were tracked using a "snare sampler" device, consisting of an anchor, 50 feet of oleophilic snare on a rope, and a float (Appendix C), and crab pots with oil adsorbents attached. Snare samplers were deployed at various locations within the River and visually inspected for the presence of oil with depth, and the amount of oil on the snare (estimated as percent coverage).

The location of the snare samplers and results are presented in Appendix C. In general, most of the subsurface, mobile oil occurred several feet off the bottom, though small amounts of oil were present on the snares suspended in the middle and upper water column. Highest amounts of oil were detected around Tinicum Island. There were several stations with high oil coverage observed over the period 3-8 December. Many of the other snare samplers in the upper River were not oiled. The subsurface oil in the upper spill zone decreased significantly by 10 December 2004. The distribution of the subsurface oil in samples in the middle spill zone area was intermittent. No, or less than one percent, oil was observed on any of the snare samplers in the upper Bay as of 11 December 2005.

Eight crab pots with oil adsorbents attached were deployed on 6 December 2004 by staff from New Jersey Bureau of Shellfisheries and Bureau of Marine Water Monitoring. The crab pots were generally located along the edge/slope of the shipping channel in water depths ranging from 12 to 30+ feet. No oil was observed on the pots either visually or through olfaction.

The submerged oil assessment report included in Appendix C provides additional details and findings of the initial efforts to assess the nature and extent of submerged oil.

4.1.2.2 Subtidal and Intertidal Sediment Sampling

The trustees and RP collected sediment samples to assess the potential injuries to benthic organisms. Benthic organisms may be injured due to smothering effects from oil or from toxicity due to PAH contamination in the oil.

Twenty-eight subtidal sediment samples were collected throughout the River and analyzed to characterize PAH concentrations. Subtidal sediment samples were collected on 9, 10, and 11 December at: (1) Liston Point, DE, (2) the entrance to the Chesapeake and Delaware Canal, (3) the mouth of the Christina River, DE, and (4) at Marcus Hook, PA (figures 7 a-b).

Subtidal sediments were collected with a petite Ponar sampling device. The Ponar descends through the water column and lands on the river bottom in an open position. Pulling up on the line attached to the Ponar closes the Ponar "jaws" collecting approximately one liter of sediment from the top few centimeters. The Ponar was opened in a stainless steel tray and the sediment scooped into a one liter bottle using a stainless steel spoon. All sampling equipment used during sampling was washed with Citra-Solv cleaner and rinsed with distilled water in between samples. All samples were stored on ice, packed into a field cooler, and sent to B&B Laboratories under proper chain of custody. All samples were analyzed for total and individual PAHs (modified USEPA Method 8270) (Appendix D).

Additional subtidal sediment samples were collected from three Delaware River Estuary sites included in NOAA's National Status and Trends (NS&T) Program Mussel Watch Project to compare post spill and historical data. On 2 January 2005 samples were collected from Hope Creek, Arnolds Point Shoal, and Ben Davis Point Shoal.

Figure 7a. Sediment samples and total PAHs (ng/g) in the lower Delaware River. Total PAH values (ng/g) are presented in boxes below sample identification code. Box color represents sample collection date: 9 December 2004 (green); 10 December 2004 (blue); 11 December 2004 (yellow); 14 December 2004 (purple); and 17 December 2004 (orange).

Figure 7b. Sediment samples and total PAHs (ng/g) in the upper Delaware River. Total PAH values (ng/g) are presented in boxes below sample identification code. Box color represents sample collection date: 10 December 2004 (blue); 11 December 2004 (yellow); and 15 December 2004 (pink). Green star represents approximate spill location.

Eleven intertidal sediment samples were collected from Crosswicks Creek, NJ, at the Tacony-Palmyra Bridge, in Raccoon Creek, NJ, and on Tinicum Island, PA intertidal areas of the Delaware River on 14, 15, and 17 December 2004 (Figures 7a-b). Samples were collected by scraping the top centimeter of sediment at sample sites with a stainless steel spoon and placing into a stainless steel mixing bowl. Once 500 ml of sediment had been collected, it was thoroughly mixed in the bowl and transferred to a one liter bottle. All samples were stored on ice, packed into a field cooler, and sent to GERG under proper chain of custody. All samples were analyzed for PAHs (modified USEPA Method 8270), alkanes, total organic carbon, and biomarkers to enable evaluation of the source of the PAHs in the sediments (Appendix E).

The locations and total PAH levels of subtidal and intertidal sediment samples collected in the Delaware River are shown in Figures 7a and 7b and presented in Appendices D (subtidal) and E (intertidal). Total PAH in subtidal samples ranged from 209 to 23,985 ng/g dry (ppb). Total PAH in samples from intertidal samples ranged from 948 to 44,022 ng/g dry. Because background levels of PAHs are found in many bays and estuaries, further analysis of these data would be necessary to determine the nature and extent of *Athos* oil in the samples.

4.1.2.3 Sediment Toxicity Triad

To assess potential injury to sediment-dwelling organisms, DNREC collected whole-sediment samples from the vicinity of Tinicum Island, Claymont/Oldmans Point, and Pea Patch Island (Table 2). Surficial (0-2") sediment grabs were collected with a Ponar IV sampling device and analyzed with a sediment quality triad approach that included measuring PAHs and total organic carbon (TOC) concentrations, evaluating the toxicity of whole sediment samples to the amphipod *Leptocheirus plumulosus* in 10 day toxicity tests, and assessing benthic invertebrate community structure (EA Engineering 2005a, *ibid.* 2005b, *ibid.* 2005c).

The results of the toxicity tests indicate that the samples collected in the vicinity of Tinicum Island were toxic to amphipods on 15 December 2004 and 17 February 2005 (based on control adjusted survival of 39 and 62 percent at Tinicum Island (Figure 8). None of the other sediment samples was found to be toxic to this species. Given background levels of PAHs found throughout the Delaware watershed, determination of the extent to which the measured concentrations of PAHs or the measured toxicity was directly associated with the *Athos* incident would require further assessment.

Table 2. Sediment toxicity sample locations and dates.

			Sa	ample Dat	e
Sample Location	Latitude	Longitude	11/29/04	12/15/04	2/17/05
Tinicum Island	39 51.007 N	75 16.381 W		Х	Х
Claymont/Oldmans Point	39 47.816 N	75 26.873 W	Х	Х	Х
Pea Patch Island	39 35.941 N	75 34.961 W	X	Х	X

Figure 8. Ten day percent survival of *Leptocheirus plumulosus* (from Rick Greene, Delaware DNREC).

4.1.3 Oysters

Oysters are bioindicators of pollution because they filter seawater and accumulate PAHs in their tissues. The trustees and RPs collected oyster samples to determine potential risks to (1) human health from consumption, (2) oysters based on contaminant body burden, and (3) piscivorous animals that might consume tainted oysters.

Samples were collected for tissue analyses at 12 locations between approximately Liston Point, DE, and Egg Island Point, NJ on 7 and 9 December 2004, and at four locations in the Bay on 24 February 2005 (Delaware Bay False Egg, Delaware Bay Ben Davis, Delaware Bay Arnolds Pt., Delaware Bay Hope Creek) (Figure 9).

At each sample location, approximately 10-12 oysters were dredged from the oyster beds, wrapped in two layers of aluminum foil, and placed in a plastic bag. All samples were stored on ice and sent to GERG under proper chain of custody, where animals were removed from their shells, homogenized, and analyzed for PAHs (modified USEPA Method 8270). Additional analyses included biomarker analyses of the 12 samples collected on 7 and 9 December and trace metal analyses of the samples collected on 9 December 2004.

Sample locations and total PAH concentrations found in the 16 oyster tissue samples are shown on Figure 9. Laboratory data in the tissue samples are found in Appendix F. Oyster tissue PAH ranged from 13.2 to 28.9 ng/g wet weight (ppb). Further analysis of these data are necessary to determine whether *Athos* oil is present in the samples. Oyster tissue PAH levels (specifically benzo[a]pyrene) were below thresholds of concern for human health and bioaccumulation in piscivorous mammals (Sample *et al.* 1996).⁷

⁷ In a conservative risk analysis, the total PAH concentration was compared to the benzo[a]pyrene threshold to compensate for the B[a]P toxicity equivalents from other PAHs.

NOAA's National Status and Trends (NS&T) Program Mussel Watch Project maintains several sampling sites in the Delaware River Estuary. On 2 January 2005, oysters were collected from three sites in the Delaware River Estuary (Hope Creek, Arnolds Point Shoal and Ben Davis Point Shoal) to compare post spill and historical data. A stainless steel oyster dredge was used to collect samples from the three sites and the oyster tissues were analyzed for PAHs. The NS&T PAH concentrations at Hope Creek, Arnolds Point Shoal and Ben Davis Point were 1041 ng/g dry weight (ppb), 951 ng/g dry weight and 459 ng/g dry weight, respectively (Appendix F). Further analyses of these and historical data are needed to assess potential impacts associated with the *Athos* incident.

4.1.4 <u>Fish</u>

Search teams surveying oiled shorelines recovered 25 dead fish, including two bullhead catfish (*Ameiurus nebulosus*), two striped bass (*M. saxatilis*), fifteen white perch (*M. americana*), and one gizzard shad (*Dorosoma cepadianum*), that were oiled to varying degrees (E. Marek, written communication⁸). Necropsies or other cause of death analysis would be required to determine the cause of mortality of these fish and, importantly, when these fish were exposed to oil (*e.g.*, pre- or post- mortality).

The trustees and RPs collected perch, catfish, and gizzard shad from the River for tissue analysis (fillet and whole-body) to determine potential risks to (1) human health from consumption, (2) fish based on contaminant body burden, and (3) piscivorous animals that might consume the tainted fish (*e.g.*, aquatic mammals such as river otters, as well as birds such as ospreys, eagles, belted kingfishers, and great blue herons). Tissue samples were collected on 9 and 16 December 2004. Sampling location were: (1) near the mouth of Mad Horse Creek, NJ, (2) north of the Tacony-Palmyra Bridge, (3) south of Tinicum Island, PA, (4) at Marcus Hook, PA, (5) off the mouth of the Christina River, DE, and (6) north of Pea Patch Island, DE (Figure 10).

Fish samples were collected with a tow net. Fish that were large enough for analysis were removed from the net and wrapped in several layers of aluminum foil, then placed in a plastic bag. All samples were stored on ice, sent to GERG under proper chain of custody, and analyzed for PAHs (modified USEPA Method 8270). The catfish were homogenized as whole body samples. The perch and shad were filleted and the skin removed (and included in the remaining carcass).

⁸ Eric W. Marek, Special Agent, USFWS, Office of Law Enforcement, Elizabeth, NJ, by email April 26, 2006.

Figure 9. Oyster sample locations and total PAHs (ng/g) in the Delaware Bay. Total PAH values (ng/g) are presented in boxes below sample identification code. Box color represents sample collection date: 7 December 2004 (blue), 9 December 2004 (green), and 24 February 2005 (yellow).

Figure 10. Fish trawl sampling locations and total PAHs (ng/g) in the Delaware River. Box color represents sample collection date: 9 December 2004 (green), 16 December 2004 (yellow). "F" indicates fillet samples; "C" indicates carcass samples. Green star is approximate spill location.

Sample location and total PAH values for the 9 and 16 December 2004 samples are presented in Figure 10. Results of the more detailed PAH analyses are presented in Appendix G. In summary, samples ranged from 88.9 to 464.3 ng/g wet weight (whole body, catfish); 72.1-238.9 ng/g wet weight (fillet, perch and shad); and 205.6 to 1143.6 ng/g wet weight (carcass, perch and shad). Lipid-normalized concentrations of PAHs are below the threshold for PAH-induced narcosis in fish (Di Toro *et al.* 2000). While further analysis of these data is necessary to determine the nature and extent of *Athos* oil in the samples, total PAH concentrations in samples were below a benzo[a]pyrene threshold of concern for bioaccumulation in piscivorous mammals (Sample *et al.* 1996). All data, including individual PAHs, are presented in Appendix G.

The trustees also collected adult striped bass on 3, 10, 11, 27, and 31 May and 5 July 2005 from the Delaware Bay and the Delaware River near Tinicum Island and north of the Schuylkill River. Fifteen fish were collected, with fillets and carcasses subsequently analyzed for total and individual PAHs. The average total PAH concentrations ranged from 9.7 to 130.6 ng/g wet weight for fillets and 11.5 to 291.5 ng/g wet weight for carcasses. Lipid-normalized concentrations of PAHs are below the threshold for PAH-induced narcosis in fish (Di Toro *et al.* 2000). A preliminary evaluation indicates these values for striped bass would not trigger a fish advisory when using EPA guidance numbers (cancer health endpoint). All data are presented in Appendix G.

The trustees also monitored DNREC's juvenile and adult fish trawl surveys. Juvenile surveys were conducted at 39 stations throughout the Delaware Estuary between April and October 2005. Adult surveys were conducted at nine stations between March and December 2005. As of September 2005, 234 juvenile surveys (39 stations x 6 months) and 63 adult surveys (9 stations x 7 months) were made and no oil was observed.

Striped bass young of year surveys conducted by NJDEP were also monitored. As part of an annual effort in the Delaware River since 1980, thirty-two fixed stations are sampled twice a month from June through November. During the 2005 seining surveys, some type of oil was observed at most stations from Raccoon Creek to Eagle Point. During warm and hot days, small (dime-sized or smaller) oil globules were observed in the shallow waters. These globules would dissipate to a sheen and eventually completely dissociate when disturbed (T. Baum, personal communication⁹). Samples were not collected to evaluate the nature and extent of *Athos* oil.

4.1.5 Horseshoe Crabs and Whelks

Twenty-three dredge tows were made in the upper Delaware Bay on 18 March 2005 by DNREC to collect and observe horseshoe crab and knobbed whelks. Sampling was conducted by removing all live horseshoe crabs and whelks from half of the dredge contents. Live horseshoe crabs and whelks in the samples were counted and examined for the presence of oil.

Table 3 summarizes observation from the 23 tows. A total of 136 horseshoe crabs and 477 knobbed whelks were examined. No oil was observed.

⁹ Mr. Tom Baum, NJDEP.

Location	# tows	# horseshoe	# oiled horseshoe	# whelk	# oiled whelk
Location	sampled	crabs examined	crab observed	examined	observed
Α	11	70	0	325	0
В	12	66	0	152	0
Total	23	136	0	477	0

Table 3. Incidence of oiled horseshoe crabs and whelks.

Horseshoe crab spawning surveys were also conducted by DNREC and NJDEP between May and June 2005. Thirteen beaches in Delaware and 11 beaches in New Jersey were surveyed, covered approximately 130 km and 80 km, respectively, of shoreline. Preliminary indications are that no oil was observed on the beaches or the horseshoe crabs during the surveys.

The United States Geological Survey, in conjunction with DNREC and NJDEP, conducts an annual horseshoe crab tagging survey in the Delaware Bay between March and May. In 2005, horseshoe crabs collected from these surveys were monitored for the presence/absence of oil on the exoskeleton. No oil was detected on the approximately 8,700 horseshoe crabs that were observed during these surveys.

4.2 Shorelines

Fresh to saltwater wetland areas, wild rice marshes, sand beaches, mud flats, and tidal creeks are among the environmentally important shorelines affected by the spill. A variety of shoreline habitats were exposed to oil, including seawalls, marshes, and sand and mud habitats. Potential injuries include toxicity of the oil and smothering, which both may result in a loss of habitat and production.

4.2.1 Shoreline Cleanup Assessment

The shorelines within and adjacent to the spill zone were surveyed by Shoreline Cleanup Assessment Teams (SCAT) on a near continuous basis from 29 November 2004 to 13 February 2005. Standard SCAT procedures were used to document the extent and magnitude of oiling (NOAA, 2000), including length and width of oiling, percent of oil coverage, oil character, and thickness, as well as habitat conditions including length and width of shoreline, habitat type, substrata type, and wave exposure.

SCAT surveys were conducted over approximately 550 miles of shoreline along the mainstem of the Delaware River. For each designated segments, the nature, extent and severity of shoreline oiling was assessed as either Heavy, Moderate, Light, Very Light, or No Oiling based on the shoreline oiling width and thickness (Appendix H).

Table 4 presents the length of shoreline oiling by shoreline type and degree of oiling. Figure 11 graphically depicts shoreline oiling as of 10 May 2005. Of the approximately 550 miles

surveyed, almost 280 miles of shoreline were oiled to varying degrees.¹⁰ Substantial shoreline oiling also occurred within the tributaries. Predominant shoreline types exposed to oil include seawalls, sand beaches, coarse substrate, mud flats, and marshes (Figure 11).

Table 4.	Approximate length in miles of shoreline habitat by oiling degree. These numbers do not include
	the length of oiled shoreline in tributary creeks. See Appendix H for definition of oiling
	categories.

Habitat	Very Light	Light	Moderate	Heavy	Total
Seawalls	13	24	37	4	78
Sand/Mud Substrate	18	11	10	6	44
Coarse Substrate	37	18	9	5	69
Marsh	70	20	4	2	96
Total	138	73	60	17	287

In addition to the SCAT surveys, the PA Bureau of Forestry contacted Dr. Ann Rhoads at the Morris Arboretum of the University of Pennsylvania to request that she survey the plants around Tinicum Island. Dr. Rhoads reported that plants visible on the tidal flats included dormant leaves of spatterdock (*Acorus calamus*), arrowhead (*Sagittaria rigida*), arrow-arum (*Peltandra virginica*), and dwarf spike-rush (*Eleocharis parvula*). Black oil was noted on the leaves of many, but not all, of these plants. The full report prepared by Dr. Rhoads is included in Appendix H.

¹⁰ The length in Table 4 (287 miles) is greater than the total length of oiled shoreline because some segments have two habitat types present.

Figure 11. Maximum shoreline oiling, as reported in May 2005.

a. Oiled seawall

b. Oiled sand beach.

c. Oiled coarse substrate beach

d. Oiled intertidal mud flat

- e. Oiled marsh.
- Figure 12a-e. Representative examples of shoreline oiling observation; (a) seawalls, (b) oiled sand beach, (c) oiled coarse substrate beach, (d) oiled intertidal mud flat, and (e) oiled marsh.

4.3 Birds and Wildlife

Bird and wildlife resources at risk include migrating marsh birds, egret and heron rookeries, eagles and osprey, and migratory shorebirds. The federally-threatened piping plover (*Charadrius melodus*) inhabits the Lower Delaware Bay. There are also a variety of mink, otter, turtles, and terrestrial fauna that use the affected area. Major pathways of exposure are ingestion and fouling of fur and feathers.

4.3.1 Wildlife Response and Rescue Operations

Immediately following the spill, search teams began patrolling oiled shoreline areas and coordinating observations of dead and oiled wildlife with response/ cleanup crews, bird ground survey crews, and Tri-State Bird Research and Rescue in Delaware. Wildlife rehabilitation occurred at the Frink Center for Wildlife in Newark, DE and the John Heinz Wildlife Refuge in Philadelphia, PA. By May 2005, a number of oiled birds were observed (Figure 13); 206 wild birds were collected dead, died at the rehabilitation center, or were unable to be released to the wild, and 337 birds were rehabilitated and released alive (E. Marek, written communication¹¹) (Table 5). Recovered wildlife that were collected dead or died at the rehabilitation center included three turtles, one squirrel, one opossum, one red fox, and one woodchuck (E. Marek, written communication¹²). Two turtles were unable to be released to the wild and were placed domestically.

Figure 13. Observed oiled birds.

4.3.2 Wildlife Ground Surveys

The trustee and RP representatives conducted ground surveys to estimate the extent and degree of oiling of non-recovered wildlife. More than 3,400 surveys were conducted between 30 November 2004 and 10 January 2005 (Appendix I), typically at fixed points accessible via foot, vehicle, or boat. Site locations were selected based upon review of oil distribution maps and trajectory models produced as part of the response, as well as aerial survey results described below. Between one and three observers were present at each site visit. All visible birds in open water, adjacent wetlands, spoil banks, and adjacent upland habitats were counted. Additional observations included date, time, duration on site, behavior, and oiling descriptor (trace, <6 percent body surface oiled; light, 6-20 percent body surface oiled; moderate, 21-40 percent body surface oiled, or heavy, >40 percent body surface oiled).

Data on the total number of birds observed by species, most observed in one day, most observed oiled in one day, and degree of observed oiling are provided in Appendix I. Nearly 157,500

¹¹ Eric W. Marek, Special Agent, USFWS, Office of Law Enforcement, Elizabeth, NJ, by email April 26, 2006.

¹² Eric W. Marek, Special Agent, USFWS, Office of Law Enforcement, Elizabeth, NJ, by email April 26, 2006.

birds were counted, with about 16,500 (10 percent) having some degree of oiling. About 72 percent of all oiled birds observed had trace or light oiling; 19 percent of oiled birds were moderately oiled; and nine percent of oiled birds were heavily oiled.

The most common species observed are reported in Table 6. Nearly half of all oiled birds observed were geese. Canada geese, mallards, and gulls made up 91 percent of observed oiled birds. These species also composed the majority of all birds observed (Appendix I).

Species	Rehabilitated/Released	Dead	
American black duck	2	1	
Blue-winged teal	_	1	
Duck sp.	0	2	
Mallard	11	25	
American coot	-	1	
Bufflehead	3	1	
Canvasback	_	1	
Long-tailed duck	_	1	
Ruddy duck	-	1	
Black Scoter	-	1	
Double-crested cormorant	-	9	
Northern gannet	_	1	
Great black-backed gull	-	2	
Gull sp.	_	22	
Herring gull	7	26	
Ring-billed gull	25	17	
Belted kingfisher	-	3	
Canada goose	287	80	
Mute swan	-	1	
Snow goose	2	6	
Great blue heron	-	2	
Unidentified	0	2	
Total Wild	337	206	
Domestic geese ²	32	1	
Domestic ducks ²	4	0	
Total Domestic	36	1	
 This number includes birds that survived at the rescue center, but were unable to be rehabilitated sufficiently for successful release to their natural habitat. Eleven mallards and six Canada geese were placed in domestic situations. For domestic birds, successful rehabilitation resulted in return to a domestic situation. 			

Table 5. Summary of data on recovered birds from the rehabilitation center.

Species name	Total Oiled Bird Observations	Percent of all Oiled Birds
Canada Goose	8041	49
Great black-backed gull	469	3
Herring Gull	915	6
Mallard	447	3
Ring-billed Gull	5422	33
Total		91
Note: Percentages do not sum	to total due to rounding.	

Table 6. Most common birds observed oiled during ground surveys. Data analysis as of May 2005.

4.3.3 Aerial Bird Surveys

The trustee and RP representatives conducted 11 aerial surveys between 28 November 2004 and 28 December 2004 to assess the species composition and abundance of birds in the spill area. In New Jersey and Pennsylvania, aerial surveys covered main-stem shorelines and all tributaries upstream to the point where overhanging tree canopies obscured visibility of birds below. Aerial surveys in Delaware covered approximately 50 percent of the Bay's shoreline below the Delaware Memorial Bridge and much smaller portions of tributaries and adjacent marsh complexes. In these estuarine marsh complexes, birds were counted to 250 meters on each side of the aircraft, but at least 50 meters of each side of the aircraft is obscured below the aircraft. Aerial surveys were conducted using Bell 206 helicopters or Cessna 206 fixed-wing aircraft. Bird surveys were performed with one or two observers. All visible birds in open water, adjacent wetlands, spoil banks, and adjacent upland habitats (e.g., farm fields, parks, and corporate lawns) were counted. Observations were recorded on a hand-held tape recorder and transcribed after the flight. Most helicopter surveys were performed at altitudes of 30-120 meters and airspeeds of 40 knots, depending on flight conditions, proximity of obstructions, and other factors. Fixed-wing aircraft surveys were typically flown at higher altitudes and airspeeds. The route of the aircraft on any given survey was adjusted for the number of observers, wind speed and direction, sun angle and tide level.

Birds were identified to the highest taxonomic level (typically species) possible. Some species were difficult to differentiate from the air (*e.g.*, greater and lesser scaup; ring-billed, herring, and greater black-backed gulls; and shorebirds). The aerial surveys were best able to detect species that are large, brightly colored, abundant, and widely distributed in area. As an example, observers were more likely to see tundra swans (large and bright) and Canada geese (large) than green-winged teal (small) or shorebirds (very small). Less abundant birds mixed with flocks of more abundant birds are also often missed in surveys.

The number of birds observed during each of the 11 aerial surveys, along with the general location of the flight is presented in Table 7 and Appendix I. Total observed birds ranged from about 2,600 on 3 December 2004 to nearly 100,000 on 5 December 2004. While these counts do not reflect a standard flight time or area covered, in general, more birds moved into the area as it became colder and later in December 2004. Observation conditions were excellent on 2 December, fair on 5 and 7 December and poor on 15 December due to high winds. Available

daylight and time were a factor on all days in that several marshes along the central NJ coast were not flown in order to get to Alloway Creek and Salem River, where most of the oil was located, before dark. On 15 December, much of the Delaware marshes were frozen in the morning resulting in lower numbers of birds observed in the marshes. Tides and winds affect the number of birds in the shores of the Bay where most of the black ducks and mallards are observed. On 2 December, high tides and winds blowing from the west resulted in New Jersey marshes being flooded and many black ducks and mallards being concentrated on the coast.

Date	Number of Birds observed	Predominant Species Observed	Area surveyed
28-Nov	3,392	Black ducks, mallards, buffleheads, gulls, Canada geese	Portion of north NJ shoreline
29-Nov	7,555	Black ducks, gulls, Canada geese	Portion of north NJ shoreline
30-Nov	5,030	Black ducks, mallards, ruddy ducks, buffleheads, gulls, Canada geese	NJ and PA shorelines
2-Dec	59,123	Black ducks, green-winged teal, mallards, ruddy ducks, buffleheads, gulls, Canada geese, snow geese	DE and NY shorelines
3-Dec	2,577	Mallards, gulls, Canada geese	PA shoreline
5-Dec	98,245	Black ducks, gadwall, green-winged teal, mallards, pintails, buffleheads, ruddy ducks, scaup, gulls, gannet, Canada geese, snow geese, swans	NJ, PA, and DE shorelines
9-Dec	12,716	Black ducks, green-winged teal, mallards, pintails, ruddy ducks, gulls, Canada geese	Portions of NJ and PA shoreline
13-Dec	17,825	Black ducks, green-winged teal, mallards, pintails, gulls, Canada geese	North NJ and PA shoreline
15-Dec	70,209	Black ducks, green-winged teal, mallards, gulls, Canada geese, swans, snow geese	DE and south NJ shorelines
16-Dec	51,096	Black ducks, green-winged teal, mallards, pintails, gulls, Canada geese, greater white- fronted geese	DE and south NJ shorelines
21-Dec	19,516	Black ducks, mallards, pintails, canvasback, merganser, gulls, Canada geese	North NJ and PA shorelines

Table 7. Aerial Bird Survey Summary for Delaware River segments. Counts by species are presented in Appendix I.

4.4 Lost recreational use

Many types of recreation are popular along the Delaware River in the areas affected by the incident. The River and its tributaries support numerous marshes that are popular for waterfowl hunting. Boating, fishing, crabbing, as well as beach and other shoreline use, are also popular recreational activities throughout the region.

Following the spill, hunting and boating advisories were issued in Delaware and New Jersey, closing certain areas. In Delaware, state lands were closed to hunting as far south as Cedar Swamp Wildlife Area. In New Jersey, the hunting advisory included most areas within five miles of the River from the Tacony-Palmyra Bridge to the nuclear power facility in Salem, NJ. The advisories were in effect for about two weeks.

As part of the preassessment efforts, the trustees collected data to begin determining the potential for loss of the human uses, including hunting , boating, fishing, crabbing, and beach and other shoreline use. Shoreline use (*e.g.*, fishing, boating, walking) was documented during several overflights. Interviews with marina owners were also conducted to determine the potential impacts to recreational boating.

In general, the level of recreational boating at the time of the incident appeared low, although some boat-based fishing typically continues throughout the year. Sporadic problems with oil were also reported at marinas in the area.

Additional information necessary to quantify the injury for each of the recreational resource use categories will be collected as needed.

5.0 **REFERENCES**

- Di Toro, D.M., J.A. McGrath, D.J. Hansen. 2000. Technical Basis for Narcotic Chemicals and Polycyclic Aromatic Hydrocarbon Criteria. I. Water and Tissue. *Environmental Toxicology and Chemistry*. Vol. 19, No. 8, pp. 1951-1970.
- EA Engineering, Science, and Technology, Inc. 2005a. Results of Toxicity Testing with *Leptocheirus pumulosus* on Sediment Samples from the Delaware River (EA Report Number 4677, dated 27 January 2005). Report prepared for the Delaware Department of Natural Resources and Environmental Control, Division of Air and Waste Management, New Castle, DE.
- EA Engineering, Science, and Technology, Inc. 2005b. Results of Toxicity Testing with *Leptocheirus pumulosus* on 17 February 2005 Sediment Samples from the Delaware River (EA Report Number 4750, dated 26 April 2005). Report prepared for the Delaware Department of Natural Resources and Environmental Control, Division of Air and Waste Management, New Castle, DE.
- EA Engineering, Science, and Technology, Inc. 2005c. Results of Toxicity Testing with *Leptocheirus pumulosus* on 15 December 2005 Sediment Samples from the Delaware River (EA Report Number 4691, dated 4 March 2005). Report prepared for the Delaware Department of Natural Resources and Environmental Control, Division of Air and Waste Management, New Castle, DE.
- Meyers, R.A. (editor) 2004. Handbook of petroleum refining processes. Third edition. McGraw-Hill. New York, NY.
- National Oceanic and Atmospheric Administration, 2000. Coastal resources atlas: Delaware, New Jersey, and Pennsylvania. National Ocean Service, Office of Response and Restoration.
- Neff, J.M., S.A. Strout, and D.G. Gunster. 2005. Ecological risk assessment of polycyclic aromatic hydrocarbons in sediments: Identifying sources and ecological hazards. Integrated Environmental Assessment and Management 1(1): 22-33
- Sample, B.E., D.M. Opresko, and G.W. Suter II. 1996. Toxicological benchmarks for wildlife:1996 Revision. ES/ER/TM-86/R3. Office of Environmental Management. United States Department of Energy. Oak Ridge, Tennessee.
- U.S. Coast Guard, 2005. T/S ATHOS I Evaluation Report. USCG National Strike Force Coordination Center, Elizabeth City, NC, August 2005.
- U.S. Coast Guard, 2006. Investigation into the striking of submerged objects by the tank vessel ATHOS I in the Delaware River on 26 November 2004 with a major discharge of oil, January 2006.
APPENDIX A

Source Oil Analyses

- A.1. PAH analyses, analyte histogram and biomarker analyses of November 28, 2004 source oil sample (GERG Laboratory analyses).
- A.2. PAH analyses, analyte histogram and trace metals analysis of November 28, 2004 source oil sample (B&B Laboratory analysis).
- A.3. Analysis of source oil aromatics (Lancaster Laboratories).
- A.4. December 7, 2004 LSU source oil report.
- A.5. December 9, 2004 LSU source oil report.
- A.6. Narcotic potency of the PAH mixture in the source oil.
- A.7. PAH Analyte List by Laboratory.

A.1. PAH analyses, analyte histogram, and biomarker analyses of November 28, 2004 source oil sample taken by USCG from the *M/T Athos*. Analysis by GERG. GERG ID numbers C45279, W44253, W44254, W55259, and W442260 are replicates of the same source oil sample. The analyte histogram is the average of the five replicates.

Client Sample ID Sample Descriptor Original Sample	Sample 1 Tank Center 7	Sample 1 Tank Center 7	Sample 1 Tank Center 7	
GERG ID	C45279	W44253	W44254	
Sample Type	SAMP	SAMP	SAMP	
SDG	EC174	EC174		
Wet Weight	0.558	0.558	0.558	
Sample Size Units	Milligrams	Milligrams	Milligrams	
Matrix	oi	Oil	Oil	
% solid				
% Lipid				
Reporting Units	ng/mg	ng/mL	ng/mL	
Calculation Basis (dry/wet)	Wet	Wet	Wet	
QC Batch ID		T1465	T1465	
Method	GCMS	GCMS	GCMS	
Collection Date	11/28/04	11/28/04	11/28/04	
Receive Date	12/15/04	12/15/04	12/15/04	
Extraction Date				
Analysis Date	12/14/04	01/14/05	01/14/05	
Surrogate Compounds	%Recovery	%Recovery	%Recovery	
d8-Naphthalene	109.7	80.3	72.7	
d10-Acenaphthene	107.5	85.5	74.3	
d10-Phenanthrene	111.5	78.0	63.4	
d12-Chrysene	97.7	73.8	57.3	
d12-Perylene	92.7	83.8	79.7	
Total PAHs	Concentration	Concentration	Concentration	
Total PAHs with Perylene	4410.4	4427.0	4615.7	
Total PAHs without Perylene	4401.5	4408.9	4603.1	
Total NS&T PAHs	681.7	648.8	688.2	

GERG Analyses

ND Not Detected J <-MDL NA Not Applicable Q Results Ontside QC I Interference

I Interference B Blank Contamination >3xMDL

D Dilution

Client Sample ID	Sample 1		Sample 1		Sample 1	
Sample Descriptor	Tank Center 7		Tank Center 7		Tank Center 7	
Original Sample						
GERG ID	C45279		W44253		W44254	
Sample Type	SAMP		SAMP		SAMP	
SDG	EC174		EC174			
PAH Compounds	Concentration	MDL	Concentration	MDL	Concentration	MDL
Naphthalene	60.24	10.0	58.3	10.0	61.3	10.0
C1-Naphthalenes	129.62	10.0	132.8	10.0	137.8	10.0
C2-Naphthalenes	254.17	10.0	264.6	10.0	271.9	10.0
C3-Naphthalenes	263.56	10.0	296.2	10.0	299.3	10.0
C4-Naphthalenes	188.07	10.0	212.3	10.0	201.9	10.0
Biphenyl	13.27	10.0	13.1	10.0	13.7	10.0
Acenaphthylene	8.64	10.0 J	7.8	10.0 J	8.9	10.0 J
Acenaphthene	21.45	10.0	17.9	10.0	18.9	10.0
Fluorene	50.78	10.0	46.6	10.0	46.7	10.0
C1-Fluorenes	120.08	10.0	119.5	10.0	127.9	10.0
C2-Fluorenes	227.34	10.0	219.0	10.0	220.8	10.0
C3-Fluorenes	271.21	10.0	287.7	10.0	287.9	10.0
Phenanthrene	87.19	10.0	86.0	10.0	91.6	10.0
Anthracene	8.86	10.0 J	6.7	10.0 J	7.2	10.0 J
C1-Phenanthrenes/Anthracenes	228.96	10.0	222.4	10.0	246.3	10.0
C2-Phenanthrenes/Anthracenes	338.85	10.0	314.7	10.0	333.7	10.0
C3-Phenanthrenes/Anthracenes	282.08	10.0	275.8	10.0	287.8	10.0
C4-Phenanthrenes/Anthracenes	208.45	10.0	240.5	10.0	230.5	10.0
Dibenzothiophene	40.98	10.0	36.4	10.0	42.6	10.0
C1-Dibenzothiophenes	162.97	10.0	127.3	10.0	138.0	10.0
C2-Dibenzothiophenes	367.72	10.0	348.6	10.0	369.4	10.0
C3-Dibenzothiophenes	373.04	10.0	346.5	10.0	373.2	10.0
Fluoranthene	3.95	10.0 J	3.1	10.0 J	4.1	10.0 J
Pyrene	16.44	10.0	14.3	10.0	17.5	10.0
C1-Fluoranthenes/Pyrenes	84.53	10.0	78.1	10.0	79.8	10.0
C2-Fluoranthenes/Pyrenes	123.87	10.0	124.0	10.0	137.3	10.0
C3-Fluoranthenes/Pyrenes	139.00	10.0	173.4	10.0	168.5	10.0
Benzo(a)anthracene	10.40	10.0	5.3	10.0 J	6.3	10.0 J
Chrysene	36.91	10.0	32.8	10.0	38.8	10.0
C1-Chrysenes	79.65	10.0	82.8	10.0	94.1	10.0
C2-Chrysenes	90.14	10.0	123.4	10.0	144.6	10.0
C3-Chrysenes	47.12	10.0	36.8	10.0	48.1	10.0
C4-Chrysenes	9.84	10.0 J	11.2	10.0	5.7	10.0 J
Benzo(b)fluoranthene	7.86	10.0 J	8.0	10.0 J	8.3	10.0 J
Benzo(k)fluoranthene	2.07	10.0 J	1.1	10.0 J	1.2	10.0 J
Benzo(e)pyrene	14.92	10.0	12.9	10.0	15.5	10.0
Benzo(a)pyrene	6.82	10.0 J	5.5	10.0 J	3.4	10.0 J
Perylene	8.90	10.0 J	18.1	10.0	12.6	10.0
Indeno(1,2,3-c,d)pyrene	4.99	10.0 J	4.4	10.0 J	2.7	10.0 J
Dibenz(a,h)anthracene	1.21	10.0 J	5.2	10.0 J	5.2	10.0 J
Benzo(g,h,i)perylene	8.25	10.0 J	6.2	10.0 J	4.9	10.0 J
2-Methylnanhthalene	70.02	10.0	71.9	10.0	74 4	10.0
1-Methylnaphthalene	50.60	10.0	60.0	10.0	63.4	10.0
2.6-Dimethylnaphthalene	120.10	10.0	122.1	10.0	1/0.7	10.0
2,0-Dimenyinaphthalene	101.52	10.0	05.5	10.0	140.7	10.0
1.Methylohonanthrene	65.52	10.0	50.0	10.0	66.0	10.0
тистурненанителе	00.05	10.0	J0.Z	10.0	00.9	10.0

ND Not Detected J <MDL NA Not Applicable Q Results Outside QC I Interference B Blank Contamination >3xMDL D Dilution

Page 2 Printed 3/14/2005

Client Sample ID	Sample 1	Sample 1	
Sample Descriptor	Tank Center 7	Tank Center 7	
Original Sample			
GERG ID	W/44250	W/4/260	
Sample Type	SAMP	SAMP	
SDG	5AMI	SAMI	
Wet Weight	0.558	0.558	
Sample Size Units	Milligrams	Milligrams	
Matrix	Oil	Oil	
% solid			
% Lipid			
Reporting Units	ng/mL	ng/mL	
Calculation Basis (dry/wet)	Wet	Wet	
QC Batch ID	T1466	T1466	
Method	GCMS	GCMS	
Collection Date	11/28/04	11/28/04	
Extraction Date	12/15/04	12/15/04	
Analysis Date			
	01/15/05	01/15/05	
Surrogate Compounds	%Recovery	%Recovery	
d8-Naphthalene	101.8	117.3	
d10-Acenaphthene	110.4	119.3	
d10-Phenanthrene	99.7	108.0	
d12-Chrysene	94.7	109.6	
d12-Perylene	89.7	82.9	
Total PAHs	Concentration	Concentration	
Total PAHs with Perylene	4563.5	4964.3	
Total PAHs without Perylene	4547.0	4947.9	
Total NS&T PAHs	652.4	705.5	

- ND Not Detected J <MDL NA Not Applicable Q Results Outside QC I Interference B Blank Contamination >3xMDL D Dilution

Page 3 Printed 3/14/2005

Client Sample ID	Sample 1			Sample 1			
Sample Descriptor	Tank Center 7			Tank Center 7			
Original Sample							
GERGID	W44259			W44260			
Sample Type	SAMP			SAMP			
SDG							
DALL Compounds	C	MOL		C	MDI		
PAH Compounds	Concentration	MDL		Concentration	MDL		
Naphthalene C1 Naphthalenes	01.3	10.0		03.7	10.0		
C2 Naphthalones	130.0	10.0		133.3	10.0		
C2 Naphthalenes	200.3	10.0		2/4./	10.0		
C4 Naphthalenes	301.7	10.0		309.1	10.0		
Binbond	200.2	10.0		210.0	10.0		
Acononthylene	11.2	10.0		12.0	10.0		
Aconaphthono	1.1	10.0	J	0.7	10.0	J	
Fluorene	10.4	10.0		18.0	10.0		
C1-Elucrenes	40.2	10.0		49.5	10.0		
C2-Elucrenes	110.5	10.0		131.1	10.0		
C3-Fluorenes	210.7	10.0		230.4	10.0		
Phenanthrene	200.4	10.0		04.4	10.0		
Anthracene	04.2	10.0		94.4	10.0		
C1-Phenanthrenes/Anthracenes	225.4	10.0	J	260.5	10.0	J	
C2-Phenanthrenes/Anthracenes	220.1	10.0		200.0	10.0		
C3-Phonanthrones/Anthracenes	320.2	10.0		330.1	10.0		
C4-Phenanthrenes/Anthracenes	290.0	10.0		250.5	10.0		
Dibenzothiophene	200.0	10.0		42.10.3	10.0		
C1-Dibenzothiophenes	125.5	10.0		42.1	10.0		
C2-Dibenzothiophenes	365.9	10.0		408.4	10.0		
C3-Dibenzothiophenes	369.2	10.0		406.8	10.0		
Fluoranthene	3.0	10.0	J.	47	10.0	J.	
Pvrene	16.0	10.0	Ŭ	18.6	10.0	Ŭ	
C1-Fluoranthenes/Pyrenes	83.7	10.0		87.8	10.0		
C2-Fluoranthenes/Pyrenes	131.1	10.0		152.0	10.0		
C3-Fluoranthenes/Pyrenes	184.6	10.0		207.6	10.0		
Benzo(a)anthracene	7.1	10.0	J	6.0	10.0	J	
Chrysene	38.7	10.0		41.0	10.0		
C1-Chrysenes	90.5	10.0		95.5	10.0		
C2-Chrysenes	135.4	10.0		141.8	10.0		
C3-Chrysenes	45.8	10.0		45.4	10.0		
C4-Chrysenes	10.8	10.0		14.4	10.0		
Benzo(b)fluoranthene	8.1	10.0	J	8.6	10.0	J	
Benzo(k)fluoranthene	1.0	10.0	J	0.3	10.0	J	
Benzo(e)pyrene	13.1	10.0		14.7	10.0		
Benzo(a)pyrene	5.3	10.0	J	3.8	10.0	J	
Perylene	16.6	10.0		16.4	10.0		
Indeno(1,2,3-c,d)pyrene	3.3	10.0	J	2.7	10.0	J	
Dibenz(a,h)anthracene	3.7	10.0	J	4.2	10.0	J	
Benzo(g,h,i)perylene	5.9	10.0	J	4.5	10.0	J	
0 Matha in an bits also	70.0	40.0		70.0	10.0		
∠-rvietnyinaphthalene	70.3	10.0		13.8	10.0		
T-ivietnyinaphtnaiene	00.4	10.0		01./	10.0		
2,0-Dimethylnaphthalene	129.2	10.0		143.8	10.0		
1, o, r- mmeunyinaphtnaiene	94.7	10.0		107.5	10.0		
1-weuryphenanthrene	60.2	10.0		69.7	10.0		

ND Not Detected J <MDL NA Not Applicable Q Results Outside QC I Interference B Blank Contamination >3xMDL D Dilution

Page 4 Printed 3/14/2005

Client Sample ID Sample Descriptor Original Sample GERG ID Sample Type SDG	Tank Center 7 Average of 5 Injections			GERG REF OIL W44231 REF	
Wet Weight Sample Size Units Matrix % solid				1.00 Milliliter Oil Solution	
% Lipid Reporting Units Calculation Basis (dry/wet)				ng/mL Wet	
QC Batch ID Method Collection Date Receive Date Extraction Date Analysis Date				T1463 GCMS	
				12/14/04	
Surrogate Compounds d8-Naphthalene d10-Acenaphthene d10-Phenanthrene				%Recovery	NA NA NA
d12-Chrysene d12-Perylene	Average	Std Dev	Coef of Var		NA NA
Total PAHs Total PAHs with Perylene Total PAHs without Perylene Total NS&T PAHs	4596.2 4581.7	223.6 222.5	4.9 4.9	Concentration 10591.3 10575.4	
	0/0.5	Z4.Z	3.0	4206.0	

- ND Not Detected J <MDL NA Not Applicable Q Results Outside QC I Interference B Blank Contamination >3xMDL D Dilution

Page 5 Printed 3/14/2005

Client Sample ID Sample Descriptor Original Sample GERG ID	Tank Center 7			GERG REF OIL		
Sample Type	Average of 5			W44231		
SDG	Injections			REF		
000						
PAH Compounds				Concentration	MDI	
Naphthalene	61.0	2.0	32	753 5	20.0	
C1-Naphthalenes	133.3	3.4	2.5	2291.9	20.0	
C2-Naphthalenes	266.3	8.0	3.0	2042.0	20.0	
C3-Naphthalenes	294.0	17.7	6.0	1666.1	20.0	
C4-Naphthalenes	204.9	10.9	53	904.6	20.0	
Biphenvl	12.8	10.5	7.6	58.0	20.0	
Acenaphthylene	8.4	0.6	6.8	29.2	20.0	
Acenaphthene	19.0	1.4	73	93	20.0	
Fluorene	47.9	2.0	4.2	91.1	20.0	
C1-Elugrenes	123.0	6.2	5.1	264.0	20.0	
C2-Elugrenes	224.4	8.7	3.9	344.0	20.0	
C3-Eluorenes	224.4	24.6	8.4	294.9	20.0	
Phenanthrene	204.0	4.0	4.7	1/2 5	20.0	
Anthracene	7.8	4.2	4.7	142.5	20.0	
C1-Phenanthrenes/Anthracenes	236.6	16.3	6.9	321.6	20.0	
C2-Phenanthrenes/Anthracenes	230.0	16.5	4.7	378.1	20.0	
C3-Phenanthrenes/Anthracenes	290.4	15.5	4.7	259.2	20.0	
C4-Phenanthrenes/Anthracenes	230.4	20.2	0.5	200.2	20.0	
Dibenzothiophene	230.0	20.5	0.5 6.5	21.7	20.0	
C1-Dibenzothiophenes	40.1	15.0	11.0	21.7	20.0	
C2-Dibenzothiophenes	372.0	15.4	5.9	75.0	20.0	
C3-Dibenzothiophenes	373.7	22.0	5.5	7 J.J 55 6	20.0	
Fluoranthene	30	21.5	19.7	55.0 6.1	20.0	
Pyrene	J.0 16.6	1.6	9.8	6.5	20.0	
C1-Eluoranthenes/Pyrenes	0.0	2.0	4.7	6.5	20.0	
C2-Eluoranthenes/Pyrenes	133.7	117	4.7	60.1	20.0	
C3-Eluoranthenes/Pyrenes	174.6	25.0	1/1.3	72.2	20.0	
Benzo(a)anthracene	7.0	20.0	14.5	7.2	20.0	
Chrysene	27.6	2.0	20.5	11.2	20.0	
C1-Chrysenes	57.0 00 E	J.1 7.0	7.0	11.3	20.0	
C2-Chrysenes	00.0	22.2	1.5	21.5	20.0	
C3-Chrysenes	127.1	22.2 A E	10.1	12.6	20.0	
C4-Chrysenes	44.0	4.5	30.3	3.0	20.0	
Benzo(b)fluoranthene	0.4	0.2	25	3.0	20.0	1
Benzo(k)fluoranthene	0.2	0.5	5.5	2.0	20.0	J
Benzo(e)pyrene	14.2	1.2	93	2.4	20.0	1
Benzo(a)pyrene	14.2 5.0	1.2	27.9	2.2	20.0	1
Pervlene	5.0	1.4	27.0	1.1	20.0	3
Indeno(1 2 3-c d)pyrene	14.0	1.0	20.0	13.5	20.0	
Dibenz(a,h)anthracene	5.0	1.0	26.8	0.5	20.0	1
Benzo(a h i)pervlene	5.1	1.4	20.0	0.4	20.0	1
	5.5	1.0	24.0	0.9	20.0	5
2-Methylnaphthalene	72 1	20	28	1382.5	20.0	
1-Methylnaphthalene	61.2	1.5	2.0	909.4	20.0	
2 6-Dimethylnaphthalene	137.0	6.1	4.4	751.6	20.0	
1.6.7-Trimethylnaphthalene	100.0	5.2	5.2	521.5	20.0	
1-Methylphenanthrene	64.1	4.8	7.4	104.8	20.0	

ND Not Detected J <MDL NA Not Applicable Q Results Outside QC I Interference B Blank Contamination ≥3xMDL D Dilution

Page 6 Printed 3/14/2005

STERANE AND TRITERPANE BIOMARKERS

Project: ATHOS I Oil Spill Lab Sample ID: C45279 Sample Descriptor: Sample 1, Tank Center 7 Analysis Date: 12/20/2004

PARAMETERS

A:LEVEL OF MATURITY

Terpanes

14.9 21.7 24.8 48.9 9.2 45.2 24.8 19.5 41.2 24.0 15.9 9.7 9.2 0.95 0.97 418.2

Steranes

% 20S C29 STERANES 55.8 % 22S C31 HOMOHOPANE 60.7 % C29 ISOSTERANES (abb) 54.6 % C30 HOPANE 82.7 % REGULAR STERANES 13.9 % TS/TS+TM (C27) 41.6 % ISOSTERANES 15.7 TS/TM (C27) 0.71% DIASTERANES 25.2 % C30 MORETANE 17.3 % SHORT-CHAIN STERANES % C29 NORMORETANE 21.6 45.2 9.2 DIAHOPANE INDEX (%) % TRICYCLIC TERPANES 45.2

B:ORGANIC FACIES AND DEPOSITIONAL ENVIRONMENT

% TOTAL C20+C21	45.2	OLEANANE INDEX (%)
% TOTAL C27	14.3	GAMMACERANE INDEX (%)
% TOTAL C28	19.6	BISNORHOPANE INDEX (%)
% TOTAL C29	16.4	25-NORHOPANE INDEX (%)
% TOTAL C30	4.5	DIAHOPANE INDEX (%)
HOPANES/STERANES	1.5	% TRICYCLIC TERPANES
% DIASTERANES	25.2	% C24 TETRACYCLIC TERPANE
TOTAL STERANES (ppm)	283	% MORETANES
		% TOTAL C31 PENTACYCLICS
Other Biological Markers		% TOTAL C32 PENTACYCLICS
		% TOTAL C33 PENTACYCLICS
b-Carotane (ppm)	0.6	% TOTAL C34 PENTACYCLICS
		% TOTAL C35 PENTACYCLICS
		C35/C34 HOMOHOPANES
		29/30 HOPANES
		TOTAL TRITERPANES (ppm)

All ratios based on concentrations

STERANE AND TRITERPANE BIOMARKERS Project: ATHOS I Oil Spill Lab Sample ID: C45279 Sample Descriptor: Sample 1, Tank Center 7 Analysis Date: 12/20/2004

A.2. PAH analyses, analyte histogram and trace metals analysis of November 28, 2004 source oil sample (B&B Laboratory analysis).

B&B Laboratories Project J04447 Report 04-1353		Polaris Applie TV Athos I O Polycyclic Aromati Client Submi	d Sciences, inc. Il Spill Project Ic Hydrocarbon Data Itted Samples	Client Project # 1146
Sample Name Ciliant Name Matrix Collection Date Extraction Date Extraction Date Extraction Date Extraction Batch Date Acquired Method Sample Weight (mg) Dilution	ETX3072.D Sample 1 Tank Center 7 Product 1/2/8/04 12/04/04 12/04/04 ENV 1057 12/04/04 PAH-2002 11.9 NA	ETX3872D.D Dupl. (Sample 1 Tank Cer Product 12/04/04 12/04/04 ENV 1057 12/04/04 PAH-2002 11.9 NA	nlor 7)	
Target Compounds	Su Corrected C Conc. (ng/mg)	Su Corrected Conc. (ng/mg)	Q	
C1-Apphilaions C2-Apphilaions C2-Apphilaions C3-Apphilaions C3-Apphilaions C3-Apphilaions C3-Apphilaions C3-Apphilaions C3-Apphilaions C3-Apphilaions C3-Apphilaions C3-Apphilaions Dibenzothighens C3-Approximations C3-Apphilobenzothighenes C3-Apphilobenzothighenes C3-Apphilobenzothighenes C3-Apphilobenzothighenes C3-Apphilobenzothighenes C3-Apphilobenzothighenes C3-Apphilobenzothighenes C3-Chrysenes C3-Chrysenes C3-Chrysenes C3-Chrysenes C4-Chrysenes C3-Chrysenes C4-Chrysenes C4-Chrysenes C4-Chrysenes C4-Chrysenes Benzo(a)pyrane Benzo(a)pyrane Benzo(a)pyrane Benzo(a)pyrane Benzo(a)pyrane Benzo(a)pyrane Benzo(a)pyrane	53.5 314 373 300 411 254 602 125 14.5 14.5 16.5 18.6 18.6 18.6 18.6 18.6 18.6 18.6 18.6		596.1 343 343 344 401 331 444 27.7 74.0 122 9.5 J 37.9 81.0 U 16.3 U 16.2 9.5 J 37.9 81.0 U 16.2 9.5 J 37.9 81.0 U 16.2 9.5 J 37.9 81.0 U 147 37.9 50.5 50.5 315 50.8 50.5 51.5 52.6 4.5 J 16.5 55.5 50.5 5	
Individual Alkyl Isomers and Ho	opanes			
2-Methylnaphthaiene 1-Methylnaphthaiene 2,6-Dirnethylnaphthaiene 1,6,7-Trimethylnaphthaiene 1-Methylohonanthrane C29-Hopane 18a-Oleanane C30-Hopane	76.2 69.5 160 47.5 72.1 72.4 12.8 74.0		79.0 70.8 174 51.6 68.8 67.3 12.3 73.4	
Surrogate (Su)	Su Recovery (%)	Su Recovery (%)		
Naphthalene-d8 Acenaphthene-d10 Phenanthrone-d10 Chrysene-d12 Perylene-d12	91 95 90 90 94	93 92 90 85 92		

Sample 1 Tank Center 7 (Product) ETX3872

Columbia Analytical Services

METALS

-1-

INORGANIC ANALYSIS DATA SHEET

Client:	B&B Laboratories, Inc.	Service Request:	K2409956
Project No.:	NA	Date Collected:	11/28/04
Project Name:	TV Athos I	Date Received:	12/16/04
Matrix:	OIL	Units	MG/KG
		Basis	Wet

Sample Name: ETX3872

Lab Code: K2409956-001

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	с	Q
Aluminum	6010B	5.0	1	12/30/04	1/6/05	8.6		
Antimony	6010B	5.0	1	12/30/04	1/6/05	5.0	IJ	
Arsenic	7060A	1.0	5	1/10/05	1/14/05	1.0	U	
Barium	6010B	0.5	1	12/30/04	1/6/05	1.3		
Beryllium	6010B	0.5	1	12/30/04	1/6/05	0.5	U	
Cadmium	6010B	0.5	1	12/30/04	1/6/05	0.5	U	
Calcium	6010B	5.0	1	12/30/04	1/6/05	41.8		
Chromium	6010B	1.0	1	12/30/04	1/6/05	1.5		
Cobalt	6010B	1.0	1	12/30/04	1/6/05	1.0	U	
Copper	6010B	1.0	1	12/30/04	1/6/05	1.7		
Iron	6010B	2.0	1	12/30/04	1/6/05	43.0		
Lead	6010B	10	1	12/30/04	1/6/05	10	U	
Magnesium	6010B	4.0	1	12/30/04	1/6/05	18.4		
Manganese	6010B	0.5	1	12/30/04	1/6/05	1.1		
Mercury	7471A	0.04	1	12/22/04	12/23/04	0.04	U	
Nickel	6010B	2.0	1	12/30/04	1/6/05	54.8		
Potassium	6010B	200	1	12/30/04	1/6/05	200	U	
Selenium	7740	1.0	5	1/10/05	1/12/05	1.0	U	
Silicon	6010B	50	1	12/30/04	1/6/05	50	U	
Silver	6010B	1.0	1	12/30/04	1/6/05	1.0	U	
Sodium	6010B	10	1	12/30/04	1/6/05	34.7		
Thallium	7841	0.4	2	1/10/05	1/17/05	0.4	U	
Tin	6010B	10	1	12/30/04	1/6/05	10	U	
Vanadium	6010B	1.0	1	12/30/04	1/6/05	440		
Zinc	6010B	1.0	1	12/30/04	1/6/05	3.8		

& Solids: NA

Comments:

00011

Form I - IN

A.3. Analysis of source oil aromatics.

Analysis Report 1.1 Lancaster Laboratories Page 2 of 2 Lancaster Laboratories Sample No. G5 4419595 Sample 1 Tank Center 7 Grab Oil Sample Delaware River Sample Collected: 11/28/2004 by SD Account Number: 11623 Submitted: 12/03/2004 17:30 Entrix Reported: 12/17/2004 at 12:40 10 Corporate Circle Discard: 01/01/2005 Suite 300 New Castle DE 19720 TANK7 SDG#: DRS01-01* As Received CAT As Received Method Dilution CAS Number No. Analysis Name Result Detection Units Factor Limit 03761 91-20-3 Naphthalene 40,000. 20,000. J ug/kg 10 03765 Acenaphthylene 208-96-8 N.D. 20,000. ug/kg 10 03768 Fluorene 86-73-7 28,000. J 20,000. ug/kg 10 03775 Phenanthrene 85-01-8 78,000. J 20,000. ug/kg 10 03776 Anthracene 120-12-7 N.D. 20,000. ug/kg 10 03778 Fluoranthene 206-44-0 N.D. 20,000. uq/kq 10 03781 Benzo(a)anthracene 56-55-3 31,000. 20,000. ug/kg J 10 03782 Chrysene 218-01-9 N.D. 20,000. ug/kg 10 Benzo(b)fluoranthene 03786 205-99-2 N.D. 20.000. ug/kg 10 03787 Benzo(k)fluoranthene 207-08-9 N.D. 20,000. ug/kg 10 03788 Benzo(a)pyrene 50-32-B N.D. 20,000. ug/kg 10 03789 Indeno(1,2,3-cd)pyrene 193-39-5 N.D. 20,000. ug/kg 10 03790 Dibenz(a, h) anthracene 53-70-3 N.D. 20,000. ug/kg 10 03791 Benzo(g,h,i)perylene 191-24-2 N.D. 20,000. ug/kg 10 Due to sample matrix interferences observed during the extraction, the normal reporting limits could not be obtained.

Due to the sample matrix an initial dilution was necessary to perform the analysis. Therefore, the reporting limits for the GC/MS semivolatile compounds were raised.

Commonwealth of Pennsylvania Lab Certification No. 36-037

Laboratory	Chronicle

CAT				Dilution		
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
08432	STARS Petroleum	SW-846 8021B	1	12/06/2004 18:09	Michael F Barrow	5000
	Contaminants S					
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	12/07/2004 12:48	Jeffrey B Smith	10
01132	GC VOA Soil Prep	SW-846 5035	1	12/06/2004 15:05	Michael F Barrow	n.a.
07806	BNA Soil Extraction	SW-846 3550B	1	12/05/2004 12:30	Olivia Arosemena	1

Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681

2216 Rev. 3/10/03

Account Number: 11623

10 Corporate Circle

Entrix

Lancaster Laboratories Sample No. G5 4419595

Sample 1 Tank Center 7 Grab Oil Sample Delaware River Sample

Collected:11/28/2004 by SD

Submitted: 12/03/2004 17:30 Reported: 12/17/2004 at 12:40 Discard: 01/01/2005

T2

. .

iscar	d: 01/01/2005	Suite 300						
			D3	ew C	astle DE 1972	0		
ANK7	SDG#: DRS01-01*							
					As Received			
CAT			As Receive	d	Method		Dilution	
No.	Analysis Name	CAS Number	Result		Detection Limit	Units	Factor	
03761	Naphthalene	91-20-3	40,000.	J	20,000.	ug/kg	10	
03765	Acenaphthylene	208-96-8	N.D.		20,000.	ug/kg	10	
03768	Fluorene	86-73-7	28,000.	J	20,000.	ug/kg	10	
03775	Phenanthrene	85-01-8	78,000.	J	20,000.	ug/kg	10	
03776	Anthracene	120-12-7	N.D.		20,000.	ug/kg	10	
03778	Fluoranthene	206-44-0	N.D.		20,000.	ug/kg	10	
03781	Benzo(a)anthracene	56-55-3	31,000.	J	20,000.	ug/kg	10	
03782	Chrysene	218-01-9	N.D.		20,000.	ug/kg	10	
03786	Benzo(b)fluoranthene	205-99-2	N.D.		20,000.	ug/kg	10	
03787	Benzo(k)fluoranthene	207-08-9	N.D.		20,000.	ug/kg	10	
03788	Benzo(a)pyrene	50-32-8	N.D.		20,000.	ug/kg	10	
03789	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.		20,000.	ug/kg	10	
03790	Dibenz(a, h) anthracene	53-70-3	N.D.		20,000.	ug/kg	10	
03791	Benzo(g,h,i)perylene	191-24-2	N.D.		20,000.	ug/kg	10	
	Due to sample matrix interfe	rences observed d	uring the ev	tract	ton the			

d during the extraction, the normal reporting limits cculd not be obtained.

Due to the sample matrix an initial dilution was necessary to perform the analysis. Therefore, the reporting limits for the GC/MS semivolatile compounds were raised.

Commonwealth of Pennsylvania Lab Certification No. 36-037

Laboratory Chronicle

CAT				Dilution		
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
08432	STARS Petroleum	SW-846 8021B	1	12/06/2004 18:09	Michael F Barrow	5000
	Contaminants S					
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	12/07/2004 12:48	Jeffrey B Smith	10
01132	GC VOA Soil Prep	SW-846 5035	1	12/06/2004 15:05	Michael F Barrow	n.a.
07806	BNA Soil Extraction	SW-846 3550B	1	12/05/2004 12:30	Olivia Arosemena	1

DA F	=	ы	в	E	R
1		C	1	ĩ	

Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681

2216 Rev. 3/10/03

Page 2 of 2

A.4. December 7, 2004 LSU source oil report.

Department of Environmental Studies, Louisiana State University 1285 Energy, Coast & Environment Building, Baton Rouge, LA 70803

(225) 578-4295

IES/RCAT04-26

07 December, 2004

- To: Ed Levine NOAA SSC
- From: Scott Miles Chemistry Support Team Louisiana State University

Re: Delaware River Oil Spill

Executive Summary

Two (2) reference oil samples (Table 1) collected from the Athos I by David Wesley (NOAA HAZMAT) were received at the Louisiana State University Response laboratory on 06 December 2004. The samples were diluted and fingerprinted upon arrival and logged-in at DES/RCAT. In addition to oil fingerprinting, density, viscosity, evaporative weathering, and standard distillation curve analysis was performed on the samples. The samples displayed a fingerprinting pattern similar to a heavy crude oil with normal alkane ranges from nC-10 to nC-26. The samples contained high concentrations of asphaltenes and other unresolved high molecular weight compounds. Initial density analyses suggest the oil samples will float if spilled in fresh water. Results from the evaporative weathering experiment indicated that it is unlikely the sample oils would sink due to natural evaporative processes. It should be noted the sample oils loss <3% (by weight) when placed under vacuum and 90 degree Celsius conditions for four (4) hours.

Table 1.	Sample I	dentifications	and LSU	Identifications
Table 1.	Samprei	uchtineations	and LSU	ruchtmeations

NOAA	Collection Site	Time	LSU ID#	Instrument ID
Sample #1	Delaware	12/03/2004	2N4341-01	GRM4341D
	River/Philadelphia	0955		
Sample #2	Delaware	12/03/2004	2N4341-02	GRM4341E
	River/Philadelphia	0955		

<u>METHODOLOGY</u>

Once the samples were received at the LSU laboratory, they were transferred with a metal spatula into 40-milliliter (ml) extraction vials. The samples were then mixed and covered with dichloromethane (DCM). Sodium sulfate Na₂SO₄ was added to each sample, which was then shaken. The samples were then transferred, using separate disposable pipettes, into a 2 mL autosampler vial and capped with a PTFE/Aluminum crimp cap. A reference oil standard (North Slope Crude) was analyzed prior to the sample oil analyses. The extracted oil sample and reference oils were analyzed on a Hewlett Packard 5890 Series II Gas Chromatograph coupled with a Hewlett Packard 5971 Series Mass Selective Detector operated in selected ion monitoring mode.

Oil density was determined by filling a pre-weighed calibrated Teflon tube with a known volume of sample oil. The Teflon tube and oil were weighed on an analytical balance and weight recorded. Density was expressed as g/ml.

Viscosity was determined using a calibrated EZ viscosity cup and stopwatch as specified in ASTM D 4212 standards. Viscosity was expressed in cSt.

Evaporative weathering was performed by placing approximately 10 ml of each oil sample into a pre-weighed 100 ml round bottom flask followed by attachment to a rotary evaporative device. The flasks were then submersed in a 90 degree Celsius hot water bath. The flasks were removed at set time intervals (10, 30, 60, 120, 240 minutes) and weighed. The weight loss was noted and the % evaporation was calculated. After 240 minutes the flasks were removed from the rotovap and allowed to cool to room temperature. A small aliquot of oil from each flask was removed and placed in 100 ml beakers containing 50 ml of tap water. Observations were noted and recorded in laboratory notebook.

Results from the physical analyses are displayed in the results and discussion section, Table 2.

RESULTS AND DISCUSSION

Results from the fingerprinting analysis indicate the samples originated from a heavy crude oil with normal alkanes ranging from C-10 to C-26. The samples contained low concentrations of aromatic compounds and were slightly weathered. The significant oilfingerprinting biomarker compounds, hopanes and steranes, were detected at very low concentrations. The samples did contain a high concentration of asphaltenes and other unresolved high molecular weight compounds. The normal alkane profile for the two oil samples and North Slope Crude reference oil are displayed below.

Table 2.	Result	s from	Physical	Testing
			•/	

Test	Sample	Results	Comments
Density	Sample #1	0.978 g/ml	
	Sample #2	0.973 g/ml	
Viscosity	Sample #1	>5000cSt	Beyond testing range
	Sample #2	>5000cSt	Beyond testing range
Evaporative Weathering	Sample #1	< 3%	Oil floated and spread
	Sample #2	< 3%	Oil floated and spread

Normal Alkane Profile of Oil Sample #1 from Athos I Spill

Normal Alkane Profile of Oil Sample #2 from Athos I Spill

A.5. December 9, 2004 LSU source oil report.

Department of Environmental Studies, Louisiana State University

1285 Energy, Coast & Environment Building, Baton Rouge, LA 70803 (225) 578-4295

IES/RCAT04-28

09 December, 2004

- To: Ed Levine NOAA SSC
- From: Scott Miles Chemistry Support Team Louisiana State University

Re: Delaware River Oil Spill

Executive Summary

One (1) oil sample (Table 1) collected from the Athos I spill by Steve Lehmann (NOAA SSC) was received at the Louisiana State University Response laboratory on 09 December 2004. The sample was diluted and fingerprinted upon arrival and logged-in at DES/RCAT. In addition to oil fingerprinting, density, viscosity, and oil cohesiveness test was performed on the sample. The sample displayed a fingerprinting pattern similar to a heavy crude oil with normal alkane ranges from nC-10 to nC-26. The sample displayed a fingerprinting pattern similar to previous samples retrieved from the M/V Athos spill, but with a higher degree of weathering. The samples contained high concentrations of asphaltenes and other unresolved high molecular weight compounds. The presence of aromatic and biomarker compounds was detected, but at very low levels. Initial density analyses suggest the oil samples will float if spilled in fresh water. **Results from the oil** cohesiveness jar test demonstrate the oil may adhere to the river bottom sediments if the oil was released with sufficient mass and velocity to strike the river bottom. During the jar test, large quantities (>50%) of oil was retained on the silt/sand test bed and remained submerged during the entire testing period. We are speculating the outer boundary layer of the pooled oil mass may be adhering to the bottom sediments/detritus material. The remainder of the oil, not contacting the river bottom, is being held immobile by the high cohesive forces exerted by the highly viscous oil.

NOAA	Collection Site	Time	LSU ID#	Instrument ID
Pooled Oil	Delaware	12/08/2004	2N4344-01	GRM4344A
	River/Philadelphia			

Table 1. Sample Identifications and LSU Identifications

<u>METHODOLOGY</u>

Once the sample was received at the LSU laboratory, it was transferred with a metal spatula into 40milliliter (ml) extraction vial. The sample was then mixed and covered with dichloromethane (DCM). Sodium sulfate Na₂SO₄ was added to each sample, which was then shaken. The sample was then transferred, using a disposable pipette, into a 2 mL autosampler vial and capped with a PTFE/Aluminum crimp cap. A reference oil standard (North Slope Crude) was analyzed prior to the sample oil analysis. The extracted oil sample and reference oils were analyzed on a Hewlett Packard 5890 Series II Gas Chromatograph coupled with a Hewlett Packard 5971 Series Mass Selective Detector operated in selected ion monitoring mode.

Oil density was determined by filling a pre-weighed calibrated Teflon tube with a known volume of sample oil. The Teflon tube and oil was weighed on an analytical balance and weight recorded. Density was expressed as g/ml.

Viscosity was determined using a calibrated EZ viscosity cup and stopwatch as specified in ASTM D 4212 standards. Viscosity was expressed in cSt.

The oil cohesiveness jar test was performed by placing approximately 10 ml of sample oil into a Teflon tube and forcefully injecting the oil into 125 ml Pyrex beaker. The beaker contained approximately 60 ml of Mississippi River water and a ¹/₄" thick sand/silt bed material. The experiment was allowed to equilibrate for three (3) hours and visual observations were noted..

Results from the physical analyses are displayed in the results and discussion section, Table 2.

RESULTS AND DISCUSSION

Results from the fingerprinting analysis indicate the samples originated from a heavy crude oil with normal alkanes ranging from C-10 to C-26. The samples contained low concentrations of aromatic compounds and was moderately weathered. The significant oil-fingerprinting biomarker compounds, hopanes and steranes, were detected at very low concentrations. The samples did contain a high concentration of asphaltenes and other unresolved high molecular weight compounds. Results from the oil cohesiveness jar test demonstrate the oil may adhere to the river bottom sediments if the oil was released with sufficient mass and velocity to strike the river bottom. The normal alkane profiles for the pooled oil sample and North Slope Crude reference oil are displayed below.

Table 2. Results from Physical Testing

Test	Sample	Results	Comments
Density	2N4344-01	0.943 g/ml	
Viscosity	2N4344-01	>5000cSt	Beyond testing range
Oil cohesiveness jar test	2N4344-01	Positive	Oil may adhere to
			bottom sediments

NA – Not Applicable

Normal Alkane Profile of Pooled Oil from M/V Athos I Spill

A.6. Narcotic potency of the PAH mixture in the source oil.

Sample ID	Average Athos I	[Oil
Collection Date	11/28/04	
Location	Tank Center 7	
Acute PAH Narcosis	12.20	umol/g octanol
Acute:Chronic Ratio Chronic PAH	5.09	
Narcosis	2.40	umol/g octanol

	MW (g/mol)	log Kow	Subcooled Solub.	Athos Oil Ave.	Moles PAH _i	Mole Fraction x _i	LC50 _i	$TU_{W,max}$	TUa	% Contribution
			(mol/L)	(ng/mg)			(mol/L)	(S _L /LC50)	(TU _{W,max} * X _i)	$TU_{W,max}$
Naphthalene	128.2	3.33	7.03E-04	61.0	2.65E-10	2.06E-02	8.70E-06	80.81	1.67	3.97
C1-Naphthalenes	142.2	3.80	2.14E-04	133.3	5.23E-10	4.06E-02	3.13E-06	68.33	2.78	6.62
C2-Naphthalenes	156.2	4.30	6.03E-05	266.3	9.51E-10	7.39E-02	1.05E-06	57.17	4.22	10.08
C3-Naphthalenes	170.3	4.80	1.70E-05	294.0	9.64E-10	7.48E-02	3.55E-07	47.82	3.58	8.54
C4-Naphthalenes	184.3	5.30	4.79E-06	204.9	6.20E-10	4.82E-02	1.20E-07	40.01	1.93	4.60
Biphenyl	154.2	3.80	2.14E-04	12.8	4.61E-11	3.58E-03	3.13E-06	68.33	0.24	0.58
Acenaphthylene	152.2	4.00	1.29E-04	8.4	3.06E-11	2.38E-03	2.02E-06	63.63	0.15	0.36
Acenaphthene	154.2	4.20	7.76E-05	19.0	6.89E-11	5.35E-03	1.31E-06	59.24	0.32	0.76
Fluorene	166.2	4.32	5.73E-05	47.9	1.61E-10	1.25E-02	1.01E-06	56.76	0.71	1.69
C1-Fluorenes	180.3	4.72	2.08E-05	123.0	3.81E-10	2.96E-02	4.23E-07	49.21	1.45	3.47
C2-Fluorenes	194.3	5.20	6.17E-06	224.4	6.45E-10	5.01E-02	1.49E-07	41.46	2.08	4.95
C3-Fluorenes	208.3	5.70	1.74E-06	294.3	7.88E-10	6.12E-02	5.01E-08	34.68	2.12	5.07
Phenanthrene	178.2	4.57	3.03E-05	88.7	2.78E-10	2.16E-02	5.84E-07	51.90	1.12	2.67
Anthracene	178.2	4.68	2.30E-05	7.8	2.44E-11	1.89E-03	4.61E-07	49.92	0.09	0.23
C1-Phenanthrenes	192.3	5.04	9.25E-06	236.6	6.87E-10	5.33E-02	2.11E-07	43.90	2.34	5.59
C2-Phenanthrenes	206.3	5.46	3.19E-06	334.7	9.05E-10	7.03E-02	8.45E-08	37.79	2.66	6.34
C3-Phenanthrenes	220.3	5.92	9.95E-07	290.4	7.35E-10	5.71E-02	3.10E-08	32.07	1.83	4.37
C4-Phenanthrenes	234.3	6.32	3.61E-07	238.6	5.68E-10	4.41E-02	1.30E-08	27.80	1.23	2.93
Dibenzothiophene	184.2	4.53	3.37E-05	40.1	1.21E-10	9.43E-03	6.39E-07	52.66	0.50	1.18
C1-Dibenzothiophene	198.3	4.96	1.13E-05	140.0	3.94E-10	3.06E-02	2.51E-07	45.17	1.38	3.30

C2-Dibenzothiophene	212.3	5.42	3.53E-06	372.0	9.78E-10	7.59E-02	9.21E-08	38.33	2.91	6.95
C3-Dibenzothiophene	226.3	5.89	1.07E-06	373.7	9.22E-10	7.16E-02	3.31E-08	32.41	2.32	5.53
Fluoranthene	202.3	5.23	5.71E-06	3.8	1.04E-11	8.08E-04	1.39E-07	41.02	0.03	0.08
Pyrene	202.3	5.13	7.36E-06	16.6	4.57E-11	3.55E-03	1.73E-07	42.51	0.15	0.36
C1-Fluoranthenes	216.3	5.48	3.00E-06	82.8	2.14E-10	1.66E-02	8.02E-08	37.46	0.62	1.48
C2-Fluoranthenes	230.3	5.88	1.10E-06	133.7	3.24E-10	2.51E-02	3.39E-08	32.53	0.82	1.95
C3-Fluoranthenes	244.3	6.28	4.00E-07	174.6	3.99E-10	3.10E-02	1.42E-08	28.20	0.87	2.08
Benzo(a)anthracene	195.0	5.91	1.02E-06	7.0	2.01E-11	1.56E-03	3.17E-08	32.18	0.05	0.12
Chyrsene	228.3	5.81	1.32E-06	37.6	9.20E-11	7.14E-03	3.94E-08	33.35	0.24	0.57
C1-Chyrsenes	242.3	6.14	5.70E-07	88.5	2.04E-10	1.58E-02	1.92E-08	29.64	0.47	1.12
C2-Chyrsenes	256.3	6.43	2.74E-07	127.1	2.77E-10	2.15E-02	1.03E-08	26.74	0.57	1.37
C3-Chyrsenes	270.4	6.94	7.52E-08	44.6	9.21E-11	7.15E-03	3.37E-09	22.28	0.16	0.38
C4-Chyrsenes	284.4	7.36	2.59E-08	10.4	2.04E-11	1.58E-03	1.35E-09	19.18	0.03	0.07
Benzo(b)fluoranthene	252.3	6.27	4.14E-07	8.2	1.81E-11	1.40E-03	1.46E-08	28.34	0.04	0.10
Benzo(k)fluoranthene	252.3	6.29	3.89E-07	1.1	2.47E-12	1.92E-04	1.38E-08	28.09	0.01	0.01
Benzo(e)pyrene	252.3	6.44	2.67E-07	14.2	3.14E-11	2.44E-03	1.00E-08	26.63	0.07	0.16
Benzo(a)pyrene	252.3	6.13	5.85E-07	5.0	1.10E-11	8.53E-04	1.97E-08	29.75	0.03	0.06
Perylene Indeno(1,2,3-	252.3	6.25	4.32E-07	14.5	3.21E-11	2.49E-03	1.51E-08	28.50	0.07	0.17
cd)pyrene	276.3	6.72	1.31E-07	3.6	7.30E-12	5.67E-04	5.42E-09	24.08	0.01	0.03
Dibenz(a,h)anthracene	278.4	6.71	1.34E-07	5.1	1.02E-11	7.95E-04	5.53E-09	24.16	0.02	0.05
Benzo(ghi)perylene	276.3	6.51	2.25E-07	5.9	1.20E-11	9.31E-04	8.65E-09	26.00	0.02	0.06

1.29E-08

Total Moles of Specific PAHs =

Acute Narcotic Potency of Ave Athos I Oil =

100.00

Chronic Narcotic Potency of Ave Athos I Oil = 213.28

41.90

A.7.a PAH Analyte List by Laboratory Compounds Included in Total PAH Measurement Compounds in Bold are the National Status and Trends PAHs (NS&T Total PAHs)

B&B Laboratory	GERG	Lancaster Laboratories	
Naphthalene	Naphthalene	Naphthalene	
C1-Naphthalenes	C1-Naphthalenes		
C2-Naphthalenes	C2-Naphthalenes		
C3-Naphthalenes	C3-Naphthalenes		
C4-Naphthalenes	C4-Naphthalenes		
Benzothiophene			
C1-Benzothiophenes			
C2-Benzothiophenes			
C3-Benzothiophenes			
Biphenyl	Biphenyl		
Acenaphthylene	Acenaphthylene	Acenaphthylene	
Acenaphthene	Acenaphthene	Acenaphthene	
Dibenzofuran			
Fluorene	Fluorene	Fluorene	
C1-Fluorenes	C1-Fluorenes		
C2-Fluorenes	C2-Fluorenes		
C3-Fluorenes	C3-Fluorenes		
Carbazole			
Anthracene	Anthracene	Anthracene	
Phenanthrene	Phenanthrene	Phenanthrene	
C1-Phenanthrene/Anthracenes	C1-Phenanthrenes/Anthracenes		
C2-Phenanthrene/Anthracenes	C2-Phenanthrenes/Anthracenes		
C3-Phenanthrene/Anthracenes	C3-Phenanthrenes/Anthracenes		
C4-Phenanthrene/Anthracenes	C4-Phenanthrenes/Anthracenes		
Dibenzothiophene	Dibenzothiophene		
C1-Dibenzothiophene	C1-Dibenzothiophenes		
C2-Dibenzothiophene	C2-Dibenzothiophenes		
C3-Dibenzothiophene	C3-Dibenzothiophenes		
Fluoranthene	Fluoranthene	Fluoranthene	
Pyrene	Pyrene	Pyrene	
C1-Fluoranthenes/Pyrenes	C1-Fluoranthenes/Pyrenes		
C2-Fluoranthenes/Pyrenes	C2-Fluoranthenes/Pyrenes		
C3-Fluoranthenes/Pyrenes	C3-Fluoranthenes/Pyrenes		
Naphthobenzothiophene			
C1-Naphthobenzothiophenes			

B&B Laboratory	GERG	Lancaster Laboratories
C2-Naphthobenzothiophenes		
C3-Naphthobenzothiophenes		
Benz(a)anthracene	Benzo(a)anthracene	Benzo(a)anthracene
Chrysene	Chrysene	Chrysene
C1-Chrysenes	C1-Chrysenes	
C2-Chrysenes	C2-Chrysenes	
C3-Chrysenes	C3-Chrysenes	
C4-Chrysenes	C4-Chrysenes	
Benzo(b)fluoranthene	Benzo(b)fluoranthene	Benzo(b)fluoranthene
Benzo(k)fluoranthene	Benzo(k)fluoranthene	Benzo(k)fluoranthene
Benzo(e)pyrene	Benzo(e)pyrene	
Benzo(a)pyrene	Benzo(a)pyrene	Benzo(a)pyrene
Perylene	Perylene	
Indeno(1,2,3-c,d)pyrene	Indeno(1,2,3-c,d)pyrene	Indeno(1,2,3-cd)pyrene
Dibenz(a,h)anthracene	Dibenz(a,h)anthracene	Dibenz(a,h)anthracene
Benzo(g,h,i)perylene	Benzo(g,h,i)perylene	Benzo(g,h,i)perylene

A.7.b PAH Analyte List by Laboratory Additional Analytes Not Included as Total PAHs Compounds in Bold are the National Status and Trends PAHs (NS&T Total PAHs)

B&B Laboratory	GERG	Lancaster Laboratories
2-Methylnaphthalene	2-Methylnaphthalene	Methyl t-Butyl Ether
1-Methylnaphthalene	1-Methylnaphthalene	Benzene
2,6-Dimethylnaphthalene	2,6-Dimethylnaphthalene	Toluene
1,6,7-Trimethylnaphthalene	1,6,7-Trimethylnaphthalene	Ethylbenzene
1-Methylphenanthrene	1-Methylphenanthrene	m,p-Xylene
C29-Hopane		o-Xylene
18a-Oleanane		Isopropylbenzene (Cumene)
C30-Hopane		n-Propylbenzene
		1,3,5-Trimethylbenzene
		tert-Butylbenzene
		1,2,4-Trimethylbenzene
		sec-Butylbenzene
		p-Isopropyltoluene
		n-Butylbenzene

APPENDIX B

Water Sample Analytical Results

- B.1. Water sample log.
- B.2. PAH analyses of water samples collected during preassessment efforts
- B.3. Total suspended solids (TSS) analyses of water samples collected on December 7-8, 2004.
- B.4. Volatile organic analyses of water samples collected on November 27, 2004, near the Commodore Barry Bridge.

Sample ID	Latitude	Longitude	Date	Total PAHs (ng/L)	Comments
W-CBB-01	39.82586	-75.36619	27-Nov-04	391	Comm. Barry Br.
W-CBB-02	39.82.895	-75.37180	27-Nov-04	618	Comm. Barry Br.
W-CBB-03	39.83286	-75.37460	27-Nov-04	564	Comm. Barry Br.
W-WOOD-01	39.84204	-75.15443	28-Nov-04	962	Woodbury Creek
W-WOOD-02	39.86600	-75.19727	28-Nov-04	768	Woodbury Creek
W-DR-01	39.87383	-75.19268	28-Nov-04	3015	NJ side, just upstream of Woodbury Creek
W-DER-01			28-Nov-04	457	DE River on NJ side of where Athos moored
W-MAN-01			28-Nov-04	1122	Upstream of first bridge, Mantua Creek
W-MAN-02			28-Nov-04	585	Mouth of Mantua Creek
W-BTC-01-1	39.86117	-75.11560	28-Nov-04	876	Big Timber Creek
W-BTC-01-2	39.86117	-75.11560	28-Nov-04	787	Big Timber Creek (field duplicate)
W-BTC-02	39.88633	-75.13495	28-Nov-04	1124	Big Timber Creek
W-BTC-03	39.88685	-75.13690	28-Nov-04	1517	Big Timber Creek
WMH-01	39.79208	-75.44603	28-Nov-04	727	Marcus Hook
WMH-02	39.78860	-75.44796	28-Nov-04	595	Marcus Hook
WMH-03	39.78389	-75.44540	28-Nov-04	474	Marcus Hook
W-BTC-04	39.88840	-75.13528	30-Nov-04	203	Big Timber Creek
W-BTC-05	39.88582	-75.13320	30-Nov-04	310	Big Timber Creek
W-BTC-06	39.85307	-75.09625	30-Nov-04	304	Big Timber Creek
W-WOOD-03-1	39.86990	-75.19633	30-Nov-04	205	Woodbury Creek
W-WOOD-03-2	39.86990	-75.19633	30-Nov-04	195	Woodbury Creek
W-WOOD-04	39.86517	-75.19558	30-Nov-04	283	Woodbury Creek
W-WOOD-05	39.88840	-75.13528	30-Nov-04	481	Woodbury Creek
WMH-04	39.78833	-75.44200	30-Nov-04	439	Marcus Hook
WMH-05	39.78600	-75.44233	30-Nov-04	289	Marcus Hook
WMH-06	39.78350	-75.44033	30-Nov-04	273	Marcus Hook
W-CBB-04	39.82300	-75.36667	30-Nov-04	407	Comm. Barry Br.
W-CBB-05	39.82500	-75.36700	30-Nov-04	225	Comm. Barry Br.
W-CBB-06	39.83333	-75.36867	30-Nov-04	249	Comm. Barry Br.
W-DER-02			30-Nov-04	646	160 m East of Athos I bow
W-MAN-03			30-Nov-04	729	Mouth of Mantua Creek
W-MAN-04			30-Nov-04	403	1/4 mi up Mantua Creek
WPA4-J	39.86318	-75.2407	30-Nov-05	2531	PA, Across from Mantua Creek
WMIF-1	39.87612	-75.20883	30-Nov-05	4927	Mouth of Schuylkill River
WMIF-2	39.87522	-75.21192	30-Nov-05	586	Mouth of Schuylkill River
W-UL-01	40.01288	-75.02488	7-Dec-04	177	Upstream of Tacony Palmyra Bridge, East Bank
W-UL-02	40.01740	-75.02817	7-Dec-04	105	Upstream of Tacony Palmyra Bridge, Center Channel
WSUB-01-1	40.01740	-75.02817	7-Dec-04	478	Upstream of Tacony Palmyra Bridge, Center Channel (Bottom sample)

B.1. Water sample log. All samples are surface samples unless noted otherwise in the comments column.

Sample ID	Latitude	Longitude	Date	Total PAHs (ng/L)	Comments
WSUB-01-2	40.01740	-75.02817	7-Dec-04	32	Upstream of Tacony Palmyra Bridge, Center Channel (Bottom sample)
W-UL-03	40.01770	-75.03710	7-Dec-04	179	Upstream of Tacony Palmyra Bridge, West Bank
W-TPB-01	40.00922	-75.04285	7-Dec-04	141	East Bank
W-TPB-02	40.01132	-75.04483	7-Dec-04	213	Center Channel
W-TPB-03	40.01370	-75.04610	7-Dec-04	320	West Bank
W-BTC-07	39.88330	-75.13205	7-Dec-04	409	Big Timber Creek
W-Dup-01	39.88330	-75.13205	7-Dec-04	378	Big Timber Creek, duplicate
W-BTC-08	39.87150	-75.12043	7-Dec-04	287	Big Timber Creek
W-BTC-09	39.88698	-75.13533	7-Dec-04	190	Big Timber Creek, river side of boom at mouth
WLP-#1-5	39.43060	-75.47412	7-Dec-04	130	Liston Pt. Left Descending Bank
WLP-#2-5	39.40397	-75.49662	7-Dec-04	132	Liston Pt. Center Channel
WLP-#3-5	39.40127	-75.52187	7-Dec-04	2154	Liston Pt. Right Descending Bank
W-WOOD-07	39.86608	-75.19635	8-Dec-04	250	Woodbury Creek, inside boom creekside, eastside
W-WOOD-08	39.84190	-75.15450	8-Dec-04	533	Woodbury Creek, otherside of bridge, by baseball field
W-WOOD-06	39.86717	-75.19670	8-Dec-04	235	Woodbury Creek, riverside of boom
W-MAN-07	39.83477	-75.23668	8-Dec-04	255	Mantua Creek, downriver
W-MAN-06	39.85383	-75.23105	8-Dec-04	214	Mantua Creek, inside boom, creekside at mouth
W-MAN-05	39.85445	-75.23135	8-Dec-04	188	Mantua Creek, outside boom, riverside at mouth
W-TN-01	39.85915	-75.30923	8-Dec-04	437	Tinicum Island, west coast outside boom, riverside
W-TN-02	39.85327	-75.31020	8-Dec-04	383	Tinicum Island, in front of island to the NJ side
W-SUBTN-01-1	39.85327	-75.31020	8-Dec-04	2083	Tinicum Island, in front of island to the NJ side (Bottom sample)
W-SUBTN-01-2	39.85327	-75.31020	8-Dec-04	197	Tinicum Island, in front of island to the NJ side (Bottom sample)
W-TN-03	39.84487	-75.30710	8-Dec-04	244	NJ side of river shoreline area
W-TN-04	39.84393	-75.28160	8-Dec-04	299	Off cove on island NJ side at Greenwich
W-SUBTN-02-1	39.84393	-75.28160	8-Dec-04	317	Off cove on island NJ side at Greenwich (Bottom sample)
W-SUBTN-02-2	39.84393	-75.28160	8-Dec-04	38	Off cove on island NJ side at Greenwich (Bottom sample)
WCD-#1S	39.57283	-75.53270	8-Dec-04	220	C & D Canal, Left Descending Bank
WCD-#2S	39.57093	-75.56238	8-Dec-04	154	C & D Canal, Center Channel
WCD-#2D-1	39.57093	-75.56238	8-Dec-04	297	C & D Canal, Center Channel (Bottom sample)
WCD-#2D-2	39.57093	-75.56238	8-Dec-04	38	C & D Canal, Center Channel (Bottom sample)
WCD-#3S (ETX3924D)	39.57097	-75.56923	8-Dec-04	210	C & D Canal, Right Descending Bank
WCR-#1S	39.71685	-75.51042	8-Dec-04	180	Christina River, Right Descending Bank
WCR-#1D-1	39.71685	-75.51042	8-Dec-04	776	Christina River, Right Descending Bank (Bottom sample)
WCR-#1D-2	39.71685	-75.51042	8-Dec-04	100	Christina River, Right Descending Bank (Bottom sample)

Sample ID	Latitude	Longitude	Date	Total PAHs (ng/L)	Comments
WCR-#2S	39.71297	-75.50800	8-Dec-04	187	Christina River, Center Channel
WCR-#2D-1	39.71297	-75.50800	8-Dec-04	809	Christina River, Center Channel (Bottom sample)
WCR-#2D-2	39.71297	-75.50800	8-Dec-04	25	Christina River, Center Channel (Bottom sample)
WCR-#3S (ETX3918.D)	39.71183	-75.49560	8-Dec-04	160	Christina River, Left Descending Bank
WCR-#3S (ETX3924.D)			8-Dec-04	210	Christina River
WMH-#1-5	39.80968	-75.41132	8-Dec-04	26634	Marcus Hook, Right Descending Bank
WMH-#1S			8-Dec-04	293	Marcus Hook
WMH-#2D	39.80370	-75.41062	8-Dec-04	570	Marcus Hook, Center Channel (Bottom sample)
WMH-#3S	39.79850	-75.40993	8-Dec-04	172	Marcus Hook, Left Descending Bank

B.2. PAH analyses of water samples collected during preassessment efforts.

Sample Name Client Name Matrix Collection Date Extraction Date Extraction Batch Date Acquired Method Sample Volume (L) Dilution	ETX3798.D W-BTC-01 (1 of 2) Water 11/28/04 11/30/04 22/01/04 ENV 1054 12/07/04 PAH-2002 1.0 NA	ETX3800.D W-BTC-02 (1 of 2) Water 11/28/04 11/30/04 12/01/04 ENV 1054 12/07/04 PAH-2002 1.0 NA	ETX3802.D W-BTC-03 (1 of 2) Water 11/28/04 11/30/04 12/01/04 ENV 1054 12/08/04 PAH-2002 1.0 NA	ETX3804.D W-WOOD-01 (1 of 2) Water 11/28/04 11/30/04 12/01/04 ENV 1054 12/08/04 PAH-2002 1.0 NA	ETX3806.D W-WOOD-02 (1 of 2) Water 11/28/04 11/30/04 12/01/04 ENV 1054 12/08/04 PAH-2002 1.0 NA	ETX3808.D W-DER-01 (1 of 2) Water 11/28/04 11/30/04 12/01/04 ENV 1054 12/08/04 PAH-2002 1.0 NA
Target Compounds	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)
Naphthalene C1-Naphthalenes C2-Naphthalenes C3-Naphthalenes C3-Naphthalenes C4-Naphthalenes Benzothiophene C1-Benzothiophenes C3-Benzothiophenes C3-Benzothiophenes Biphenyl Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Cachaptorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Phenanthrene/Anthracenes C4-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C4-Phenanthrene/Anthracenes C3-Dhenzothiophenes C3-Dhenzothiophenes C3-Dibenzothiophenes Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Luoranthenes/Pyrenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Chrysenes C3-Chrysenes C3-Chrysenes C3-Chrysenes C3-Chrysenes C3-Chrysenes C3-Chrysenes C3-Chrysenes C3-Chrysenes C3-Chrysenes C3-Chrysenes C3-Chrysenes C3-Chrysenes C3-Chrysenes C3-Chrysenes C3-Chrysenes C3-Chrysenes C3-Chrysenes	$\begin{array}{c} 93.3\\ 93.4\\ 68.6\\ 49.0\\ 41.1\\ <1.7\\ U\\ <3.3\\ U\\ \\3.3\\ U\\ \\3$	130 129 90.2 69.2 45.4 1.9 7.8 9.2 12.6 4.7 1.7 6.1 4.8 7.1 17.5 28.0 36.3 1.2 J 1.7 14.9 35.8 53.8 48.0 28.6 2.4 20.2 33.9 43.9 10.6 16.7 16.8 14.5 35.8 53.8 48.0 28.6 2.4 20.2 33.9 43.9 10.6 16.7 16.8 14.5 5.6 7.9 10.2 12.9 5.9 (-1.6) 5.6 7.9 10.2 12.9 5.9 <1.6 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	$\begin{array}{c} 78.2 \\ 59.2 \\ 64.0 \\ 71.8 \\ 77.3 \\ 1.5 \\ 3.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.5 \\ 0.5 \\ 51.5 \\ 66.2 \\ 0.5 \\ 51.5 \\ 66.2 \\ 0.6 \\ 1.8 \\ 15.7 \\ 48.5 \\ 103.0 \\ 95.8 \\ 68.3 \\ 3.5 \\ 35.3 $	$\begin{array}{c} 62.8\\ 39.9\\ 38.1\\ 28.4\\ 27.3\\ 28.4\\ 27.3\\ 28.4\\ 27.3\\ 28.4\\ 27.3\\ 28.4\\ 28.4\\ 28.4\\ 27.5\\ 28.4\\ 28.4\\ 28.4\\ 28.4\\ 29.5\\ 20.7\\ 29.5\\ 20.7\\ 20.5\\ 20.5\\ 20.7\\ 20.5\\ 20.5\\ 20.7\\ 20.5\\ 20.5\\ 20.7\\ 20.5\\ 20.5\\ 20.7\\ 20.5\\ 20.5\\ 20.7\\ 20.5\\ 20.5\\ 20.7\\ 20.5\\ 20.5\\ 20.7\\ 20.5\\ 20.7\\ 20.5\\ 20.5\\ 20.7\\ 20.5\\ 20.7\\ 20.5\\ 20.7\\ 20.5\\ 20.7\\ 20.5\\ 20.5\\ 20.7\\ 20.5\\$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Benzo(a)pyrene Benzo(a)pyrene Perylene Indeno(1,2,3-c,d)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	6.2 11.5 11.9 4.5 8.2 <1.5 U 9.3	3.2 6.9 5.6 3.0 3.6 <1.5 U 4.4	2.2 3 8.1 4.9 4.5 3.5 <1.5 U 3.7	19.4 33.3 25.6 6.1 30.1 4.3 29.1	5.3 9.3 9.7 5.4 7.0 1.3 J 7.3	2.9 5.4 4.9 3.2 3.9 <1.5 U 4.1
Total PAHs	876	1124	1517	962	768	457
Individual Alkyl Isomers and Hopan	96.2	126	63.3	37.0	33 2	33.4
1-Methylnaphthalene 2,6-Dimethylnaphthalene 1,6,7-Trimethylnaphthalene 1-Methylphenanthrene C29-Hopane 18a-Oleanane C30-Hopane	53.4 26.8 5.9 4.3 24.7 <10 U 27.1	80.5 34.3 7.0 6.4 15.7 <9.7 U 24.2	31.5 26.3 8.9 9.9 32.5 <0.9 U 41.4	26.9 13.5 3.5 4.4 44.1 <9.9 U 44.1	18.6 12.1 3.5 5.1 26.4 0 <10 U 31.5	16.6 10.0 2.5 2.7 12.7 <9.8 U 17.1
Surrogate (Su)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)
Naphthalene-d8 Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12 Perylene-d12	74 79 75 68 80	78 82 77 75 82	78 81 78 78 84	57 56 57 56 62	76 80 77 80 81	80 80 75 73 80

Sample Name Client Name Matrix Collection Date Extraction Date Extraction Batch Date Acquired Method Sample Volume (L) Dilution	ETX3810.D W-MAN-01 (1 of 2) Water 11/28/04 11/30/04 12/01/04 ENV 1054 12/08/04 PAH-2002 1.0 NA	ETX3812.D W-MAN-02 (1 of 2) Water 11/28/04 11/20/04 12/01/04 ENV 1054 12/08/04 PAH-2002 1.0 NA	ETX3814.D W-CBB-01 (1 of 6) Water 11/27/04 12/01/04 ENV 1054 12/08/04 PAH-2002 1.0 NA	ETX3820.D W-CBB-02 (1 of 2) Water 11/27/04 12/01/04 ENV 1054 12/08/04 PAH-2002 1.0 NA	ETX3822.D W-CBB-03 (1 of 2) Water 11/27/04 11/30/04 12/01/04 ENV 1054 12/08/04 PAH-2002 1.0 NA	ETX3824.D WMH-1 (1 of 2) Water 11/28/04 11/30/04 12/01/04 ENV 1054 12/08/04 PAH-2002 1.0 NA
Target Compounds	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)
Naphthalene C1-Naphthalenes C2-Naphthalenes C3-Naphthalenes C3-Naphthalenes C3-Naphthalenes C3-Benzothiophenes C1-Benzothiophenes C3-Benzothiophenes C3-Benzothiophenes Biphenyl Acenaphthylene Acenaphthene Dibenzofuran Fluorene C1-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Dibenzothiophenes C3-Dibenzothiophenes C3-Dibenzothiophenes C3-Dibenzothiophenes C3-Fluoranthenes/Pyrenes Naphthobenzothiophenes C3-Fluoranthenes/Pyrenes Naphthobenzothiophenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Chysenes C3-Chysenes C3-Chysenes C3-Chysenes Benzo(b)fluoranthene Benzo(b)pyrene Benzo(a)pyrene	$\begin{array}{c} 90.1\\ 66.0\\ 69.0\\ 55.1\\ 52.5\\ <1.6\ U\\ <3.3\ U\\ <3.3\ U\\ <3.3\ U\\ <3.3\ U\\ <3.3\ U\\ <5.4\\ 10\\ 12.1\\ 9.1\\ 8.8\\ 23.3\\ 39.6\\ 55.4\\ 16.9\\ 4.3\\ 22.4\\ 33.9\\ 58.5\\ 46.6\\ 32.3\\ 4.4\\ 18.7\\ 35.2\\ 48.3\\ 28.2\\ 37.3\\ 19.6\\ 16.7\\ 9.6\\ 9.3\\ 21.9\\ 34.0\\ 27.7\\ 8.9\\ 12.3\\ 11.1\\ 8.2\\ <1.6\ U\\ 16.3\\ 5.7\\ 10.7\\ 10.5\\ 5.1\\ \end{array}$	91.8 51.3 34.6 24.1 23.8 <1.6 U <3.3 U <3.3 U <3.3 U <3.3 U <1.1 U 4.4 4.4 4.4 4.3 8.5 15.9 <1.2 U 8.3 1.3 8.4 15.9 25.4 26.2 15.5 1.1 11.7 16.2 23.4 10.2 8.8 7.2 5.0 9.6 18.0 13.8 6.2 7.5 6.4 5.8 <1.6 U <1.6 U <	$\begin{array}{c} 45.4\\ 33.4\\ 33.4\\ 28.9\\ 16.2\\ <6.1 \ U\\ <1.6 \ U\\ <3.2 \ U\\ <3.5 \ 3.6\\ 4.7\\ <1.2 \ U\\ <1.7 \ U\\ 19.0\\ 25.4\\ 12.1\\ 5.7\\ 3.7\\ 4.0\\ <2.2 \ U\\ <2.1 \ B.5\\ 5.1 \ B\\ 13.4 \ B\\ 3.4 \ B\ 3.4 \ $	$\begin{array}{c} 84.9\\ 57.4\\ 31.8\\ 18.9\\ 14.3\\ <1.6\\ 0\\ <3.2\\ 0\\ <3.2\\ 0\\ <3.2\\ 0\\ <3.2\\ 0\\ <3.2\\ 0\\ <3.2\\ 0\\ <3.2\\ 0\\ <3.2\\ 0\\ <3.2\\ 0\\ <3.2\\ 0\\ <1.2\\ 0\\ <1.2\\ 0\\ <1.2\\ 0\\ <1.2\\ 0\\ <1.2\\ 0\\ <1.2\\ 0\\ <1.2\\ 0\\ <1.2\\ 0\\ <1.2\\ 0\\ <1.2\\ 0\\ <1.2\\ 0\\ <1.2\\ 0\\ <1.2\\ 0\\ <1.2\\ 0\\ <1.2\\ 0\\ <1.2\\ 0\\ <1.2\\ 0\\ <1.2\\ 0\\ <1.2\\ 0\\ <1.2\\ 0\\ <1.2\\ 0\\ <1.2\\ 0\\ <1.2\\ 0\\ <1.2\\ 0\\ <1.2\\ 0\\ <1.2\\ 0\\ 0\\ <1.2\\ 0\\ 0\\ <1.2\\ 0\\ 0\\ 0\\ 0\\ 0\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$ \begin{array}{c} 61.2 \\ 37.5 \\ 22.4 \\ 13.1 \\ 10.9 \\ <1.6 \\ U \\ <3.2 \\ U \\ <1.2 \\ U \\ <1.6 \\ U \\ 24.5 \\ 8.4 \\ 14.2 \\ 14.4 \\ 10 \\ 0 \\ \end{array} $	$\begin{array}{c} 63.3\\ 67.6\\ 76.3\\ 42.7\\ 21.1\\ <1.7\\ 21.1\\ <1.7\\ 21.1\\ <1.7\\ 23.4\\ 0\\ <3.4\\ 0\\ <3.4\\ 0\\ <3.4\\ 0\\ <3.4\\ 0\\ <3.4\\ 0\\ \\3.4\\ \\5.6\\ 7.0\\ 9.8\\ <1.3\\ 0\\ 9.8\\ <1.3\\ 0\\ 9.8\\ <1.3\\ 0\\ 2.1\\ 7.7\\ 25.1\\ 20.5\\ 27.3\\ 21.3\\ 11.0\\ 1.8\\ 4.3\\ 4.5\\ <1.8\\ 0\\ 38.2\\ 22.9\\ 10.6\\ 6.7\\ 7.6\\ 6.5\\ <2.4\\ 0\\ 38.2\\ 22.9\\ 10.6\\ 6.7\\ 7.6\\ 6.5\\ <2.4\\ 0\\ <2.4\\ 0\\ <3.3\\ 18.3\\$
Perylene Indeno(1,2,3-c,d)pyrene Dihenzo(a,b)anthracene	5.1 7.0 1.6	3.3 4.8	6.8 10.0 2.4	13.6 13.8 3 1	10.0 11.6 2.1	16.0 13.5 2.2
Benzo(g,h,i)perylene	7.1	4.6	10.6	13.4	10.4	12.5
Individual Alkyl Isomers and Hopan	es	365	391	010	504	121
2-Methylnaphthalene 1-Methylnaphthalene 2,6-Dimethylnaphthalene 1,6,7-Trimethylnaphthalene 1,6,7-Trimethylnaphthalene 1,0-Wethylphenanthrene C29-Hopane 18a-Oleanane C30-Hopane	67.7 37.9 24.3 6.5 5.9 35.4 <9.8 U 37 2	57.0 25.1 14.2 1.5 2.9 13.6 <9.8 U 18.1	34.5 19.0 8.7 0.9 J 1.3 21.8 <9.6 U 24.0	64.4 27.4 14.6 1.6 2.6 31.6 <9.6 U 45.8	39.7 20.2 10.1 1.4 2.8 24.4 <9.6 U 34 1	67.5 40.8 31.9 4.9 4.5 27.7 <10.1 U 29.3
Surrogate (Su)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)
Naphthalene-d8 Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12 Perylene-d12	43 40 40 52 52	86 84 77 70 80	70 77 76 66 77	68 69 69 72	82 80 71 81 77	87 87 72 82 66

Sample Name Client Name 1) Matrix Collection Date Received Date Extraction Date Extraction Batch Date Acquired Method Sample Volume (L) Dilution	ETX3826.D WMH-2 (1 of 2) Water 11/28/04 11/30/04 12/01/04 ENV 1054 12/08/04 PAH-2002 1.0 NA	ETX3828.D WMH-3 (1 of 2) Water 11/28/04 11/30/04 12/01/04 ENV 1054 12/08/04 PAH-2002 1.0 NA	ETX3830.D W-DR-01 (1 of Water 11/28/04 11/30/04 12/01/04 ENV 1054 12/08/04 PAH-2002 1.0 NA	
Target Compounds	Su Corrected Q Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Conc. (ng/L)	
Naphthalene C1-Naphthalenes C2-Naphthalenes C3-Naphthalenes C4-Naphthalenes C4-Naphthalenes C4-Naphthalenes C4-Enzothiophenes C3-Benzothiophenes C3-Benzothiophenes C3-Benzothiophenes C3-Benzothiophenes C3-Benzothiophenes C3-Elucrenes C4-Paramethere C1-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Phenanthrene/Anthracenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Chrysenes C3-Chrysenes C3-Chrysenes Benzo(k)fluoranthene Benzo(k)prene Benzo(k)prene Benzo(k)prene Benzo(k)prene	$\begin{array}{c} 65.0\\ 64.5\\ 67.8\\ 34.4\\ 19.9\\ <1.7\ U\\ <3.4\ U\\ <3.4\ U\\ <3.4\ U\\ <3.4\ U\\ <2.6\\ 2.8\\ 5.7\\ 5.1\\ 4.8\\ 7.4\\ <1.3\ U\\ <1.3\ U\\ <1.3\ U\\ <1.3\ U\\ <1.3\ U\\ <1.3\ U\\ <1.4\ U\\ 22.6\\ 17.3\\ 9.9\\ 1.4\\ 5.6\\ 4.0\\ <2.4\ U\\ 24.4\\ 28.1\\ 15.6\\ 7.0\\ <1.4\ U\\ 24.4\\ 28.1\\ 15.6\\ 7.0\\ <1.4\ U\\ <2.4\ U\\ <1.7\ U\\ <$	$\begin{array}{c} 79.3\\ 40.4\\ 24.5\\ 16.8\\ <6.4\ U\\ <1.7\ U\\ <3.4\ U\\ <3.4\ U\\ <3.4\ U\\ <3.4\ U\\ <3.4\ U\\ <3.4\ U\\ <1.3\ U\\ <1.8\ U\\ <2.4\ U\ <2.4\ U\\ <2.4\ U\ <2.4\ U\$	97.4 65.1 122 138 124 1.3 J <3.3 U <3.3 U <3.3 U <3.3 U <3.3 U <5.9 5.2 7.2 7.7 13.8 46.3 110.0 132 <1.9 U 4.2 41.6 117 214 204 136 11.7 71.2 164 229 23.0 33.1 49.5 60.1 36.9 28.0 112 190 156 17.0 24.2 45.3 57.9 21.8 <1.6 U 20.6 6.3 18.2 13.2 10.0 9.3	
Indeno(1,2,3-c,d)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	9.7 1.9 10.6	11.9 2.2 11.8	9.3 2.5 11.1	
Total PAHs	595	474	3015	
Individual Isomers				
2-Methylnaphthalene 1-Methylnaphthalene 2,6-Dimethylnaphthalene 1,6,7-Trimethylnaphthalene 1-Methylphenanthrene C29-Hopane 18a-Oleanane C30-Hopane	64.5 38.8 26.3 4.2 3.6 20.9 <10.1 U 30.7	46.1 18.4 10.7 1.4 2.3 23.3 <10.1 U 28.6	66.4 37.9 49.2 18.3 22.5 54.3 <10 U 68.0	
Surrogate (Su)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	
Naphthalene-d8 Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12 Perylene-d12	89 93 68 78 75	82 85 69 67 75	80 83 76 77 77	

Sample Name Client Name Matrix Collection Date Extraction Date Extraction Batch Date Acquired Method Sample Volume (L) Dilution	ETX3837.D W-WODD-03 (1 of 2) W Water 11/30/04 12/04/04 12/06/04 ENV 1058 12/14/04 PAH-2002 0.9 NA	ETX3838.D /-WOOD-03 (2 of 2) Water 11/30/04 12/06/04 ENV 1058 12/14/04 PAH-2002 0.9 NA	ETX3839.D W-WOOD-04 (1 of 2) Water 11/30/04 12/04/04 12/06/04 ENV 1058 12/14/04 PAH-2002 1.0 NA	ETX3841.D W-BTC-04 (1 of 2) Water 11/30/04 12/04/04 12/06/04 ENV 1058 12/14/04 PAH-2002 0.9 NA	ETX3843.D W-BTC-05 (1 of 2) Water 11/30/04 12/04/04 12/06/04 ENV 1058 12/14/04 PAH-2002 0.9 NA	ETX3845.D W-BTC-06 (1 of 1) Water 11/30/04 12/04/04 12/06/04 ENV 1058 12/14/04 PAH-2002 0.9 NA
Target Compounds	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)
Naphthalene C1-Naphthalenes C2-Naphthalenes C3-Naphthalenes C3-Naphthalenes C3-Naphthalenes C3-Naphthalenes C3-Benzothiophenes C2-Benzothiophenes C3-Benzothiophenes C3-Benzothiophenes C3-Benzothiophenes C3-Benzothiophenes C3-Benzothiophenes C4-Phorene C1-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Dibenzothiophenes C3-Dibenzothiophenes C3-Dibenzothiophenes Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Naphthobenzothiophen	$\begin{array}{c} 42.1\\ 28.9\\ 17.1\\ 8.9\\ <6.5 U\\ <1.7 U\\ <3.5 U\\ <3.5 U\\ <3.5 U\\ <3.5 U\\ <3.5 U\\ <3.5 U\\ <2.5 U\\ <1.1 J\\ 1.1 J\\ 3.3\\ 2.8\\ 2.1\\ <1.3 U\\ <2.8\\ 2.1\\ <2.9 U\\ <2.4 U\\$	$\begin{array}{c} 36.9\\ 23.3\\ 16.3\\ 9.2\\ <6.5\ U\\ <1.7\ U\\ <3.5\ U\\ <1.4\ U\\ <1.2\ U\\ <1.3\ U\\ <1.3\ U\\ <1.3\ U\\ <1.3\ U\\ <1.3\ U\\ <1.3\ U\\ <2.9\ U\\ <2.4\ U\\ <1.8\ U\\ <1.7\ U\\ <2.4\ U\\ <2.5\ U\\ <3.5\ U\ U\\ <3.5\ U\ U\\ <3.5\ U\ U\\ <3.5\ U\ U\$	$\begin{array}{c} 51.3\\ 40.0\\ 20.4\\ 12.6\\ 8.9\\ <1.6\ U\\ <3.2\ U\\ <3.2\ U\\ <3.2\ U\\ <3.2\ U\\ <3.2\ U\\ <1.2\\ 4.7\\ 3.5\\ 3.6\\ 3.8\\ 5.8\\ <1.2\ U\\ 0.9\ J\\ 1.0\\ 7.3\\ 13.6\\ <2.7\ U\\ <2.2\ U\\ <2.2\ U\\ <5.5\\ 8.8\\ <1.6\ U\\ $	$\begin{array}{c} 45.6\\ 33.6\\ 14.2\\ 8.8\\ <6.6 U\\ <1.7 U\\ <3.5 U\\ <3.5 U\\ <3.5 U\\ <3.5 U\\ 2.0 J\\ 0.9 J\\ 2.7\\ 2.8\\ 1.7\\ <1.3 U\\ <1.3 U\\ <1.3 U\\ <2.9 U\\ <2.4 U\\ <1.8 U\\ <1.7 U\\ <2.4 U\\ <2.5 U\\ <2.4 U\\ <2.$	$\begin{array}{c} 49.5\\ 39.0\\ 23.1\\ 16.6\\ 9.9\\ 3.7\\ <3.4\ U\\ <3.6\\ <1.3\ U\\ 1.3\ U\\ 1.4\ U\\ 2.4\ U\\ 2.1\ U\\ <2.4\ U\\ 2.1\ U\\ <2.4\ U\ <2.4\ U\\ <2.4\ U\ <2.4\ U\\ <2.4\ U\ U\ <2.4\ U\ <2.4\ U\ <2.$	$\begin{array}{c} 45.1\\ 32.1\\ 14.9\\ 11.0\\ 5.8\ J\\ <1.7\ U\\ <3.4\ U\\ <3.4\ U\\ <3.4\ U\\ <3.4\ U\\ <3.4\ U\\ <2.5\\ 1.3\\ 3.3\\ 3.0\\ 2.5\\ <1.3\ U\\ <1.4\ U\\ 2.4\\ 2.7\\ <2.4\ U\\ <1.7\ U\\ <1.2\ 3\\ 5.4\\ 7.0\\ 7.9\\ 2.8\\ \\ \end{array}$
Indeno(1,2,3-c,d)pyrene Dibenzo(a,h)anthracene Benzo(a,h.i)pervlene	3.4 <1.6 U 2.8	3.4 0.6 J 3.5	3.7 0.7 J 4.1	3.4 <1.6 U 3.9	3.9 <1.6 U 4.9	5.2 <1.6 U 5.7
Total PAHs	205	195	283	203	310	304
Individual Alkyl Isomers and Hopar	nes					
2-Methylnaphthalene 1-Methylnaphthalene 2,6-Dimethylnaphthalene 1,6,7-Timethylnaphthalene 1-Methylphenanthrene C29-Hopane 18a-Oleanane C30-Hopane	30.3 16.3 6.5 J 10.6 <10.3 U <10.3 U <10.3 U	23.9 13.8 5.2 0.3 J 8.3 <10.3 U <10.3 U <10.3 U	43.2 21.2 10.3 1.0 9.8 <9.6 U <9.6 U	34.7 19.7 6.8 0.9 J 9.0 <10.4 U <10.4 U <10.4 U	40.9 22.1 9.4 1.4 11.9 <10.2 U <10.2 U	33.5 18.3 6.8 1.3 12.4 <10.2 U <10.2 U <10.2 U
Surrogate (Su)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)
Naphthalene-d8 Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12 Perylene-d12	74 81 87 79 80	68 78 93 85 81	73 81 91 85 87	69 81 89 77 80	44 49 59 50 50	66 74 79 75 79

Sample Name Client Name Matrix Collection Date Received Date Extraction Date Extraction Batch Date Acquired Method Sample Volume (L) Dilution	ETX3846.D /V-WOOD-05 (1 of 2) Water 11/30/04 12/06/04 ENV 1058 12/14/04 PAH-2002 0.9 NA	ETX3848.D WPA4-J (1 of 2) Water 11/30/04 12/04/04 12/06/04 ENV 1058 12/14/04 PAH-2002 0.9 NA	ETX3850.D WMIF-1 (1 of 2) Water 11/30/04 12/04/04 12/06/04 ENV 1058 12/14/04 PAH-2002 1.0 NA	ETX3852.D WMIF-2 (1 of 2) Water 11/30/04 12/04/04 12/06/04 ENV 1058 12/14/04 PAH-2002 1.0 NA	ETX3854.D W-CBB-04 (1 of 2) Water 11/30/04 12/04/04 ENV 1058 12/14/04 PAH-2002 1.0 NA	ETX3856.D W-CBB-05 (1 of 2) Water 11/30/04 12/04/04 12/06/04 ENV 1058 12/14/04 PAH-2002 1.0 NA
Target Compounds	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)
Naphthalene C1-Naphthalenes C2-Naphthalenes C3-Naphthalenes C4-Naphthalenes Benzothiophene C1-Benzothiophenes C2-Benzothiophenes C2-Benzothiophenes C3-Benzothiophenes Biphenyl Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthene Dibenzofuran Fluorene C1-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Dibenzothiophenes C3-Dibenzothiophenes C3-Dibenzothiophenes C3-Dibenzothiophenes C3-Dibenzothiophenes C3-Fluoranthenes/Pyrenes Naphthobenzothiophenes C3-Fluoranthenes/Pyrenes Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Chrysenes C3-Chrysenes C3-Chrysenes Benzo(b)fluoranthene Benzo(c)pyrene Benzo(c)pyrene Benzo(c)pyrene Benzo(c)pyrene Benzo(c)pyrene Benzo(c)pyrene Benzo(c)pyrene Benzo(c)pyrene Benzo(c)pyrene Benzo(c)pyrene Benzo(c)pyrene Benzo(c)pyrene	$\begin{array}{c} 37.2\\ 23.6\\ 19.4\\ 15.9\\ 12.8\\ <1.7\\ U\\ <3.5\\ U\\ <4.1\\ 1.8\\ 4.2\\ 4.7\\ 4.6\\ 4.8\\ 13.6\\ <1.3\\ U\\ <1.9\\ U\\ 2.3\\ 16.7\\ 23.0\\ 17.0\\ 19.2\\ <2.9\\ U\\ 1.9\\ 0.4\\ 13.6\\ 9.8\\ 24.8\\ 36.9\\ 14.5\\ 10.1\\ 3.5\\ 3.8\\ 6.3\\ <2.4\\ U\\ 11.7\\ 20.5\\ 11.4\\ 7.2\\ <1.7\\ U\\ <2.5\\ 7.1\\ 11.1\\ 13.6\\ 4.5\\ 8.6\\ 1\\ J\\ 77\\ 7\end{array}$	$\begin{array}{c} 120\\ 85.6\\ 134\\ 129\\ 90.3\\ 2.1\\ 13.9\\ 29.1\\ 22.3\\ 12.6\\ 7.2\\ 45.5\\ 18.9\\ 39.7\\ 55.1\\ 74.8\\ 80.3\\ 9.7\\ 55.1\\ 74.8\\ 80.3\\ 9.7\\ 93.7\\ 89.6\\ 107\\ 145\\ 95.9\\ 46.9\\ 20.2\\ 49.0\\ 90.1\\ 97.3\\ 54.3\\ 38.6\\ 37.4\\ 59.9\\ 46.9\\ 20.2\\ 49.0\\ 90.1\\ 97.3\\ 54.3\\ 35.0\\ 15.1\\ 19.6\\ 34.7\\ 48.9\\ 33.6\\ 37.4\\ 59.0\\ 44.7\\ 32.4\\ 14.1\\ <1.7\\ U\\ 55.0\\ 20.0\\ 30.1\\ 41.3\\ 13.8\\ 25.9\\ 4.0\\ 26.5\\ 5.0\\ 26.5\\ 5.0\\ 26.5\\ 5.0\\ 26.5\\ 5.0\\ 26.5\\ 5.0\\ 26.5\\ 5.0\\ 26.5\\ 5.0\\ 26.5\\ 5.0\\ 26.5\\ 5.0\\ 26.5\\ 5.0\\ 26.5\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5$	$195 \\ 149 \\ 192 \\ 257 \\ 228 \\ 2.5 \\ 11.3 \\ 3.3.8 \\ 41.7 \\ 9.9 \\ 8.9 \\ 8.9 \\ 2.7 \\ 18.2 \\ 37.0 \\ 88.3 \\ 188 \\ 223 \\ <1.9 \\ 0.6.4 \\ 92.1 \\ 208 \\ 347 \\ 325 \\ 186 \\ 23.8 \\ 115 \\ 281 \\ 365 \\ 48.7 \\ 66.6 \\ 73.7 \\ 100 \\ 61.3 \\ 44.7 \\ 118 \\ 183 \\ 159 \\ 28.2 \\ 66.8 \\ 89.3 \\ 56.9 \\ 42.9 \\ 7.0 \\ 27.3 \\ 9.4 \\ 21.2 \\ 18.6 \\ 12.4 \\ 15.4 \\ 3.1 \\ 12.7 \\ 107 \\ 100 \\ $	$\begin{array}{c} 77.4 \\ 52.9 \\ 29.6 \\ 16.8 \\ 5.9 \\ 21.7 \\ 0 \\ 3.3 \\ 0 \\ 3.3 \\ 0 \\ 3.3 \\ 0 \\ 3.3 \\ 0 \\ 3.3 \\ 0 \\ 3.3 \\ 0 \\ 3.3 \\ 0 \\ 3.3 \\ 0 \\ 3.3 \\ 0 \\ 3.3 \\ 0 \\ 3.3 \\ 0 \\ 3.3 \\ 0 \\ 3.3 \\ 0 \\ 1.5 \\ 0 \\ 1.5 \\ 0 \\ 1.5 \\ 0 \\ 1.5 \\ 0 \\ 1.5 \\ 0 \\ 1.6 \\ 0 \\ 0 \\ 1.6 \\ 0 \\ 0 \\ 1.6 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{c} 32.1\\ 20.0\\ 15.8\\ 11.0\\ 7.8\\ 1.6\\ 7.6\\ 7.6\\ 7.6\\ 7.6\\ 7.6\\ 7.2\\ 7.2\\ 7.2\\ 7.2\\ 7.2\\ 7.6\\ 7.7\\ 7.6\\ 7.7\\ 7.6\\ 7.7\\ 7.7\\ 7.6\\ 7.7\\ 7.6\\ 7.7\\ 7.7$	$\begin{array}{c} 51.8\\ 28.5\\ 14.3\\ 7.6\\ 8.6\\ J\\ < 16.0\\ J\\ < 3.2\ U\\ J\\ < 3.2\ U\\ J\\ < 3.2\ U\\ J\\ < 3.2\ U\\ J\\ & 3.2\ U\\ J\\ & 3.2\ U\\ J\\ & 3.2\ U\\ J\\ & 3.2\\ 2.5\\ 1.4\\ 1.2\ U\\ & 1.2\ U\\ J\\ & <1.2\ U\\ J\\ & <1.6\ U\\ J\\ & <1.6\ U\\ & <1.6\ U\\ & <1.6\ U\\ J\\ & <1.6\ U\\ & <1.5\ U\\ & <2.2\ U\\ & & <1.7\ U\\ & <1.5\ U\\ & \\ & <1.5\ U\\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $
Total PAHs	481	2531	4927	586	407	225
Individual Alkyl Isomers and Hopan	es					
2-Methylnaphthalene 1-Methylnaphthalene 2,6-Dimethylnaphthalene 1,6,7-Trimethylnaphthalene 1-Methylphenanthrene C29-Hopane 18a-Oleanane C30-Hopane	24.1 14.1 8.0 2.6 15.1 19.8 <10.3 U 25.5	76.2 63.3 58.2 21.8 37.8 60.5 <10.4 U 66.4	145 96.3 90 39.1 61 75.4 12.3 68.7	54.8 30.8 12.9 1.2 12.6 16.1 <10 U 9.7 J	20.9 11.4 5.4 1.1 12.4 16.6 <9.6 U 18.2	30.8 15.2 5.1 0.6 J 8.6 <9.6 U <9.6 U
Surrogate (Su)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)
Naphthalene-d8 Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12 Perylene-d12	66 73 73 80 76	68 79 75 80 77	65 80 90 94 73	70 84 88 80 74	64 76 87 90 66	66 80 92 83 69
Sample Name Client Name Matrix Collection Date Received Date Extraction Date Extraction Batch Date Acquired Method Sample Volume (L) Dilution	ETX3858.D W-CBB-06 (1 of 2) Water 11/30/04 12/04/04 12/06/04 ENV 1058 12/14/04 PAH-2002 1.0 NA	ETX3860.D W-DER-2 (1 of 2) Water 11/30/04 12/04/04 12/06/04 ENV 1058 12/14/04 PAH-2002 0.9 NA	ETX3862.D M-MAN-04 (1 of 2) Water 11/30/04 12/04/04 12/06/04 ENV 1058 12/14/04 PAH-2002 0.9 NA	ETX3864.D M-MAN-03 (1 of 2) Water 11/30/04 12/04/04 12/06/04 ENV 1058 12/14/04 PAH-2002 0.9 NA	ETX3866.D WMI-04 (1 of 2) Water 11/30/04 12/04/04 12/06/04 ENV 1058 12/14/04 PAH-2002 1.0 NA	ETX3868.D WMH-05 (1 of 2) Water 11/30/04 12/06/04 ENV 1058 12/14/04 PAH-2002 1.0 NA
--	---	---	---	---	--	--
Target Compounds	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)
Naphthalenes C1-Naphthalenes C2-Naphthalenes C3-Naphthalenes C3-Naphthalenes C4-Naphthalenes C4-Naphthalenes Eenzothjophene C1-Benzothjophenes C2-Benzothjophenes C3-Benzothjophenes Biphenyl Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene C3-Briorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Dibenzothjophenes C3-Dibenzothjophenes C3-Dibenzothjophenes C3-Dibenzothjophenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Naphthobenzothjophenes C2-Naphthobenzothjophenes C3-	$\begin{array}{c} 46.1\\ 24.8\\ 13.9\\ 9.5\\ 7.0\\ <1.6\ U\\ <3.2\ U\\ <1.4\ U\\ <1.8\ U\\ <1.8\ U\\ <1.8\ U\\ <1.8\ U\\ <1.7\ U\\ <2.7\ U\\ <1.7\ U\\ <1.6\ U\ \\ \\1.6\ U\ \\\1.6\ U\ \\\\1.6\ U\ \\\\1.6\ U\ \\\1.6\ U\ \\\1.6\ U\ \\\1.6\ U\ \\\1.6\ U\ \\.6\ U\ \\.6\ U\ \\.6\ U\ $	$\begin{array}{c} 222\\ 131\\ 42.3\\ 18.1\\ 7.7\\ <1.7\\ U\\ <3.5\\ U\\ <4.0\\ \\4$	$\begin{array}{c} 51.0\\ 36.6\\ 22.2\\ 17.4\\ 13.7\\ <1.7\ U\\ <3.5\ U\\ <2.0\ U\\ <1.3\ U\\ <2.0\ U\\ <1.7\ U\\ <1.7\ U\\ <1.5\ U\\ 3.2\\ 5.1\\ 5.9\\ 4.5\\ 7.9\\ 12.9\\ 6.9\\ <1.7\ U\\ <1.7\ U\ U\$	$\begin{array}{c} 56.6\\ 39.1\\ 31.2\\ 27.5\\ 21.6\\ <1.7\ U\\ <3.5\ U\ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{array}{c} 42.4\\ 29.5\\ 17.6\\ 11.6\\ 10.2\\ <1.6 U\\ <3.2 U\\ <1.2 U\\ <$	$\begin{array}{c} 56.5\\ 35.8\\ 36.8\\ 16.9\\ 10.8\\ 7.1\\ <1.6\ U\\ <3.2\ U\\ <4.2\\ 2.8\\ <1.2\ U\\ <1.2\ U\ \\1.2\ U\ \\\1.2\ U\ \\\\1.2\ U\ \\\\1.2\ U\ \\\1.2\ U\ $
Total PAHs	249	646	403	729	439	289
Individual Isomers						
2-Methylnaphthalene 1-Methylnaphthalene 2.6-Dimethylnaphthalene 1.6.7-Timethylnaphthalene 1-Methylphenanthrene C29-Hopane 18a-Oleanane C30-Hopane	26.6 13.3 5.1 0.7 J 10.0 <9.6 U <9.6 U <9.6 U	134 78.4 19.6 1.6 12.2 12.1 <10.4 U 14.4	38.5 20.6 9.6 2.1 11.8 15.2 <10.4 U 16.6	39.5 23.8 12.2 2.9 16.3 21.9 <10.3 U 19.1	31.4 16.2 6.4 0.8 J 11.1 14.3 <9.6 U 22.0	38.1 19.7 7.7 1.0 10.2 <9.6 U <9.6 U <9.6 U
Surrogate (Su)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)
Naphthalene-d8 Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12 Perylene-d12	65 77 86 82 71	66 80 86 81 72	68 77 88 82 77	66 81 87 86 72	61 76 77 76 67	64 73 83 77 72

Sample Name Client Name 2) Matrix Collection Date Received Date Extraction Date Extraction Batch Date Acquired Method Sample Volume (L) Dilution	ETX3870.D WMH-06 (1 of Water 11/30/04 12/06/04 ENV 1058 12/15/04 PAH-2002 1.0 NA	
Target Compounds	Su Corrected Q Conc. (ng/L)	
Naphthalene C1-Naphthalenes C2-Naphthalenes C3-Naphthalenes C3-Naphthalenes C3-Naphthalenes C3-Benzothiophenes C3-Benzothiophenes C3-Benzothiophenes C3-Benzothiophenes C3-Benzothiophenes C3-Benzothiophenes C3-Benzothiophenes C3-Denzothiophenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes Dibenzothiophenes C3-Dibenzothiophenes C3-Dibenzothiophenes C3-Dibenzothiophenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Chysenes C3-Chysenes C3-Chysenes C3-Chysenes Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene	$\begin{array}{c} 31.0\\ 20.1\\ 16.3\\ 12.5\\ 11.5\\ <1.6\ U\\ <3.2\ U\\ <3.2\ U\\ <3.2\ U\\ <3.2\ U\\ <3.2\ U\\ <2.5\\ 1.7\\ 5.2\\ 4.2\\ 3.5\\ <1.2\ U\\ <1.6\ U\ <1.6\ U\\ <1.6\ U\ <1.6\ U\\ <1.6\ U\ <1.$	
Benzo(a)pyrene Perylene Indeno(1,2,3-c,d)pyrene Dibenzo(a,h)anthracene	6.3 2.3 3.7 <1.5 U	
Benzo(g,h,i)perylene Total PAHs	4.1 273	
Individual Isomers		
2-Methylnaphthalene 1-Methylnaphthalene 2.6-Dimethylnaphthalene 1.6.7-Timethylnaphthalene 1-Methylphenanthrene C29-Hopane C30-Hopane	20.6 11.9 6.2 1.1 9.8 <9.6 U <9.6 U <9.6 U	
Surrogate (Su)	Su Recovery (%)	
Naphthalene-d8 Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12 Perylene-d12	69 65 90 79 70	

Sample Name Client Name Matrix Collection Date Received Date Extraction Batch Date Acquired Method Sample Volume (L) Dilution	ETX3885.D W-WOOD-06 Water 12/08/04 12/13/04 ENV 1063 12/15/04 PAH-2002 0.9 NA	ETX3886.D W-WOOD-07 Water 12/08/04 12/10/04 12/13/04 ENV 1063 12/15/04 PAH-2002 0.9 NA	ETX3887.D W-WOOD-08 Water 12/08/04 12/13/04 ENV 1063 12/16/04 PAH-2002 0.9 NA	ETX3895.D W-UL-01 Water 12/07/04 12/10/04 12/10/04 ENV 1063 12/16/04 PAH-2002 0.9 NA	ETX3896.D W-UL-02 Water 12/07/04 12/13/04 ENV 1063 12/16/04 PAH-2002 0.9 NA	ETX3897.D W-UL-03 Water 12/07/04 12/10/04 12/13/04 ENV 1063 12/16/04 PAH-2002 0.9 NA
Target Compounds	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)
Naphthalene C1-Naphthalenes C2-Naphthalenes C3-Naphthalenes Benzothiophenes C1-Benzothiophenes C2-Benzothiophenes C3-Benzothiophenes C3-Benzothiophenes C3-Benzothiophenes C3-Benzothiophenes C3-Benzothiophenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Dibenzothiophenes C1-Dibenzothiophenes Fluoranthene/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C2-Chrysenes C3-Chrysenes C3-Chrysenes C3-Chrysenes C3-Chrysenes C3-Chysenes C3-Chysenes C3-Chysenes C3-Chysenes C3-Chysenes Benzo(k)fluoranthene B	$\begin{array}{c} 15.0\\ 9.5\\ 10.3\\ 16.1\\ 12\\ 1.9\\ <3.6\ U\\ <2.6\\ 2.4\\ 2.1\\ 2.5\\ <1.3\ U\\ <2.5\\ <1.3\ U\\ <2.2\\ U\\ 3.3\\ 8.7\\ 7.1\\ 10.2\\ 10.0\\ <3.0\\ 2.0\\ 3.5\\ 4.8\\ <1.9\ U\\ 2.0\\ 3.5\\ 4.8\\ <1.7\ U\\ <2.5\\ 3.7\\ 2.5\\ 3.7\\ 3.7\\ 3.7\\ 3.7\\ 3.7\\ 3.7\\ 3.7\\ 3.8\\ 3.8\\ 3.8\\ 3.8\\ 3.8\\ 3.8\\ 3.8\\ 3.8$	$\begin{array}{c} 16.1\\ 10.7\\ 11.8\\ 15.8\\ 14.5\\ 1.5\\ 3.6\\ U\\ <3.6\\ U\\ <3.6\\ U\\ <3.6\\ U\\ <2.7\\ 2.8\\ 2.6\\ 2.9\\ 2.5\\ <1.3\\ U\\ 2.3\\ 3.6\\ 6.0\\ <1.9\\ U\\ <2.5\\ U\\ <2$	$\begin{array}{c} 18.3\\ 11.4\\ 12.5\\ 15.4\\ <6.7\ U\\ 1.8\\ <3.6\ U\\ <3.6\ U\\ <3.6\ U\\ <3.6\ U\\ <2.6\\ 3.7\\ 9.4\\ 3.6\\ 7.6\\ <1.3\ U\\ <1.5\ U\\ <2.6\\ 2.9.3\\ 14.3\\ 15.8\\ <3\ U\\ <3\ U\\ <2.5\ U\\ 12.0\\ 8.6\\ 8.9\\ <2.5\ U\\ 10.5\\ 31.2\\ 14.1\\ <1.7\ U\\ <1.7\ U\ <1.7\ U\\ <1.7\ U\ <1.8\ U\ <1.$	$\begin{array}{c} 15.6\\ 10.3\\ 8.5\\ <6.9\ U\\ <6.9\ U\\ <1.8\ U\\ <3.6\ U\\ <3.6\ U\\ <3.6\ U\\ <3.6\ U\\ <3.6\ U\\ <2.5\\ 1.7\\ 2.2\\ 2.1\\ <1.4\ U\\ <1.4\ U\\ <2.1\ U\\ <2.1\ U\\ <2.1\ U\\ <2.1\ U\\ <2.1\ U\\ <3.1\ U\\ <1.5\ U\\ <1.5\ U\\ <1.5\ U\\ <1.5\ U\\ <2.5\ U\\ <3.1\ U\\ <1.8\ U\ <1.8\ U\\ <1.8\ U\ <1.$	$\begin{array}{c} 13.3\\ 6.9\\ 5.4\ J\\ 46.9\ U\\ <6.9\ U\\ <1.8\ U\\ <3.6\ U\\ <3.6\ U\\ <3.6\ U\\ <3.6\ U\\ <3.6\ U\\ <3.6\ U\\ <1.7\ J\\ 1.8\\ 1.1\ J\\ 2.3\\ 2.1\\ <1.4\ U\\ <1.4\ U\\ <1.4\ U\\ <2.1\ U\\ <1.4\ U\\ <2.1\ U\\ <1.4\ U\\ <3.1\ U\\ <3.1\ U\\ <3.1\ U\\ <3.1\ U\\ <3.1\ U\\ <3.1\ U\\ <1.9\ U\\ <2.5\ U\\ <3.8\ U\\ <1.8\ U\\ <3.4\\ 4.3\\ 5.3\\ 2.1\\ 3.5\\ \end{array}$	$\begin{array}{c} 13.6\\ 6.0\\ 6.4\\ 9.6.6\\ U\\ <6.6\\ U\\ <5.5\\ U\\ <3.5\\ U\\ <2.4\\ 1.8\\ 2.0\\ -1.3\\ U\\ <1.3\\ U\\ <1.3\\ U\\ <1.3\\ U\\ <1.3\\ U\\ <2.4\\ U\\ <1.3\\ U\\ <2.4\\ U\\ <2.4\\ U\\ <2.4\\ U\\ <2.4\\ U\\ <2.4\\ U\\ <2.9\\ U\\ <2.4\\ U\\$
Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	2 J 2.6	2 4.8	3.0 17.7	<1.7 U 7.8	3.5 <1.7 U 2.9	<1.6 U 7.0
Total PAHs	235	250	533	177	105	179
Individual Alkyl Isomers and Hopane	es					
2-Methylnaphthalene 1-Methylnaphthalene 2.6-Dirmethylnaphthalene 1.6,7-Trimethylnaphthalene 1-Methylphenanthrene C29-Hopane 18a-Oleanane C30-Hopane	9.3 6.4 2.8 1.4 2.0 <10.6 U <10.6 U <10.6 U	9.8 7.9 4.9 1.0 J 2.1 <10.8 U <10.8 U <10.8 U	8.3 10.7 3.8 1.2 3.8 44.8 <10.6 U 40.7	10.3 6.8 3.0 <1.1 U 1.4 <10.9 U <10.9 U <10.9 U	6.4 5.1 -1.9 <1.1 U -1.1 J <10.9 U <10.9 U <10.9 U	5.1 4.8 2.3 <1.1 U 1.1 J <10.4 U <10.4 U <10.4 U
Surrogate (Su)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)
Naphthalene-d8 Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12 Perylene-d12	88 88 88 75 86	86 87 86 76 98	82 86 85 88 88	82 85 88 78 85	90 91 94 72 98	92 96 97 69 95

Sample Name Client Name Matrix Collection Date Received Date Extraction Datch Extraction Batch Date Acquired Method Sample Volume (L) Dilution	ETX3898.D W-TPB-01 Water 12/07/04 12/13/04 12/13/04 ENV 1063 12/16/04 PAH-2002 0.9 NA	ETX3899.D W-TPB-02 Water 12/07/04 12/10/04 12/13/04 ENV 1063 12/16/04 PAH-2002 0.9 NA	ETX3900.D W-TPB-03 Water 12/07/04 12/10/04 12/13/04 ENV 1063 12/16/04 PAH-2002 0.9 NA	ETX3901.D W-BTC-07 Water 12/07/04 12/13/04 22/13/04 ENV 1063 12/16/04 PAH-2002 0.9 NA	ETX3902.D W-BTC-08 Water 12/07/04 12/10/04 12/13/04 ENV 1063 12/16/04 PAH-2002 0.9 NA	ETX3903.D W-BTC-09 Water 12/07/04 12/10/04 12/13/04 ENV 1063 12/16/04 PAH-2002 0.9 NA
Target Compounds	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)
Naphthalene C1-Naphthalenes C2-Naphthalenes C3-Naphthalenes C4-Naphthalenes Enzothiophene C1-Benzothiophenes C2-Benzothiophenes C3-Benzothiophenes Biphenyl Acenaphthylen Acenaphthene Dibenzofuran Fluorene C1-Fluorenes C2-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Phenanthrene/Anthracenes C2-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Dibenzothiophenes C2-Dibenzothiophenes C2-Dibenzothiophenes C3-Dibenzothiophenes C3-Dibenzothiophenes C3-Dibenzothiophenes C3-Dibenzothiophenes C3-Dibenzothiophenes C3-Dibenzothiophenes C3-Dibenzothiophenes C3-Dibenzothiophenes C3-Dibenzothiophenes C3-Dibenzothiophenes C3-Silvaranthenes/Pyrenes C3-Naphthobenzothiophenes C3-Naphthobenzothio	$\begin{array}{c} 11.4\\ 5.9\\ 8.4\\ <6.8\ U\\ <6.8\ U\\ <1.8\ U\\ <3.6\ U\\ <1.8\ U\\ <1.3\ U\\ <2\ U\\ &2.0\\ 7.6\\ 3.8\\ <3\ U\\ <1.9\ U\\ <2.5\ U\ <2.5$	$\begin{array}{c} 19.5\\ 8.3\\ 7.2\\ <7\ U\\ <7\ U\\ <7\ U\\ <7\ U\\ <3.7\ U\\ <3.7\ U\\ <3.7\ U\\ <3.7\ U\\ <3.7\ U\\ <3.7\ U\\ <1.6\ J\\ 3.7\\ 2.0\\ 2.3\\ 2.3\\ 2.3\\ 2.3\\ 2.4\\ <1.4\ U\\ <1.4\ U\\ <1.4\ U\\ <2.1\ U\\ <1.4\ U\\ <2.1\ U\\ <1.1\\ 10.5\\ 6.7\\ <3.1\ U\\ <1.6\ U\\ <2.6\ U\ \\2.6\ U\ U\ \\2.6\ U\ \\2.6\$	$\begin{array}{c} 20.2 \\ 11.1 \\ 9.8 \\ <6.8 \\ U \\ <6.8 \\ U \\ <3.6 \\ U \\ <1.3 \\ U \\ <1.4 \\ U \\ <2.5 \\$	$\begin{array}{c} 12.4\\ 9.2\\ 9.7\\ 11.9\\ 10.0\\ 1.7\ J\\ <3.5\ U\\ <3.5\ U\\ <3.5\ U\\ <3.5\ U\\ <3.5\ U\\ 1.5\ J\\ 4.9\\ 2.8\\ 4.7\\ <1.3\ U\\ 3.0\\ 5.7\\ 16.4\\ 10.4\\ 12.4\\ 13.6\\ <3\ U\\ 3.3\\ 4.5\\ 7.4\\ 8.8\\ 32.1\\ 32.9\\ 15.1\\ 9.2\\ <1.5\ U\\ 7.1\\ 4.5\\ 6.3\\ 2.5\ U\\ 7.1\\ 4.5\\ 6.3\\ <2.5\ U\\ 10.6\\ 21.8\\ 14.8\\ <1.7\ U\\ <1.8\ U\ U\$	$\begin{array}{c} 13.2\\ 8.4\\ 7.7\\ <6.7\ U\\ <6.7\ U\\ <6.7\ U\\ <3.5\ U\\ <1.2\ J\\ 3.9\\ <4.5\ 2.1\\ 3.6\\ <1.3\ U\\ <1.3\ U\\ <1.3\ U\\ <1.3\ U\\ <3.1\ U\\ <3.2\\ 3.1\\ 4.9\\ <1.9\ U\\ <2.1\ U\\ <1.7\ U\\ <2.5\ U\ <2.5\ U\\ <2.5\ U\ <2.5\ $	$\begin{array}{c} 12.1 \\ 7.3 \\ 8.7 \\ 11.7 \\ < 6.9 U \\ 1.3 J \\ < 3.6 U \\ < 3.6 U \\ < 3.6 U \\ < 3.6 U \\ < 1.9 J \\ 2.2 \\ 1.9 \\ 1.8 \\ 2.7 \\ < 1.4 U \\ < 1.5 U \\ 2.9 \\ 9.1 \\ 6.5 \\ 10.7 \\ 8.9 \\ < 3.1 U \\ 1.6 \\ 2.2 \\ 5.4 \\ < 1.9 U \\ 12.9 \\ 13.1 \\ 7.7 \\ < 1.5 U \\ < 2.5 U \\ < $
Total PAHs	141	213	320	409	287	190
2-Methylnaphthalene 1-Methylnaphthalene 2,6-Dimethylnaphthalene 1,6,7-Trimethylnaphthalene 1,6,7-Trimethylnaphthalene 1-Methylphenanthrene C29-Hopane 18a-Oleanane C30-Hopane		7.5 6.4 2.5 <1.1 U 1.8 <11 U <11 U <11 U	9.0 9.4 3.9 <1.1 U 1.5 <10.8 U <10.8 U <10.8 U	7.6 7.7 4.0 0.9 J 2.6 26.6 <10.5 U 27.9	6.2 7.9 <1.1 U 2.6 22.8 <10.5 U 23.2	6.6 5.5 3.7 0.7 J -1.9 <10.9 U <10.9 U <10.9 U
Surrogate (Su)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)
Naphthalene-d8 Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12 Perylene-d12	91 90 94 82 98	66 70 71 52 63	96 97 94 86 94	90 94 95 96 94	92 96 95 91 90	98 94 99 87 90

Sample Name Client Name Matrix Collection Date Received Date Extraction Date Extraction Batch Date Acquired Method Sample Volume (L) Dilution	ETX3904.D W-DUP-01 Water 12/07/04 12/13/04 ENV 1063 12/16/04 PAH-2002 0.9 NA	ETX3905.D WLP #1-5 Water 12/07/04 12/10/04 12/13/04 ENV 1063 12/16/04 PAH-2002 0.9 NA	ETX3906.D WLP #2-5 Water 12/07/04 12/13/04 ENV 1063 12/16/04 PAH-2002 1.0 NA	ETX3907.D WLP #3-5 Water 12/07/04 12/13/04 ENV 1063 12/16/04 PAH-2002 0.9 NA	ETX3910.D WSUB-01 (1 of 2) Water 12/07/04 12/13/04 ENV 1063 12/16/04 PAH-2002 0.9 NA	ETX3911.D WSUB-01 (2 of 2) Water 12/07/04 12/13/04 ENV 1063 12/16/04 PAH-2002 0.9 NA
Target Compounds	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)
Naphthalene C1-Naphthalenes C2-Naphthalenes C3-Naphthalenes C3-Naphthalenes C3-Naphthalenes Edited States Enzothiophenes C1-Benzothiophenes C3-Benzothiophenes C3-Benzothiophenes Biphenyl Acenaphthylene Acenaphthene Dibenzofuran Fluorene C1-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Dibenzothiophenes C3-Dibenzothiophenes C3-Dibenzothiophenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Naphthobenzothiophenes C2-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Chrysenes C4-Chrysenes Enzo(a)pyrene Enzo(a)pyrene Enzo(a)pyrene	$\begin{array}{c} 12.8\\ 9.4\\ 10.4\\ 11.6\\ 9.9\\ 2.0\\ <3.6\ U\\ <3.6\ U\\ <3.6\ U\\ <3.6\ U\\ <2.0\ J\\ 4.1\\ 5.0\\ 2.0\ J\\ 4.1\\ 0\\ 2.0\ J\\ 4.2\\ 12.4\\ 3.2\\ 4.2\\ 6.8\\ 10.2\\ 28.5\\ 30.1\\ 13.6\\ 7.7\\ <1.5\ U\\ <2.5\ U\ <2.5\$	$\begin{array}{c} 15.7\\ 8.7\\ 7.7\\ 46.5 U\\ 46.5 U\\ 45.5 U\\ 45.6 U\\ 45.0 U\\$	$\begin{array}{c} 11.4\\ 6.9\\ 7.0\\ <6.3\ U\\ <6.3\ U\\ <6.3\ U\\ <3.3\ U\\ <3.3\ U\\ <3.3\ U\\ <3.3\ U\\ <3.3\ U\\ <3.3\ U\\ <1.4\ U\\ <1.2\ U\\ <1.2\ U\\ <1.9\ U\\ <1.9\ U\\ <2.8\ U\\ <2.3\ U\\ <1.4\ U\\ <1.4\ U\\ <1.2\ U\\ <2.3\ U\ U\ U\ U\\ <2.3\ U\ U\$	$\begin{array}{c} 20.0 \\ 12.7 \\ 49.9 \\ 97.0 \\ 76.3 \\ <1.8 \\ <3.6 \\ \\0 \\ <3.6 \\ \\0 \\ \\2.8 \\ \\8.4 \\ 4.1 \\ 5.8 \\ 11.1 \\ 22.5 \\ 110 \\ 80.1 \\ <2.5 \\ 110 \\ 80.1 \\ <2.5 \\ 110 \\ 80.1 \\ <2.5 \\ 110 \\ 80.1 \\ <2.5 \\ 110 \\ 80.1 \\ 30.1 \\ 311 \\ 43.1 \\ 43.8 \\ 54.1 \\ 60.4 \\ 41.1 \\ 131 \\ 43.8 \\ 54.1 \\ 60.4 \\ 41.1 \\ 131 \\ 43.8 \\ 54.1 \\ 60.4 \\ 41.1 \\ 15.9 \\ 54.5 \\ 92.2 \\ 70.1 \\ 21.1 \\ 50.9 \\ 54.5 \\ 54$	$\begin{array}{c} 15.1\\ 9.5\\ 7.8\\ <6.9\ U\\ <6.9\ U\\ <3.6\ U\\ <3.6\ U\\ <3.6\ U\\ <2.2\ C\\ <5.5\\ <1.5\ U\\ <2.8\\ 2.9\\ <1.4\ U\\ <1.4\ U\\ <1.4\ U\\ <1.4\ U\\ <2.3\\ 8.7\\ 25.7\\ 13.7\\ 11.0\\ <3.1\ U\\ <3.1\ U\ U\$	$\begin{array}{c} 12.3 \\ 6.5 \\ < 6.9 \ U \\ < 7.5 \ U \\ < 3.6 \ U \\ < 3.6 \ U \\ < 1.6 \ U \\ < 1.5 \ U \\ < 1.5 \ U \\ < 1.4 \ U \\ < 2.1 \ U \\ < 3.1 \ U \\ < 1.9 \ U \\ < 1.5 \ U \\ < 1.5 \ U \\ < 1.5 \ U \\ < 2.5 \ U \\ < 3.1 \ U \\ < 3.1 \ U \\ < 3.1 \ U \\ < 3.2 \ U \\ < 3.1 \ U \\ < 3.2 \ U \\ < 3.1 \ U \\ < 3.2 \ U \\ < 3.1 \ U \\ < 3.2 \ U \\ < 3.1 \ U \\ < 3.2 \ U \\ < 3.1 \ U \ U \ U \ U \ U \ U \ U \ U \ U \ $
Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	<1.7 U 11.0	<1.6 U 5.0	<1.5 U 4.6	3.0 19.3	4.4 18.7	<1.7 U <2.5 U
Total PAHs	378	130	132	2154	478	31.6
Individual Isomers 2-Methylnaphthalene 1-Methylnaphthalene 2,6-Dimethylnaphthalene 1,6,7-Trimethylnaphthalene 1,6,7-Trimethylnaphthalene 1,6,7-Benanthrene C29-Hopane 18a-Oleanane C30-Honane	8.6 7.1 3.3 0.9 J 2.8 28.4 <10.6 U 30.7	8.8 5.7 2.6 1.1 J <10.3 U <10.3 U <10.3 U	6.4 5.1 2.8 <1 U 1.7 <10 U <10 U <10 U	11.8 9.4 28.6 9.9 23.7 55.9 <10.6 U	9.0 6.8 3.8 <1.1 U 3.6 22.2 <10.9 U 37 o	6.2 4.6 <1.8 U <1.1 U <1.2 U <10.9 U <10.9 U
Surrogate (Su)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)
Naphthalene-d8 Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12 Perylene-d12	96 96 99 92 97	92 92 99 85 98	95 96 99 90 94	93 94 93 91 93	93 94 97 94 97	93 89 98 82 91

Sample Name Client Name Matrix Collection Date Received Date Extraction Datch Extraction Batch Date Acquired Method Sample Volume (L) Dilution	ETX3888.D W-MAN-05 Water 12/08/04 12/14/04 ENV 1064 12/18/04 PAH-2002 0.9 NA	ETX3889.D W-MAN-06 Water 12/08/04 12/10/04 12/14/04 ENV 1064 12/18/04 PAH-2002 0.9 NA	ETX3890.D W-MAN-07 Water 12/08/04 12/14/04 ENV 1064 12/18/04 PAH-2002 0.9 NA	ETX3891.D W-TN-01 Water 12/08/04 12/10/04 12/14/04 ENV 1064 12/19/04 PAH-2002 0.9 NA	ETX3892.D W-TN-02 Water 12/08/04 12/10/04 12/14/04 ENV1064 12/19/04 PAH-2002 0.9 NA	ETX3893.D W-TN-03 Water 12/08/04 12/10/04 12/14/04 ENV 1064 12/19/04 PAH-2002 0.9 NA
Target Compounds	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)
Naphthalene C1-Naphthalenes C2-Naphthalenes C3-Naphthalenes C4-Naphthalenes Benzothiophene C1-Benzothiophenes C3-Benzothiophenes C3-Benzothiophenes C3-Benzothiophenes C3-Benzothiophenes C3-Benzothiophenes C3-Benzothiophenes C3-Benzothiophenes C3-Denzothiophenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Dibenzothiophenes C3-Dibenzothiophenes C3-Dibenzothiophenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Chrysenes C3-Chrysenes C4-Chrysenes Benzo(l)fluoranthene B	$\begin{array}{c} 8.8\\ 9.6\\ 9.2\\ 10.7\\ 14.8\\ 2.6\\ <3.5\ U\\ <1.3\ U\\ <1.3\ U\\ <2.0\\ 3.0\\ <1.3\ U\\ <1.3\ U\\ <2.0\\ 3.0\\ <1.3\ U\\ <2.0\\ 3.0\\ <1.3\ U\\ <2.0\\ 3.0\\ <1.3\ U\\ <2.0\\ 3.0\\ <1.3\ U\\ <2.0\\ 2.4\\ 6.3\\ 5.5\\ 9.4\\ 9.0\\ <3\ U\\ 1.3\\ <1.9\ U\\ <1.9\ U\\ <1.9\ U\\ <1.9\ U\\ <1.9\ U\\ <1.9\ U\\ <1.5\ U\\ <1.5\ U\\ <2.5\ U\\ <3.5\ 6.6\\ e\ $	$\begin{array}{c} 7.0\\ 8.4\\ 9.4\\ 9.4\\ 10.9\\ <6.7\ U\\ 2.6\\ (3.6\ U\\ <3.6\ U\\ <3.6\ U\\ <3.6\ U\\ <3.6\ U\\ <1.9\ J\\ 2.5\\ 1.7\\ 1.7\\ 2.5\\ <1.3\ U\\ <1.3\ U\\ <2.5\\ 1.7\\ 1.7\\ 2.5\\ <1.3\ U\\ <1.3\ U\\ <2.2\ U\\ 2.7\\ 6.2\\ 7.4\\ 10.1\\ 10.9\\ <3\ U\\ 1.4\\ 4.1\\ 7.4\\ 9.8\\ 12.6\\ 14.4\\ 8.3\\ 6.0\\ <1.5\ U\\ <2.5\ U\\ <3.5\\ 7.7\\ (-1.7\ U\\ 9.9\\ 3.5\\ 7.1\\ 6.9\end{array}$	$\begin{array}{c} 7.3 \\ 6.2 \\ 7.3 \\ <6.7 \ U \\ <5.7 \ U \\ <5.5 \ U \\ <3.5 \ U \\ <3.5 \ U \\ <3.5 \ U \\ <2.2 \ J \\ 2.3 \\ <1.4 \ U \\ <1.3 \ U \\ <2.1 \\ 4.3 \\ 11.7 \\ 7.4 \\ 10.1 \\ 8.5 \\ <3 \ U \\ <1.9 \ U \\ <2.1 \\ 1.9 \\ <1.9 \ U \\ <2.5 \ U \\ <3.5 \ U \\ \\0.5 \ U \ U \\ \\0.5 \ U \ U \ U \ U \\ \\0.5 \ U \ U \ U \ U \ U \ U \ U \ U \ U \ $	$\begin{array}{c} 11.5\\ 13.2\\ 20.1\\ 129.8\\ 21.1\\ 4.0\\ <3.5 U\\ <3.9\\ 3.9\\ 3.8\\ 3.4\\ 4.2\\ 9.9\\ 9.3\\ 3.4\\ 3.4\\ 5.2\\ 9.9\\ <1.3 U\\ <1.3 U\\ <1.3 U\\ <1.3 U\\ <1.3 U\\ <1.3 U\\ 3.0\\ 5.5\\ 10.2\\ 12.3\\ 17.0\\ 13\\ 12.1\\ 3.1\\ 1.9\\ 23.5\\ 28.5\\ 17.3\\ 8.3\\ 11.9\\ 23.5\\ 28.5\\ 17.3\\ 8.3\\ <1.5 U\\ 8.3\\ 9.3\\ <2.5 U\\ <2.5 $	$\begin{array}{c} 12.2 \\ 13.2 \\ 14.1 \\ 19.7 \\ 13.6 \\ 3.1 \\ <3.5 U \\ <3.5 U \\ <3.5 U \\ <3.5 U \\ <2.6 \\ 3.4 \\ 2.7 \\ 2.8 \\ 4.6 \\ <1.3 U \\ <1.4 \\ 3 U \\ 2.3 \\ 5.2 \\ 7.1 \\ <1.9 U \\ 2.5 \\ 30.4 \\ 14.4 \\ 8.5 \\ <1.5 U \\ 10.2 \\ 5.9 \\ 8.0 \\ <2.5 U \\ 13.7 \\ 14.6 \\ 9.4 \\ <1.7 U \\ <1.7 U \\ <1.7 U \\ <2.6 \\ 5.8 \\ 11.5 \\ 12.4 \\ \end{array}$	$\begin{array}{c} 9.2\\ 7.1\\ 10.1\\ 46.7\ U\\ 3.9\\ (-3.5\ U\\ (-3.5\ U\ (-3.5\ U\\ (-3.5\ U\ (-3.5\ U\$
Benzo(a)pyrene Perylene Indeno(1,2,3-c,d)pyrene Dibenzo(a,h)anthracene	6.8 2.2 4.5 <1.6 U	6.8 2.3 5.1 <1.7 U	11.0 3.4 6.9 1.8	10.8 5.0 8.6 <1.6 U	12.4 4.9 9.5 2.1	8.9 3.0 7.6 <1.6 U
Benzo(g,h,i)perylene Total PAHs	5.3 188	4.9 214	6.5 255	8.4 437	8.3 383	6.8 244
Individual Alkyl Isomers and Hopan	es					
2-Methylnaphthalene 1-Methylnaphthalene 2,6-Dimethylnaphthalene 1,6,7-Timethylnaphthalene 1-Methylphenanthrene C29-Hopane 18a-Oleanane C30-Hopane	8.8 6.0 3.5 0.7 J 2.0 <10.5 U <10.5 U <10.5 U	6.9 6.2 3.6 0.7 J 2.7 <10.6 U <10.6 U <10.6 U	5.2 4.4 <1.1 U 2.0 21.9 <10.5 U 20.9	10.6 9.9 5.6 3.8 3.7 <10.5 U <10.5 U <10.5 U	12.2 8.2 5.2 1.4 3.4 <10.5 U <10.5 U <10.5 U	6.7 4.3 3.1 <1.1 U 3.3 32.2 <10.5 U 19.8
Surrogate (Su)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)
Naphthalene-d8 Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12 Perylene-d12	81 83 90 89 86	85 91 89 89 89	88 97 91 94 94	77 85 82 100 78	88 98 85 105 90	86 90 86 92 87

Sample Name Client Name Matrix Collection Date Received Date Extraction Date Extraction Batch Date Acquired Method Sample Volume (L) Dilution	ETX3894.D W-TN-04 Water 12/08/04 12/10/04 12/14/04 ENV 1064 12/19/04 PAH-2002 0.9 NA	ETX3908.D WMH #1-5 Water 12/08/04 12/14/04 12/14/04 ENV 1064 12/19/04 PAH-2002 0.9 NA	ETX3909.D AG SAMPLE BL Water 12/08/04 12/10/04 12/14/04 ENV 1064 12/19/04 PAH-2002 1.0 NA	ETX3913.D WCR #2S Water 12/08/04 12/10/04 12/14/04 ENV 1064 12/19/04 PAH-2002 0.9 NA	ETX3914.D WCR #20 (1 of 2) Water 12/08/04 12/10/04 12/14/04 ENV 1064 12/19/04 PAH-2002 0.9 NA	ETX3916.D WCR #1D (1 of 2) Water 12/08/04 12/14/04 ENV 1064 12/19/04 PAH-2002 0.9 NA
Target Compounds	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)
Naphthalene C1-Naphthalenes C2-Naphthalenes C3-Naphthalenes C4-Naphthalenes Benzothiophene C1-Benzothiophenes C2-Benzothiophenes C3-Benzothiophenes C3-Benzothiophenes Biphenyl Acenaphthene Dibenzofuran Fluorene C1-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Dibenzothiophenes C3-Dibenzothiophenes C3-Dibenzothiophenes C3-Dibenzothiophenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Naphthobenzothiophenes C3-Chrysenes C3-Chrysenes C3-Chrysenes C3-Chrysenes C3-Chrysenes C3-Chrysenes C3-Chysenes C3-Chysenes Enzo(b)fluoranthene Benzo(a)pyrene Perylene Indeno(1,2,3-c,d)pyrene Dibenzo(a,h)anthracene Benzo(a)hanthracene Perylene Indeno(1,2,3-c,d)pyrene Dibenzo(a,h)anthracene Pintophene Benzo(a)h)anthracene Perylene Indeno(1,2,3-c,d)pyrene Dibenzo(a,h)anthracene Benzo(a)h)anthracene Benzo(a)h)anthracene Benzo(a)h)anthracene Benzo(a)h)anthracene Benzo(a)h)anthracene Benzo(a)h)anthracene Benzo(a)h)anthracene Benzo(a)h)anthracene Benzo(a)h)anthracene Benzo(b)horenes Benzo(b)hore	$\begin{array}{c} 8.7\\7.2\\8.9\\11.4\\14.9\\2.2\\<3.6\ U\\3.6\ U\\3.7\ U\\3.5\ S.8\\<1.7\ U\\3.5\ S.8\\\\$	$\begin{array}{c} 32.6\\ 140\\ 792\\ 1340\\ 1170\\ 11.2\\ 44.9\\ 185\\ 325\\ 20.3\\ <1.2\ U\\ 44.1\\ 34.1\\ 112\\ 354\\ 888\\ 939\\ 43.0\\ <0.9\ U\\ 378\\ 1010\\ 1740\\ 1600\\ 1160\\ 146\\ 743\\ 1790\\ 1950\\ 79.9\\ 135\\ 452\\ 661\\ 620\\ 343\\ 1130\\ 2090\\ 1340\\ 90.3\\ 267\\ 734\\ 921\\ 314\\ 113.0\\ 73.4\\ 15.4\\ 113.0\\ 73.4\\ 15.4\\ 113.0\\ 73.4\\ 15.4\\ 11.1\\ 46.6\\ 56.6\\ 23.2\\ 11.2\\ 345\\ 23.2\\ 11.2\\ 345\\ 245\\ 25.2\\ 11.2\\ 345\\ 25.2\\ 11.2\\ $	$\begin{array}{c} 20.5\\ 4.8\\ (6.3 U\\ (6.3 U\\ (3.3 U\\ (3.3$	$\begin{array}{c} 6.7\\ 5.0\\ 5.0\\ 6.7\ U\\ <6.7\ U\\ <6.7\ U\\ 2.2\\ <3.6\ U\\ <3.6\ U\\ <3.6\ U\\ 2.1\ J\\ 3.2\\ <1.4\ U\\ 1.2\ J\\ 2.0\\ <1.3\ U\\ <1.4\ U\\ 1.2\ J\\ 2.0\\ <1.4\ U\\ <1.4\ U\\ 1.2\ J\\ 2.0\\ <1.5\ U\\ <2.5\ U\ <2.5\ U\\ <2.5\ U\ U\ <2.5\ U\ U\ <2.5\ U\ $	9.5 7.2 10.7 6.7. U 6.7. U 2.5 6.3.5 U 2.4 10.6 (-1.4 U 4.5 6.2 (-1.3 U 4.1.3 U 4.5 6.2 (-1.3 U 4.1.3 U 4.1.3 U 4.1.3 U 4.1.3 U 4.1.3 U 4.1.3 U 4.1.3 U 4.1.3 U 4.1.3 U 4.1.4 U 4.5 6.2 7.4 26.9 18.1 18.4 16.6 27.4 26.3 16.6 16.6 27.4 26.3 55.6 58.1 36.7 21.3 17.0 28.6 24.2 28.1 33.5 24.3 19.4 (-1.7 U 4.5 24.3 19.4 (-1.7 U 4.5 24.3 24.3 19.4 (-1.7 U 4.5 24.3 19.4 (-1.7 U 4.5 25.3 55.6 58.1 19.7 21.3 11.4 (-1.7 U 4.5 24.3 19.4 (-1.7 U 4.5 24.3 19.4 (-1.7 U 4.5 24.3 19.4 (-1.7 U 4.5 24.3 19.4 (-1.7 U 4.5 25.3 55.6 58.1 19.7 (-1.7 U 4.5 24.3 19.4 (-1.7 U 4.5 24.3 19.4 (-1.7 U 4.5 25.3 55.6 58.1 19.7 (-1.7 U 4.5 24.3 19.4 (-1.7 U 4.5 24.3 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5	$\begin{array}{c} 5.3\\ 5.7\\ 13.2\\ 29.8\\ 18.9\\ 1.7\\ J\\ <3.6\\ U\\ <3.6\\ U\\ \\ 2.2\\ J\\ \\ 5.9\\ 2.5\\ 2.8\\ 4.6\\ 9.6\\ 2.5\\ 2.8\\ 4.6\\ 9.6\\ 2.5\\ 2.8\\ 4.6\\ 9.6\\ 2.5\\ 2.8\\ 4.6\\ 9.6\\ 2.5\\ 2.8\\ 4.6\\ 9.6\\ 2.5\\ 2.8\\ 4.6\\ 9.6\\ 2.5\\ 2.8\\ 4.6\\ 9.6\\ 3.9\\ 2.1\\ 20.7\\ 34.1\\ 29.2\\ 1.3\\ 3.9\\ 10.5\\ 26.6\\ 31.2\\ 3.9\\ 10.5\\ 26.6\\ 31.2\\ 3.9\\ 10.5\\ 26.6\\ 31.2\\ 3.9\\ 10.5\\ 26.6\\ 31.2\\ 3.9\\ 10.5\\ 26.6\\ 31.2\\ 3.9\\ 10.5\\ 26.6\\ 31.2\\ 3.9\\ 10.5\\ 26.6\\ 31.2\\ 3.9\\ 10.5\\ 26.6\\ 31.2\\ 3.9\\ 10.5\\ 26.6\\ 31.2\\ 3.9\\ 10.5\\ 26.6\\ 31.2\\ 3.9\\ 10.5\\ 26.6\\ 31.2\\ 3.9\\ 10.5\\ 26.6\\ 31.2\\ 3.9\\ 10.5\\ 26.6\\ 31.2\\ 3.9\\ 10.5\\ 26.6\\ 31.2\\ 3.9\\ 10.5\\ 26.6\\ 31.2\\ 3.9\\ 10.5\\ 26.6\\ 31.2\\ 3.9\\ 10.5\\ 26.6\\ 31.2\\ 3.9\\ 10.5\\ 26.6\\ 31.2\\ 3.9\\ 10.5\\ 26.6\\ 10.5\\ 10$
Total PAHs	299	26634	26.6	187	809	776
Individual Alkyl Isomers and Hopane	s					
2-Methylnaphthalene 1-Methylnaphthalene 2,6-Dimethylnaphthalene 1,6,7-Trimethylnaphthalene 1,6,7-Trimethylnaphthalene 1-Methylphenanthrene C29-Hopane 18a-Oleanane C30-Hopane	6.0 5.2 2.8 0.7 J 3.1 26.1 <10.6 U 26.1	96.7 123 388 205 323 369 66.2 412	5.0 2.3 <1.7 U <1 U <1.1 U <10 U <10 U <10 U	3.6 4.2 <1.8 U <1.1 U 2.1 <10.6 U <10.6 U <10.6 U	6.2 5.0 <1.1 U 6.8 64.9 <10.5 U 93.4	5.4 3.4 4.2 1.3 6.5 93.2 22.1 126
Surrogate (Su)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)
Naphthalene-d8 Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12 Perylene-d12	87 90 86 98 86	71 87 85 82 81	85 90 86 95 99	87 90 89 93 83	93 89 81 94 83	90 88 83 98 84

Sample Name Client Name Matrix Collection Date Extraction Date Extraction Batch Date Acquired Method Sample Volume (L) Dilution	ETX3918.D WCR #3S Water 12/08/04 12/14/04 ENV 1064 12/19/04 PAH-2002 0.9 NA	ETX3919.D WCR #1S Water 12/08/04 12/14/04 ENV 1064 12/19/04 PAH-2002 0.9 NA	ETX3920.D WCD #2D (1 of 2) Water 12/08/04 12/14/04 ENV 1064 12/19/04 PAH-2002 0.9 NA	ETX3922.D WCD #1S Water 12/08/04 12/14/04 ENV 1064 12/20/04 PAH-2002 0.9 NA	ETX3923.D WCD #2S Water 12/08/04 12/10/04 12/14/04 ENV 1064 12/20/04 PAH-2002 0.9 NA	ETX3924.D WCR #3S Water 12/08/04 12/10/04 12/14/04 ENV 1064 12/20/04 PAH-2002 0.9 NA
Target Compounds	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)
Naphthalene C1-Naphthalenes C2-Naphthalenes C3-Naphthalenes C3-Naphthalenes Ed-Anaphthalenes Ed-Naphthalenes Enzothiophene C1-Benzothiophenes C2-Benzothiophenes C3-Benzothiophenes Biphenyl Acenaphthene Dibenzofuran Fluorene C1-Fuorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Fluorenes C3-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Phenanthrene/Anthracenes C3-Dhenzothiophenes C3-Dibenzothiophenes C3-Dibenzothiophenes C3-Dibenzothiophenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes C3-Naphthobenzothiophe	$\begin{array}{c} 5.6\\ 5.2\\ <6.7\ U\\ <6.7\ U\\ <6.7\ U\\ <6.7\ U\\ <3.6\ U\\ <3.6\ U\\ <3.6\ U\\ <3.6\ U\\ <3.6\ U\\ <2.2\ J\\ 2.4\\ <1.4\ U\\ 1.5\\ 2.6\\ <1.3\ U\\ <1.4\ U\\ <1.5\\ 0.0\\ 8.2\\ <3\ U\\ <2.6\\ 2.8\\ <1.9\ U\\ <2.6\\ 2.8\\ <1.9\ U\\ <2.6\\ 2.8\\ <1.9\ U\\ <2.5\ U\\ <1.7\ U\\ <1.8\ U\ \\1.8\ U\ U\ \\1.8\ U\ \\1.8\ U\ \\1.8\ U\ \\\1.8\ U\ \\\1.8\ U\ \\\1.8\ U\$	$\begin{array}{c} 7.2 \\ 5.0 \\ 46.7 \ U \\ 46.7 \ U \\ 46.7 \ U \\ 2.3 \\ 3.6 \ U \\ 2.3 \\ 3.6 \ U \\ 3.6 \ U \\ 3.6 \ U \\ 3.6 \ U \\ 1.7 \ J \\ 2.4 \\ 4.1 \\ 1.8 \\ 1.2 \\ 4.3 \ U \\ 4.1 \\ 7.1 \\ 3.9 \\ 9.2 \\ 8.1 \\ 4.1 \\ 7.1 \\ 3.9 \\ 9.2 \\ 8.1 \\ 4.1 \\ 7.1 \\ 3.9 \\ 9.2 \\ 8.1 \\ 4.1 \\ 7.1 \\ 3.9 \\ 9.2 \\ 8.1 \\ 4.1 \\ 7.1 \\ 3.9 \\ 9.2 \\ 8.1 \\ 4.1 \\ 7.1 \\ 3.7 \\ 4.5 \\ U \\ 2.2 \\ 3.2 \\ 4.9 \ U \\ 4.1 \\ 7.1 \\ 3.7 \\ 4.5 \\ U \\ 2.2 \\ 3.2 \\ 4.9 \ U \\ 4.1 \\ 7.1 \\ 3.7 \\ 4.5 \\ 0.3 \\ 8.2 \\ 8.4 \\ 4.1 \\ 6.8 \\ 7.6 \\ 5.3 \\ 4.5 \\ 4.7 \ U \\ 3.7 \\ 4.5 \\ 4.7 \ U \\ 5.7 \ U \\ 5.7 \\ 4.7 \ U \\ 5.7 \ U \\ 5.7 \\ 5.$	$\begin{array}{c} 8.1\\ 4.6\\ <6.8\ \cup\\ <6.8\ \cup\\ <6.8\ \cup\\ <6.8\ \cup\\ <1.1\\ <3.6\ \cup\\ <3.6\ \cup\\ <2.5\\ 2.9\\ <1.5\ \cup\\ 1.8\\ 3.0\\ <1.3\ \cup\\ <1.4\ \cup\\ <1.9\ \cup\\ <1.8\ \cup\ <1.8$	$\begin{array}{c} 6.6\\ 4.7\\ 6.6\ J\\ .6.7\ U\\ .6.7\ U\\ .6.7\ U\\ .9.7\ U\\ .3.6\ U\\ .3.0\ U\\ .4.3\ U\\ .4.1\ U\\ .4.5\ U\\ .4.1\ U\\ .4.5\ U\\ .4.1\ U\\ .4.5\ U\\ .4.5\ U\\ .4.1\ U\\ .4.7\ U\ U\$	$\begin{array}{c} 6.5\\ 5.1\\ < 6.7\ U\\ < 6.7\ U\\ < 7.7\ U\\ < 3.6\ U\\ < 1.8\ J\\ 2.5\\ < 1.4\ U\\ < 1.3\ U\\ < 2.5\\ < 1.4\ U\\ < 1.3\ U\\ < 2.4\\ < 1.3\ U\\ < 2.2\ U\\ < 2.4\\ < 1.3\ U\\ < 2.2\ U\\ < 3.4\\ < 3.3\ U\\ < 3.0\\ < 3.0\\ < 1.9\ U\\ < 2.5\ U\\ < 3.6\ B\\ 8.0\\ 8.0\\ 8.3\\ 6.9\\ 8.3\\ 6.9\\ 6.3\\ < 1.7\ U\\ < 1.7\ U\ U\\ < 1.7\ U\\ < 1.7\ U\ U\$	$\begin{array}{c} 9.6\\ 5.8\\ < 6.7\ U\\ < 6.7\ U\\ < 6.7\ U\\ < 5.5\ U\\ < 3.5\ U\\ < 1.4\ U\\ < 1.3\ U\\ < 1.4\ U\\ < 1.9\ U\\ < 1.7\ U\ U\\ < 1.7\ U\ U\\ < 1.7\ U\ U\\ < 1.7\ U\ U\$
Total PAHs	160	180	297	220	154	210
Individual Isomers						
2-Methylnaphthalene 1-Methylnaphthalene 2,6-Dimethylnaphthalene 1,6,7-Timethylnaphthalene 1-Methylphenanthrene C29-Hopane C30-Hopane	3.7 4.4 <1.8 U <1.1 U 1.7 <10.6 U <10.6 U <10.6 U	4.0 3.7 <1.8 U <1.1 U 1.5 <10.6 U <10.6 U <10.6 U	3.3 4.0 <1.8 U <1.1 U 3.3 46.4 <10.8 U 54.3	4.1 3.3 2.6 <1.1 U 2.1 12.5 <10.6 U 17.3	4.0 3.9 <1.8 U <1.1 U 1.6 <10.6 U <10.6 U <10.6 U	4.4 4.6 <1.8 U <1.1 U 1.7 <10.5 U <10.5 U <10.5 U
Surrogate (Su)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%)	Su Recovery (%) S	Su Recovery (%)
Naphthalene-d8 Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12 Perylene-d12	91 93 85 100 89	83 90 85 96 93	94 96 84 93 83	92 94 85 83 88	92 96 94 84 91	81 90 97 85 97

Sample Name	ETX3927.D	ETX3928.D	ETX3929.D	ETX3930 D	ETX3931.D	ETX3932.D
Client Name	WMH #2D	WMH#3S V	VSUB-TN-01 (1 of 2)	WSUB-TN-01 (2 of 2)	WSUB-TN-02 (1 of 2)	WSUB-TN-02 (2 of 2)
Matrix	Water	Water	Water	Water	Water	Water
Collection Date	12/08/04	12/08/04	12/08/04	12/08/04	12/08/04	12/08/04
Received Date	12/10/04	12/10/04	12/10/04	12/10/04	12/10/04	12/10/04
Extraction Batch	ENV 1065	ENV 1065	ENV 1085	ENV 1085	ENV 1065	ENV 1065
Date Acquired	12/24/04	12/24/04	12/24/04	12/24/04	12/24/04	12/24/04
Method	PAH-2002	PAH-2002	PAH-2002	PAH-2002	PAH-2002	PAH-2002
Sample Volume (L)	0.9	0.9	0.9	1.0	0.9	1.0
Dilution	NA	NA	NA	NA	NA	NA
Target Compounds	Su Corrected Q Conc. (ng/L)					
Naphthalene	5.1	4.8	12.0	13.2	8.2	3.1 J
C1-Naphthalenes	5.8	4.3	13.1	15.5	6.7	3.1 J
C2-Naphthalenes C3-Naphthalenes	7.3	7.7	34.2	17.4	8.7	<5.2 U
C4-Naphthalenes	<6.9 U	<7 U	89.4	22.1	<68 U	<6.2 U
Benzothiophene	1.3 J	1.2 J	1.9	2.5	2.7	1.4 J
C1-Benzothiophenes	<3.6 U	<3.7 U	4.5	<3.2 U	<3.6 U	<3.3 U
C2-Benzothiophenes	<3.6 U	<3.7 U	<3.6 U	<3.2 U	<3.6 U	<3.3 U
C3-Benzothiophenes	<3.6 U	<3.7 U	<3.6 U	<3.2 U	<3.6 U	<3.3 U
Acenaphthylene	3.8	1.4 J	1.0 J	2.2	1.2 J 1.6	U.7 J ≪11 U
Acenaphthene	1.0 J	0.5 J	3.1	2.6	1.6	0.7 J
Dibenzofuran	1.7	1.1 J	3.5	2.3	1.5	0.6 J
Fluorene	2.3	1.7	5.1	2.9	2.3	1.2
C1-Fluorenes	<1,4 U	<1.4 U	20.5	5.5	4.6	<1.2 U
C2-Fluorenes	<1.4 U	<1.4 U	134	<1.2 U	<1.3 U	<1.2 U
Carbazole	<1.4 U	<1.4 U	89.4	<1.2 U	<1.3 U	<1.2 U
Anthracene	3.7	2.2	5.0	0.9	3.0	0.9
Phenanthrene	15.6	7.9	36.2	4.9	9.7	1.8
C1-Phenanthrene/Anthracenes	14.6	4.0	65.0	5.0	7.6	1.5 J
C2-Phenanthrene/Anthracenes	26.5	9.3	131	7.4	14.9	<2.8 U
C3-Phenanthrene/Anthracenes	29.1	7.6	140	<2.7 U	14.7	<2.8 U
Dibenzothiophene	2.1	14	91.2	14	9.5	<2.6 U
C1-Dibenzothiophenes	5.3	2.3	41.7	3.1	3.4	2.0
C2-Dibenzothiophenes	18.9	<1.9 U	122	5.4	9.5	<1.7 U
C3-Dibenzothiophenes	25.3	<1.9 U	163	5.0	15.5	<1.7 U
Fluoranthene	40.3	13.7	54.3	7.8	20.1	2.3
Pyrene C1 Elversethenes Director	42.4	16.7	53.3	11.3	23.0	5.2
C2-Eluoranthenes/Pyrenes	27.0	10.2	57.9	5.6	14.7	4.2
C3-Fluoranthenes/Pyranes	6.7	2.8	35.0	<14 U	85	<14.0
Naphthobenzothiophene	11.6	2.9	23.5	2.0	4.2	<1.2 U
C1-Naphthobenzothiophenes	14.4	4.2	61.7	<2.2 U	6.1	<2.3 U
C2-Naphthobenzothiophenes	21.8	<2.6 U	82.3	<2.2 U	7.3	<2.3 U
C3-Naphthobenzothiophenes	10.3	<2.6 U	8.08	<2.2 U	7.3	<2.3 U
Chrysene	25.0	5.5	21.7	2.8	5.1	0.8 J 16
C1-Chrysenes	12.8	3.7	32.8	<1.6 U	7.3	<1.6 U
C2-Chrysenes	8.9	<1.8 U	34.3	<1.6 U	5.2	<1.6 U
C3-Chrysenes	<1.8 U	<1.8 U	18.8	<1.6 U	<1.8 U	<1.6 U
C4-Chrysenes	<1.8 U	<1.8 U	<1.8 U	<1.6 U	<1.8 U	<1.6 U
Benzo(b)fluoranthene	32.9	10.8	32.2	6.4	15.8	1.4 J
Benzo(e)ovrene	18.2	2.5 5	10.7	2.3 J	4.9	0.4 J
Benzo(a)pyrene	21.0	5.8	20.9	3.7	9.5	1.0 J
Perylene	6.7	2.5	7.6	1.0	2.7	<0.8 U
Indeno(1,2,3-c,d)pyrene	16.4	4.1	15.2	2.6	6.8	0.6 J
Dibenzo(a,h)anthracene Benzo(a,h.i)ceodene	1.7	0.8 J	2.9	0.8 J	I 0.9 J	<1.5 U
Total PAHs	570	172	2083	2.0	317	37.8
Individual Alkyl Isomers and Hopan	105					
2-Methylnaphthaiene	4.9	2.9	8.6	11.3	4.8	2.2
1-Methylnaphthalene	3.1	3.2	9.7	10.3	4.5	2.1
2,6-Dimethylnaphthalene	1.9	1.3 J	10.9	3.5	2.1	<1.7 U
1,6,7-Trimethyinaphthalene	<1.1 U	<1.1 U	8.4	1.2	<1.1 U	<1 U
C29-Hopane	3.6	1.2 J	15.8	1.3	2.4	0.5 J
18a-Oleanane	<10.9 U	<11 U	<10.9 1	<9.5 U <9.5 U	/ €2.0 ≤10.8 ∐	<a 0="" 11<="" 2="" th="">
C30-Hopane	64.3	15.0	80.6	<9.6 U	38.7	<9.9 U
Surrogate (Su)	Su Recovery (%)					
Naphthalene-d8	79	74	78	58	69	81
Acenaphthene-d10	82	85	89	66	76	84
Phenanthrene-d10	69	75	72	63	66	76
Chrysene-d12	86	80	92	61	76	68
Perylene-d12	84	87	90	81	87	90

B&B Laboratories Project J04447 Report 04-1369

Polaris Applied Sciences, Inc. TV Athos I Oil Spill Project Polycyclic Aromatic Hydrocarbon Data Client Submitted Samples

Sample Name	ETX3921.D
Client Name	WCD #2D (2 of 2)
Matrix	Water
Collection Date	12/08/04
Extraction Date	12/14/04
Extraction Batch	ENV 1065
Date Acquired	12/23/04
Method Sample Volume (I)	PAH-2002
Dilution	NA
Target Compounds	Su Corrected Q
	Conc. (ngra)
Naphthalene	3.5
C1-Naphthalenes	3.6 J
C3-Naphthalenes	<6.1 U
C4-Naphthalenes	<6.1 U
Benzothiophene	0.8 J
C1-Benzothiophenes	<3.2 U
C3-Benzothiophenes	<3.2 U
Biphenyl	1.8 J
Acenaphthylene	<1 U
Dibenzofuran	L 8.0
Fluorene	0.7
C1-Fluorenes	<1.2 U
C2-Fluorenes	<1.2 U
Carbazole	<1.8 U
Anthracene	<0.8 U
Phenanthrene C1. Phenanthrene (Anthrene -	2.4
C2-Phenanthrene/Anthracenes	1.3 J <2.7 LI
C3-Phenanthrene/Anthracenes	<2.7 U
C4-Phenanthrene/Anthracenes	<2.7 U
Dibenzothiophene C1-Dibenzothiophener	0.9
C2-Dibenzothiophenes	<1.7 U
C3-Dibenzothiophenes	<1.7 U
Fluoranthene	2.3
Pyrene C1-Ekomptheorer /D. mono	5.4
C2-Fluoranthenes/Pyrenes	3.3 ≼1.4 U
C3-Fluoranthenes/Pyrenes	<1.4 U
Naphthobenzothiophene	<1.1 U
C1-Naphthobenzothiophenes	<2.3 U
C3-Naphthobenzothiophenes	<2.3 U
Benz(a)anthracene	1.2
Chrysene	1.4
C1-Chrysenes	<1.6 U
C2-Chrysenes	<1.6 U
C4-Chrysenes	<1.6 U
Benzo(b)fluoranthene	2.1
Benzo(k)fluoranthene Benzo(k)fluoranthene	0.9
Benzo(a)pyrene	0.9
Perylene	0.5 J
indeno(1,2,3-c,d)pyrene	0.7 J
Benzo(g,h,i)perviene	<1.5 U
	0.0 0
Total PAHs	38.4
Individual Alkyl Isomers and Ho	opanes
2-Methylnaphthalene	2.5
1-Methylnaphthalene	2.5
2,5-Dimethylnaphthalene	<1.6 U
1,0,r-Trimetryinaphthalene	<1 U
C29-Hopane	<9.7 U
18a-Oleanane	<9.7 U
Surrogate (Su)	Su Recovery (%)
Nanhthalene-d8	76
Acenaphthene-d10	85
Phenanthrene-d10	82
Chrysene-d12	75
Perylene-d12	87

0	ETY2016 D	ETX3917 D
Sample Name	WCR #20 (2 of 2)	CR #1D (2 of 2)
Client Name	Water	Water
Collection Date	12/08/04	12/08/04
Received Date	12/10/04	12/10/04
Extraction Date	12/14/04	12/14/04
Extraction Batch	ENV 1065	ENV 1065
Date Acquired	12/23/04	12/23/04
Method	PAH-2002	PAH-2002
Sample Volume (L) Dilution	1.0 NA	1.0 NA
Target Compounds	Su Corrected Q Conc. (ng/L)	Su Corrected Q Conc. (ng/L)
Naphthalene	3.3	4.0
C1-Naphthalenes	2.9 J	5.1
C2-Naphthalenes	<6.1 U	6.9 <6.1 U
C4-Naphthalenes	<61 U	<6.1 U
Benzothionhene	1.1 J	1.2 J
C1-Benzolhiophenes	<3.2 U	<3.2 U
C2-Benzothiophenes	<3.2 U	<3.2 U
C3-Benzothiophenes	<3.2 U	<3.2 U
Biphenyl	1.3 J	1.6 J
Acenaphthylene	<1 U	U.9 J
Dibenzofuran	06 1	11.1
Fluorene	0.9	1.0
C1-Fluorenes	<1.2 U	<1.2 U
C2-Fluorenes	<1.2 U	<1.2 U
C3-Fluorenes	<1.2 U	<1.2 U
Carbazole	<1.8 U	0.8 J
Aninfacene	<0.8 U	1.4
C1-Phenanthrene/Anthracenes	<2.7 U	2.8
C2-Phenanthrene/Anthracenes	<2.7 U	5.5
C3-Phonanthrene/Anthracenes	<2.7 ∪	6.3
C4-Phenanthrene/Anthracenes	<2.7 U	<2.7 U
Dibenzothiophene	<0.8 U	<0.9 U
C1-Dibenzothiophenes	<1.7 U	<1.7 U
C3-Dibenzothiophenes	<1.7 U	<1.7 U
Fluoranthene	1,8	8.4
Pyrene	5.5	11.6
C1-Fluoranthenes/Pyrenes	<1.4 U	6.0
C2-Fluoranthenes/Pyrenes	<1.4 U	<1.4 U
Nanhthohenzothionhene	<11.4 0	20
C1-Naphthobenzothiophenes	<2.2 U	<2.3 U
C2-Naphthobenzothiophenes	<2.2 U	<2.3 U
C3-Naphthobenzothiophenes	<2.2 U	<2.3 U
Benz(a)anthracene	<0.9 U	2.9
Chrysene C1-Chrysenes	<0.0 0	4.0
C2-Chrysenes	<1.6 U	<1.6 U
C3-Chrysenes	<1.6 U	<1.6 U
C4-Chrysenes	<1.6 U	<1.6 U
Benzo(b)fluoranthene	1.3 J	5.2
Benzo(k)fluoranthene	0.6 J	2.2 J
Benzo(a)ovrene	11	3.5
Perylene	0.7 J	1.6
Indeno(1,2,3-c,d)pyrene	0.8 J	2.1
Dibenzo(a,h)anthracene	<1.5 U	<1.5 U
senzo(g,h,i)paryfene	0.8 J	, 1.9 J
Total PAHs	25.1	100.3
a Melbuleeshitataa		
z-melhyinaphthalene 1-Melhyinaphthalana	2.3	32
2.6-Dimethylnaphthalene	1./ <16 U	3.8
1,6,7-TrimethyInaphthalene	<1 U	J <12.5
1-Methylphenanthrene	<1.1 U	J 0.6 J
C29-Hopane	<9.6 U	J <9.7 U
18a-Oleanane	<9.6 U	J <9.7 U
C30-Hopane	<9.6 U	<u> </u>
Surrogate (Su)	Su Recovery (%)	Su Recovery (%)
Naphthalene-d8	72	66
Acenaphinene-d10	84	80
Chorace_d12	00	63 96
Pervlene-d12	95	02
- organization	30	

Client Name Matrix Received Date Batch Method	ETX3885 W-Wood-06 Filter 12/10/04 TS-050 EMAP-TSS	ETX3886 W-Wood-07 Filter 12/10/04 TS-050 EMAP-TSS	ETX3887 W-Wood-08 Filter 12/10/04 TS-050 EMAP-TSS	ETX3888 W-Man-05 Filter 12/10/04 TS-050 EMAP-TSS	ETX W-M F 12/1 TS EMA
Analysis	mg/L	mg/L	mg/L	mg/L	m
TSS	8.5	7.0	12.0	10.0	2
Qualifiers (Q): NA=Not app	blicable, *=Outside QA limits, re	eter to narrative			
Sample Name	ETX3890	ETX3891	ETX3892	ETX3893	ET
Client Name	W-Man-07	W-TN-01	W-TN-02	W-TN-03	W-1
Matrix Received Date	Filter 12/10/04	Fliter 12/10/04	Filter 12/10/04	Filter 12/10/04	12/-
Batch	TS-050	TS-050	TS-050	TS-050	TS
Method	EMAP-TSS	EMAP-TSS	EMAP-TSS	EMAP-TSS	EMA
Analysis	mg/L	mg/L	mg/L	mg/L	n
				25.0	
TSS Qualifiers (Q): NA=Not app	27.0 Dicable, *=Outside QA limits, re	39.5	37.5	35.0	
TSS Qualifiers (Q): NA=Not app Sample Name Client Name Matrix Received Date Batch Method	27.0 Dicable, *=Outside QA limits, re ETX3895 W-UR-01 Filter 12/10/04 TS-050 EMAP-TSS	39.5 eter to narrative ETX3896 W-UR-02 Filter 12/10/04 TS-050 EMAP-TSS	37.5 ETX3897 W-UR-03 Filter 12/10/04 TS-050 EMAP-TSS	ETX3898 W-TPB-01 Filter 12/10/04 TS-050 EMAP-TSS	ET. W-T F 12/ T EMA
TSS Qualifiers (Q): NA=Not app Sample Name Client Name Matrix Received Date Batch Method Analysis	27.0 Dicable, *=Outside QA limits, re ETX3895 W-UR-01 Filter 12/10/04 TS-050 EMAP-TSS mg/L	39.5 Eter to narrative ETX3896 W-UR-02 Filter 12/10/04 TS-050 EMAP-TSS mg/L	37.5 ETX3897 W-UR-03 Filter 12/10/04 TS-050 EMAP-TSS mg/L	ETX3898 W-TPB-01 Filter 12/10/04 TS-050 EMAP-TSS mg/L	ET W-T F 12/ TS EMA
TSS Qualifiers (Q): NA=Not app Sample Name Client Name Matrix Received Date Batch Method Analysis TSS	27.0 Dicable, *=Outside QA limits, re W-UR-01 Filter 12/10/04 TS-050 EMAP-TSS mg/L 14.5	39.5 Eter to narrative ETX3896 W-UR-02 Filter 12/10/04 TS-050 EMAP-TSS mg/L 9.0	37.5 ETX3897 W-UR-03 Filter 12/10/04 TS-050 EMAP-TSS mg/L 38.0	ETX3898 W-TPB-01 Filter 12/10/04 TS-050 EMAP-TSS mg/L 8.5	ET W-1 f 12/ T3 EMA
TSS Qualifiers (Q): NA=Not app Client Name Matrix Received Date Batch Method Analysis TSS Qualifiers (Q): NA=Not app	27.0 Dicable, *=Outside QA limits, re ETX3895 W-UR-01 Filter 12/10/04 TS-050 EMAP-TSS mg/L 14.5 Dicable, *=Outside QA limits, re	39.5 ETX3896 W-UR-02 Filter 12/10/04 TS-050 EMAP-TSS mg/L 9.0	37.5 ETX3897 W-UR-03 Filter 12/10/04 TS-050 EMAP-TSS mg/L 38.0	ETX3898 W-TPB-01 Filter 12/10/04 TS-050 EMAP-TSS mg/L 8.5	ET. W-T F 12/ T EMA
TSS Qualifiers (Q): NA=Not app Client Name Matrix Received Date Batch Method Analysis TSS Qualifiers (Q): NA=Not app Sample Name	27.0 Dicable, "=Outside QA limits, re ETX3895 W-UR-01 Filter 12/10/04 TS-050 EMAP-TSS mg/L 14.5 Dicable, "=Outside QA limits, re ETX3900F	39.5 eter to narrative ETX3896 W-UR-02 Filter 12/10/04 TS-050 EMAP-TSS mg/L 9.0 eter to narrative ETX3901 W RTC 07	37.5 ETX3897 W-UR-03 Filter 12/10/04 TS-050 EMAP-TSS mg/L 38.0	ETX3898 W-TPB-01 Filter 12/10/04 TS-050 EMAP-TSS mg/L 8.5	ETZ W-T F 12/ TS EMA
TSS Qualifiers (Q): NA=Not app Client Name Matrix Received Date Batch Method Analysis TSS Qualifiers (Q): NA=Not app Sample Name Client Name Matrix	27.0 Slicable, *=Outside QA limits, re ETX3895 W-UR-01 Filter 12/10/04 TS-050 EMAP-TSS mg/L 14.5 Slicable, *=Outside QA limits, re W-TPB-03 Filter	39.5 eter to narrative ETX3896 W-UR-02 Filter 12/10/04 TS-050 EMAP-TSS mg/L 9.0 eter to narrative ETX3901 W-BTC-07 Filter	37.5 ETX3897 W-UR-03 Filter 12/10/04 TS-050 EMAP-TSS mg/L 38.0 ETX3902 W-BTC-08 Filter	ETX3898 W-TPB-01 Filter 12/10/04 TS-050 EMAP-TSS mg/L 8.5 ETX3903 W-BTC-09 Filter	ET W-T F 12/ TS EMA r F ET V C F
TSS Qualifiers (Q): NA=Not app Client Name Matrix Received Date Batch Method Analysis TSS Qualifiers (Q): NA=Not app Sample Name Client Name Matrix Received Date	27.0 Slicable, *=Outside QA limits, re ETX3895 W-UR-01 Filter 12/10/04 TS-050 EMAP-TSS mg/L 14.5 Slicable, *=Outside QA limits, re ETX3900F W-TPB-03 Filter 12/10/04	39.5 ETX3896 W-UR-02 Filter 12/10/04 TS-050 EMAP-TSS mg/L 9.0 ETX3901 W-BTC-07 Filter 12/10/04	37.5 ETX3897 W-UR-03 Filter 12/10/04 TS-050 EMAP-TSS mg/L 38.0 ETX3902 W-BTC-08 Filter 12/10/04	ETX3898 W-TPB-01 Filter 12/10/04 TS-050 EMAP-TSS mg/L 8.5 ETX3903 W-BTC-09 Filter 12/10/04	ET) W-T F 12/ TS EMA r r ET) W-C F 12/
TSS Qualifiers (Q): NA=Not app Client Name Matrix Received Date Batch Method Analysis TSS Qualifiers (Q): NA=Not app Sample Name Client Name Matrix Received Date Batch Method	27.0 Slicable, "=Outside QA limits, re ETX3895 W-UR-01 Filter 12/10/04 TS-050 EMAP-TSS mg/L 14.5 Slicable, "=Outside QA limits, re ETX3900F W-TPB-03 Filter 12/10/04 TS-050 EMAP-TSS	39.5 ETX3896 W-UR-02 Filter 12/10/04 TS-050 EMAP-TSS mg/L 9.0 ETX3901 W-BTC-07 Filter 12/10/04 TS-050 EMAP-TSS	37.5 ETX3897 W-UR-03 Filter 12/10/04 TS-050 EMAP-TSS mg/L 38.0 ETX3902 W-BTC-08 Filter 12/10/04 TS-050 EMAP-TSS	ETX3898 W-TPB-01 Filter 12/10/04 TS-050 EMAP-TSS mg/L 8.5 ETX3903 W-BTC-09 Filter 12/10/04 TS-050 EMAP-TSS	ET W-T F 12/ EMA F ET U-L F F 12/ T S EMA
TSS Qualifiers (Q): NA=Not app Client Name Matrix Received Date Batch Method Analysis TSS Qualifiers (Q): NA=Not app Sample Name Client Name Matrix Received Date Batch Method Analysis	27.0 Dilcable, "=Outside QA limits, re ETX3895 W-UR-01 Filter 12/10/04 TS-050 EMAP-TSS mg/L 14.5 Dilcable, "=Outside QA limits, re ETX3900F W-TPB-03 Filter 12/10/04 TS-050 EMAP-TSS mg/L mg/L	39.5 ETX3896 W-UR-02 Filter 12/10/04 TS-050 EMAP-TSS mg/L 9.0 ETX3901 W-BTC-07 Filter 12/10/04 TS-050 EMAP-TSS mg/L mg/L	37.5 ETX3897 W-UR-03 Filter 12/10/04 TS-050 EMAP-TSS mg/L 38.0 ETX3902 W-BTC-08 Filter 12/10/04 TS-050 EMAP-TSS mg/L	ETX3898 W-TPB-01 Filter 12/10/04 TS-050 EMAP-TSS mg/L 8.5 ETX3903 W-BTC-09 Filter 12/10/04 TS-050 EMAP-TSS mg/L	ET W-T F 12/ EMA r ET W-E F 12/ T S EMA

B.3. Total suspended solids (TSS) of water samples collected on December 7-8, 2004.

Sample Name Client Name Matrix Received Date Batch Method	ETX3905 WLP#1-5 Filter 12/10/04 TS-050 EMAD.TSS	ETX3906 WLP#2-5 Filter 12/10/04 TS-050 EMAPLTSS	ETX3907 WLP#3-5 Filter 12/10/04 TS-051 EMAP.TSS	ETX3908 WMP#1-5 Filter 12/10/04 TS-051 EMAP.TSS	
Analysis	mg/L	mg/L	mg/L	mg/L	
TSS	4.5	20.0	183.0	57.0	

Qualifiers (Q): NA=Not applicable, *=Outside QA limits, refer to narrative

Sample Name Client Name Matrix Received Date Batch Method	ETX3910 WSUB-01(1 of 2) Filter 12/10/04 TS-051 EMAP-TSS	ETX3913 WCR#25 Filter 08/21/03 TS-051 EMAP-TSS	ETX3914 WCR#2D (1 of 2) Filter 08/21/03 TS-051 EMAP-TSS	ETX3916 WCR#1D (1 of 2) Filter 08/21/03 TS-051 EMAP-TSS	
Analysis	mg/L	mg/L	mg/L	mg/L	
TSS	35.0	46.5	118.5	102.0	

Qualifiers (Q): NA=Not applicable, *=Outside QA limits, refer to narrative

Sample Name Client Name Matrix Received Date Batch Method	ETX3918 WCR#3S Filter 08/21/03 TS-051 EMAP-TSS	ETX3919 WCR#1S Filter 08/21/03 TS-051 EMAP-TSS	ETX3920 WCD#2D (1 of 2) Filter 08/21/03 TS-051 EMAP-TSS	ETX3922 WCD#1S Filter 08/21/03 TS-051 EMAP-TSS	ETX3923 WCD#2S Filter 08/21/03 TS-051 EMAP-TSS		
Analysis	mg/L	mg/L	mg/L	mg/L	mg/L		
TSS	18.0	27.5	46.0	39.0	63.0		
Qualifiers (Q): NA=Not applicable, *=Outside QA limits, refer to narrative							

Sample Name Client Name Matrix Received Date Batch Method	ETX3924 WCR#3S Filter 08/21/03 TS-051 EMAP-TSS	ETX3925 Methhod Blank Filter 08/21/03 TS-051 EMAP-TSS	ETX3926 WMH#1S Filter 08/21/03 TS-051 EMAP-TSS	ETX3927 WMH#2D Filter 08/21/03 TS-051 EMAP-TSS	ETX3928 WMH#3S Filter 08/21/03 TS-051 EMAP-TSS	
Analysis	mg/L	mg/L	mg/L	mg/L	mg/L	
TSS	43.0	2.5	14.5	42.0	32.0	

Qualifiers (Q): NA=Not applicable, *=Outside QA limits, refer to narrative

Sample Name Client Name Matrix Received Date Batch Method	ETX3929 WSUB-TN-01 (1 of 2) Filter 08/21/03 TS-051 EMAP-TSS	ETX3931 WSUB-TN-0 (1 of 2) Filter 08/21/03 TS-051 EMAP-TSS	
Analysis	mg/L	mg/L	
TSS	66.5	32.5	

Qualifiers (Q): NA=Not applicable, *=Outside QA limits, refer to narrative

B.4. Volatile organic analyses. Water sample collected on November 27, 2004 near the Commodore Barry Bridge.

SEVERN STL

Customer Date Samp Time Samp Sample Me TEST METHOD SN-846 82608	Sample ID: VOA-1 led: 11/27/2004 led: 15:55 trix: Water PARAMETER/TEST DESCRIPTION Volatile Organics Acetone Acetone Acetone Benzeme Bromodichloromethane Bromoform (Tribreaceathane) Bromoform (Tribreaceathane) Carbon Tetrachloride Chloroborme	SAMPLE RESULT ND ND ND ND ND ND ND ND ND ND ND ND ND	Laboratory Sampi Date Received Time Received REPORTING LIMIT 100 50 50 50 50 50 55 55 5 5 5 5 5 5 5	e ID: 228 : 12/ : 09: UNITS Ug/L Ug/L Ug/L Ug/L Ug/L Ug/L	205-1 6/2004 20 DATE 12/20/04 12/20/04 12/20/04 12/20/04 12/20/04	rjt rjt rjt
TEST METHOD	PARAMETER/TEST DESCRIPTION Volatile Organics Acetone Acetone Acetonitrile Acrylenitrile Benzeme Bromodichloromethane Bromoform (Tribrenzemethane) Bromoform (Tribrenzemethane) Bromoform (Tribrenzemethane) Bromoform (Tribrenzemethane) Bromoform (Tribrenzemethane) Carbon Disulfide Carbon Disulfide Carbon Tetrachloride Chicrobenzeme Chicrobenzeme Chicrobenzeme	SAMPLE RESULT ND ND ND ND ND ND ND ND ND ND ND ND ND	REPORTING LINIT 100 50 50 50 5 5 5 5 5 5 5 5 5 5 5 5	UWITS Ug/L Ug/L Ug/L Ug/L Ug/L Ug/L	DATE 12/20/04 12/20/04 12/20/04 12/20/04 12/20/04	rjt rjt rjt rjt
5N-846 82608	Yolatile Organica Acetonic A Acetonic Tile Acrolein Acrylenic Tile Benzeme Bromodichloromethane Bromothane (methyl bromide) Carbon Disulfide Carbon Tetrachloride Chloroberame Chloroberame Chloroberame	ND ND ND ND ND ND ND ND ND ND ND ND ND	100 50 50 5 5 5 5 5 5 5 5 5	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	12/20/04 12/20/04 12/20/04 12/20/04 12/20/04 12/20/04	rjt rjt rjt rjt
	Acetonie Acetonitrile Acrolein Acrylenitrile Bromodichloromethane Bromothane (mchyl bromide) Carbon Disulfide Carbon Tetrachloride Chloroberame Chloroberame Chloroberame (Ethyl chloride)	ND ND ND ND ND ND ND ND ND ND ND ND	50 50 50 55 55 55	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	12/20/04 12/20/04 12/20/04 12/20/04 12/20/04 12/20/04	rjt rjt rjt rjt
	Acetomitrile Acrolein Marzene Bromodichloromethane Bromodichloromethane) Bromonethane (methyl bromide) Carbon Disulfide Carbon Disulfide Chlorobenzene Chlorosethane (Ethyl chloride) Chlorosethane (Ethyl chloride)	ND ND ND ND ND ND ND ND ND ND ND	50 55 55 55 55 55 55 55 55 55 55 55 55 5	ug/L ug/L ug/L ug/L ug/L	12/20/04 12/20/04 12/20/04 12/20/04 12/20/04	rjt rjt rjt
	Acrolein Acrolein Benzene Bromodichloromethane Bromoform (Tribrenzemethane) Bromonethane (methyl bromide) Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chlorobethane (Ethyl bloride) Chlorobethane (Ethyl bloride)	80 80 80 80 80 80 80 80 80 80 80	50 55 55 55 55 55 55 55 55 55 55 55 55 5	ug/L ug/L ug/L ug/L	12/20/04 12/20/04 12/20/04 12/20/04	rjt rjt
	Acrysontrike Benendichloromethane Bromoform (Tribrenomethane) Bromomethane (methyl bromide) Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chlorocthane (Ethyl chloride) Chlorocthane (Ethyl chloride)	50 50 50 50 50 50 50 50 50 50 50 50 50 5	555555555555555555555555555555555555555	ug/L ug/L ug/L	12/20/04 12/20/04 12/20/04	rjt
	Bromodichloromethane Bromodichloromethane) Bromotetme (methyl bromide) Carbom Disulfide Carbom Tetrachloride Chlorobenzene Chlorosethane (Ethyl chloride) Chlorosethane (Ethyl chloride)	ND ND ND ND ND	5555	ug/L ug/L	12/20/04	
	Bromoform (Tribromomethane) Bromomethane (methyl bromide) Carbon Disulfide Carbon Tetrachloride Chlorobenzame Chlorobenzame Chlorothane (Ethyl chloride)	ND ND ND ND	5	ug/L	12/20/04	rit
	Bromomethane (methyl bromide) Carbon Disulfide Carbon Tetrachloride Chlorobenzane Chlorobenzane (Ethyl chloride) Chloroform	ND ND ND	5	un/l	12/20/04	rjt
	Carbon Disulfide Carbon Tetrachloride Chlorobenzane Chlorocthame (Ethyl chloride) Chloroform	ND ND ND	5	- Million -	12/20/04	rjt
	Carbon Tetrachloride Chlorobenzene Chloroethane (Ethyl chloride) Chloroform	ND ND	5	ug/L	12/20/04	rjt
	Chlorobenzene Chloroethane (Ethyl chloride) Chloroform	ND	2	Ug/L	12/20/04	rjt
	Chloroethane (Ethyl chloride) Chloroform		2	ug/L	12/20/04	r j t
	Chlorotorm	ND	1 2	Ug/L	12/20/04	11
	Chiermetheme (method shipeide)	ND ND	2	ug/L	12/20/04	11
	Disconchisemethane	NO NO		09/1	12/20/04	1.11
	Dibromomethane	NO	Ś	ug/L	12/20/04	rit
	1.2-Dibromoethere (EDB)	ND	5	ug/L	12/20/04	rit
	Dichlorodifluoromethane	ND	5	ug/L	12/20/04	rjt
	1,1-Dichloroethane	ND	5	ug/L	12/20/04	rjt
	1,2-Dichloroethane (EDC)	ND	5	ug/L	12/20/04	rjt
	1,1-Dichloroethene (Vinylidene chloride)	ND	5	ug/L	12/20/04	rjt
	cis-1,2-Dichloroethene	ND	5	ug/L	12/20/04	٢į
	trans-1,2-Dichloroethene	ND	5	ug/L	12/20/04	r ji
	1,2-Dichloropropane	ND	2	UG/L	12/20/04	11
1	1,3-Dichloropropane	ND ND	2	ug/L	12/20/04	
	2,2-Utchtoropropane	ND ND		ug/L	12/20/04	-11
	cise1 3-Dichlosopopene	ND	6	ug/1	12/20/05	r it
	trans-1.3-Dichloropropene	ND	5	ug/L	12/20/04	rit
	1.4-Dioxane	ND	100	ug/L	12/20/04	rit
	Ethyl Acetate	ND	5	ug/L	12/20/04	rjt
	Ethylbenzene	ND	5	ug/L	12/20/04	rj
	Ethyl Ether (Diethyl Ether)	ND	5	ug/L	12/20/04	rj
	Ethyl Nethacrylate	ND	5	ug/L	12/20/04	51
	2-Rexanone	ND	2	ug/L	12/20/04	1
	Iodomethane (Methyl Iodide)	ND	50	ug/L	12/20/04	1
	Mathyl Ethyl Katona (2:Butanona)	ND ND	10	un/L	12/20/04	le it
	A-Methyl -2-Pentanone (NIRC)	ND	5	Ug/L	12/20/04	cit
	Methyl Methacrylate	ND	Ś	ug/L	12/20/04	rit
	tert-Butyl Nethyl Ether (MTBE)	ND	5	ug/L	12/20/04	r)t
	2-Mitropropane	ND	5	ug/L	12/20/04	r jt
	Styrene	ND	5	ug/L	12/20/04	r.)1
	1,1,2,2-TetrachLoroethane	ND		ug/L	12/20/04	1543
	Tetrachtoroethene	ND NO	2	Ug/L	12/20/04	151
	1.2.3-Trichlorohenten	ND ND	2	100/1	12/20/04	
	1.1.1.Trichloroethere	ND	1	ug/L	12/20/04	1
			·			r"

1733 North Padre Island Drive - Corpus Christi, TX 78408 - Tet: 361 289 2673 - Fax: 361 289 2471 - www.stl-inc.com

.

	LABORATORY Job Humber: 228205	TEST RESULT	S Date: 12/29/2	004		
CUSTOMER: 848	Laboratories PROJECT: TV	ATHOS	ATTN: Tonny	McDonald		
Customer Date Sam Time Sam Sample M	r Sample ID: VOA-1 mpled1 11/27/2004 mpled1 15:55 Matrix Water		Laboratory Sampl Date Received Time Received	e 10: 2283 : 12/1 : 09:2	105-1 16/2004 10	
TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	REPORTING LINIT	UNITS	OATE	TEC
	1,1,2-Trichloroethane Trichloroethane Trichloroethane 1,2,4-Trimschylbenzene 1,2,3-Trichloropropane Vinyl Acetate Vinyl Chloride (Chloroethene) Xylenes (total)	ND ND ND ND ND ND ND ND ND ND ND	5 50 55 55 55 15	49/L 49/L 49/L 49/L 49/L 49/L 49/L 49/L	12/20/04 12/20/04 12/20/04 12/20/04 12/20/04 12/20/04 12/20/04	rjtt rjttrijt rjtt rjtt
	<u> </u>	Page 3		0	0.000	8

1733 North Padre Island Drive - Corpus Christi, TX 78408 - Tet: 361 289 2673 - Fax: 361 289 2471 - www.sti-inc.com

APPENDIX C

Submerged Oil Report

SUBMERGED OIL ASSESSMENT – ATHOS 1 OIL SPILL

Submerged Oil Assessment Unit Planning Section Athos 1 Oil Spill Unified Command

11 December 2004

I.	IN	TRO	DD	UCTION	1
	II.	CH	łAF	RACTERISTICS OF THE SPILLED OIL	1
	A. B.	Ph Be	ysic hav	cal Properties of Source Oil	1
III.	PH	IYS	ICA	AL PROCESSES AND TRANSPORT	3
	А. В.	Oi Lo	l Tra ng-1	ajectory and Physical Processes during the Spill term Transport	3 4
IV	SP	ILL	. IN	FORMATION	5
	A. B.	Flo No a. b.	Datin pn-fl Po i. iii. iv. Mo i. ii. ii. iv.	ng Oil loating Oil oled Oil Survey Methods Locations Volumes Pooled Oil Recovery Methods obile Oil Survey Methods Locations Results Results Recovery Methods and Results	
	V.	SU	JMN	MARY	17

TABLE OF CONTENTS

APPENDIX 1 – Maps showing the results of the submerged oil monitoring

SUBMERGED OIL ASSESSMENT - ATHOS 1 OIL SPILL

I. INTRODUCTION

At 9:30 pm on 26 November, the *T/V Athos* 1 struck a submerged object while preparing to dock at the Citgo facilities, resulting in two holes in the No. 7 port and center tanks. It was carrying a heavy Venezuelan crude oil. The initial report was that 30,000 gallons were released; on 30 November, the volume was increased to a maximum potential of 473,500 gallons. The final estimate will be available once the oil from the holed tanks has been offloaded from the tanker.

There was concern that some of the heavy oil would mix with sediment and not float. Pooled oil was reported on the bottom at the collision site, and shoreline assessment teams reported that oil stranded on the intertidal zone had started to become submerged during the rising tide. Therefore, a special team was assigned to assess the extent and degree of submerged oil and develop recovery options. The Salem Nuclear Power Plant started shut-down procedures for the No. 2 unit on 3 December and No. 1 unit on 4 December because of the threat of oil contamination of the circulation and service water intake systems. The Logan Power Plant in New Jersey stopped using water from the river for a day. Other utility and industrial water intakes along the river have been concerned about the impacts on the oil on their water intakes and water use within the facility, though none have reported shut-downs. The submerged oil also posed risks to shellfish resources in Delaware Bay.

II. CHARACTERISTICS OF THE SPILLED OIL

Physical Properties of Source Oil

Two samples of the oil from hold No. 7 center (the source oil) were analyzed for physical properties and chemical characteristics, with the following results:

<u>Density</u>: 0.973 and 0.978 grams per milliliter; fresh water is 1.00 and oceanic sea water is 1.025 g/ml. Therefore, the oil is lighter than both fresh water and sea water.
 <u>Viscosity</u>: greater than 5,000 centiStokes (cSt) at 100°F and at ambient water temperature greater than 50,000 cSt, meaning that the oil's viscosity is similar to cold honey;
 <u>Composition</u>: the oil is composed of a large amount of asphaltenes and other high molecular weight compounds. The aromatic hydrocarbon content is very low (0.06%), and the oil has a very low dissolved fraction. Figure 1 is the normal alkane distribution in the fresh oil. Note that there are few individual peaks and a large "hump" of unresolved hydrocarbons. This oil can be characterized as a heavy, degraded crude oil.

Normal Alkane Profile of Oil Sample #1 from Athos I Spill

Figure 1. Normal alkane profiles of the source oil from hold No. 7 center. Note there are few identifiable peaks and a large "hump" of unresolved compounds.

Behavior of the Spilled Oil

One of the key concerns was whether the oil would not float after release to the environment and loss of the light fractions due to evaporation. The fresh source oil was "evaporatively weathered" by heating it to 90°C under vacuum and less than 3 % was lost by evaporation after 4 hours. Therefore, the weathered oil (after evaporation) is still expected to float. Using the National Oceanic and Atmospheric Administration (NOAA) oil weathering model ADIOS, up to 13% of the oil could have evaporated within 5 days of the release. Based on the chemical analysis and model results, the amount of oil lost via evaporation is likely 3-13%.

With only 0.06% aromatic hydrocarbons (which are the primary compounds in the oil that dissolve), lost via dissolution was estimated as less than 1%. The oil is very viscous and did not form a stable emulsion even when exposed to high wave energy. The model ADIOS estimated less than 1% of the fresh oil dispersed into the water column. The Delaware River contains a high suspended load, but due to the viscous nature of the oil, very little of the oil (less than 1%) adhered to particles in the water column (as opposed to sandy sediments on the shoreline).

While the exact amount released is unknown, the amount lost to oil weathering processes (evaporation, dissolution, emulsification, dispersion, and adsorption to suspended particulate matter) is likely tens of thousands of gallons (Table 1).

The shoreline cleanup assessment teams provide some indication of the length of shoreline oiled. However, the technology does not exist to accurately measure shoreline thickness. This information is needed to calculate oil volume. The amount of oil recovered from the shoreline is mixed with debris and sediments, and the oil content of the oily waste is unknown. As discussed later, some of the oil that stranded on the shoreline picked up sediment. Samples collected from the oil stranded on the shoreline and recovered from the water column had a few % sand. Even 2-3 % of sand is enough to make the oil slightly heavier than fresh water.

A preliminary mass balance of the spilled oil is shown in Table 1.

Physical Process	Estimates
Evaporation	3 - 13% of total volume spilled minus volume
	of oil in trench #1 and #2
Dissolution	< 1% of total volume spilled
Emulsification	0%
Dispersion	1% total volume spilled
Sedimentation (due to river load)	Unknown but likely < 1%
Oil on shoreline	~ 100 miles
Oil recovered from shoreline	Unknown
Oil floated off shoreline	Unknown
Oil with sediment mobilized off shoreline	Unknown
Tarballs in water column	Unknown
Tarballs on bottom	Unknown
Pooled oil (located in Trench #1 and #2)	~ 4000 gallons

Table 1. Preliminary mass balance of the spilled oil.

PHYSICAL PROCESSES AND TRANSPORT

A. Oil Trajectory and Physical Processes during the Spill

The primary forcing function for currents in both the Delaware River and Bay are the semidiurnal tides. Near the spill site, maximum currents are about 2 knots with a tidal excursion of about 8 miles. In the middle of Delaware Bay, maximum currents are about 1 knot with a tidal excursion about 4 miles. The river inflow into the system results in a net displacement down river over each 12 hour cycle. The currents from the river outflow are small compared to the tidal currents but it is the major factor in any net down river displacement of subsurface oil.

Water levels in the River and Bay rise and fall as function of onshore/offshore winds. This can raise the water levels in the river 1 - 2 feet above or below predicted tide levels. Severe storm events, much stronger than reported during the spill event and more intense than the usual storm, could have a significant effect on the currents and oil transport.

In the Chesapeake – Delaware Canal, the tide wave moves from the Chesapeake into the canal towards Reedy Island in the Delaware River. Water level differences between Chesapeake Bay and Delaware River due to meteorological events and river discharge can result in water flowing from the Delaware into the Chesapeake.

For the most part, the River and Bay are well mixed vertically. The U.S. Environmental Protection Agency collected salinity measurements from the spill site to Raccoon River entrance and reported values of 1 to 2 ppt. In addition, NOAA measured salinity and conductivity near the Commodore Barry Bridge, which indicated the river, was well mixed. There is a broad salinity gradient or mixing zone in the lower river and in the bay. The gradient of mixing in winter and spring is largest near Ship John Lighthouse (39° 19'N, 75° 23'W). The gradient moves seaward with increases freshwater. The interface between the freshwater and saline water may be a collection area for floating oil. Since the mobile subsurface oil contains sediment, the density differences along the saltwater – freshwater mixing zone are less likely to cause submerged oil to refloat.

Outside the Bay, the circulation on the inner continental shelf is primarily controlled by winds and water density differences. Off the northeast coast, freshwater input from rivers such as the Hudson and Delaware result in a near shore density flow from the north to south. Currents due to density differences in the water will be within 10 miles of the shoreline, follow the shoreline and typically move to the south at speeds between 0.1 and 1 knot. Superimposed are the regional winds, which will generate a coastal current to the north with southerly winds and southward with northerly winds. At the Bay entrance, there is a net flow of fresh water along the south side and net inflow along the bottom of the north side.

Initially, the spill formed a thick film and moved upriver with the flood tide. A southeast wind moved oil to the Pennsylvania side of the river. With the second flood tide, the oil was transported as far north as the Petty Island area. Several days later, stronger winds transported oil to the New Jersey side. After the storm, the oil weathered and formed tarballs. By 28 November, oil extended down river to the Delaware Memorial Bridge. Overflight observations of the floating oil have consistently been within the uncertainties of the NOAA trajectory model predictions. The 24-48 hour forecasts of the floating oil will continue until the overflight observer is no longer able to detect the leading edge of the spill.

B. Long-term Transport

With the type and quantity of oil spilled, tarballs are expected to persist for several months in the Delaware River system. Over the next few weeks, scattered tarball are expected to contact shoreline anywhere along Delaware Bay. There is a possibility of oil movement through the Chesapeake – Delaware Canal into upper Chesapeake Bay. The exact location and amount of oil depends on the wind, oil fate, and amount of oil mobilizing upstream. Within several weeks of the initial spill, tarball contact is anticipated along the outer coast. The mean current along the outer coast is southward and anticipate most of the contacts south of Delaware Bay. Local wind events could push tarballs to the north up to 50 miles north of Cape May and as far south as the entrance to Chesapeake Bay. While the general trend for the number of tarballs contacting the outer coast is expected to decrease within a month or two, the amount of subsurface oil in the Delaware River remains unknown. Thus, there remains a possibility that a strong meteorological event or vessel movement could mobilize oil resulting in an episodic increase of tarballs.

IV. SPILL INFORMATION

A. Floating Oil

Weather permitting, overflights of the spill area have shown a general decline in floating oil. Observer have reported mostly scattered sheens with tarballs ranging from < 0.5 cm (pea size) to about 20 cm (dinner plate). The few exceptions occurred when the on-scene winds were calm or at slack tide. Without any waves or strong tidal mixing to disperse the sheening tarballs, large areas of continuous sheens were reported from the observers. Any increase in the wind generated waves dispersing the sheens. Without associated sheens, it is extremely difficult to track the tarballs. A decrease in the wind speed or at slack tide would allow the observer to once again see the sheens. This pattern repeated itself several times during the spill event. Finally, observers indicated that some of the tarballs had weathered to the point of not sheening.

For the long term, tarballs are very persistent in the environment and can travel hundreds of miles. They are expected to move out of Delaware Bay and through the C&D Canal into the upper Chesapeake Bay. Natural collection areas, such as the surface interface between the freshwater and saltwater and convergence zones on ebb tides, are good locations for finding the tarballs. If tarballs appear on the shoreline, it is likely they were nearshore, difficult to detect and onshore winds brought them ashore.

B. Non-floating Oil

- a. Pooled Oil
 - i. Survey Methods

Pooled oil is defined as oil that has accumulated in depressions and is not readily mobilized by normal riverine and tidal currents. Both NOAA and EPA used different sonar systems to detect areas of pooled oil. Experts from NOAA, EPA, and Navy Supervisor of Salvage reviewed these data and determined the systems could not identify pooled oil. Therefore, coring and sorbent probes were used to search for pooled oil in likely accumulation areas. The US Army Corps of Engineers bathymetric maps of the channel and adjacent areas (generated from data obtained on 5 December 2004) were used to identify targets for the pooled oil survey teams. Divers were also used to observe areas where pooled oil was found. The locations that were searched for pooled oil included:

- The shallow bay north of Tinicum Island, including two deep depressions
- Four depressions on the south side of the channel across from Tinicum Island (Tinicum Range channel)
- Tinicum Range channel
- Shallows around Chester Island

ii. Locations

Pooled oil was found only at the collision site, in a trench described as 6-8 ft wide, 2 ft deep, and 41 ft long. On 9 December, a diver surveyed the trench area and measured the oil thickness as between 1.5-2 ft deep. A second trench was also detected and estimated to be 2 ft wide by 2 ft deep by 15 ft long.

iii. Volumes

The volume of pooled oil in the trenches at the collision site was estimated to be approximately 3,390-3,610 gallons, depending on the assumed oil thickness in the second trench (Table 2).

A sample of the oil from the trench (density of 0.943 g/ml) floated in fresh water. It was tested for cohesiveness and found to adhere to sediments. Based all the information available, the oil in the trench at the collision site was "injected" into the sediment under the pressure of the release, creating it's own trench. The viscous oil adhered to the sediments and not refloated, even though it should based on density. The oil is immobile due to highly cohesive forces exerted by the viscous oil.

Length	Trench Width (feet)	Depth of Trench (feet)	Depth of Oil (feet)	Amount of Oil (gallons)
Trench 1				
0+00	6	2	1.5	910
0+10	8	3	2	310
0+13	6	2.67	2	890
0+23	6	2.5	1.5	610
0+33	5	2.5	1.5	450
0+41	0	0	0	3,170
Trench 2				
15	2	2	If assume 1	220
			If assume 2	440

Table 2. Estimated volume of oil on the bottom at the collision site.

iv. Pooled Oil Recovery Methods

Several methods were evaluated for recovery of the pooled oil in the trench. The viscous oil is expected to float when disturbed, therefore special containment systems are needed. Options include:

- Diver-directed pumping systems with positive displacement pumps that can move viscous oils
- Dredging systems of different sizes
- Subsurface recovery using sorbents, either by divers or remote techniques

Divers using viscous oil pumps will begin oil recovery on 12 December. Booms and sorbents will be used to recover any floating oil; a submerged bottom filter fence will recover any oil transported in the water column downcurrent from the recovery site. The oil recovery is estimated to be completed in four days.

- b. Mobile Oil
 - i. Survey Methods

Mobile oil is defined as oil that is negatively buoyant and subject to transport by riverine and tidal currents. It is present throughout the water column, though it appears most of the mobile oil is within a few feet of the bottom. To track the vertical distribution of the oil and the geographical extent over time, two survey methods were used:

- Snare Samplers: These samplers consist of an anchor, 50 ft of snare on a rope, and a float (shown in Fig. 2). The snares are composed of thin sheets of polypropylene, and viscous oils readily adhere to them, even under water. They are visually inspected for the presence of oil with depth, and the amount of oil is estimated as a percent coverage. The snare/rope is replaced when oiled, and they are monitored over time, weather permitting.
- V-SORS: The Vessel-Submerged Oil Recovery System (V-SORS) consists of a pipe with attached chains and snare (Fig. 3). The V-SORS is towed behind a vessel on the bottom at slow speeds. It is pulled up regularly and inspected for oil. Five V-SORS were used to both identify areas of submerged oil (including in the navigation channels where it was not possible to place the snare samplers) and to recover oil in all potential accumulation areas.
 - ii. Locations

Figures 4-6 shows all the locations where snare samplers were deployed at any time. The spill area was divided into three monitoring zones: MA extends from the Tacony-Palmyra Bridge to the Delaware Memorial Bridge; MB extends from the Delaware Memorial Bridge to just below the Salem Nuclear Power Plant; MC extends from the Salem Nuclear Power Plant to mid-Delaware Bay. Appendix 1 includes the results plotted for each monitoring division for the different deployment and retrieval periods. Weather and logistics prevented inspection of all snare samplers every day. In areas with strong currents, the snares would often be lost between inspections. Existing samplers in areas with strong currents are being replaced with heavier anchors, more visible buoys, and better attachment methods.

Figure 2. The snare sampler system consists of an anchor, a 50 ft string of snare on a rope, and a float. The samplers are inspected regularly and the percent oil coverage at different intervals is recorded. Most of the time, the heaviest oiling is on the bottom several feet.

Figure 3. The Vessel-Submerged Oil Recovery System (V-SORS) that is being used to search for and recover submerged mobile oil on the river bottom. The chains keep the sorbents along the bottom. The oil readily adheres to the snares underwater.

M-A Monitoring Division Subsurface Oil Map created by NOAA USE ONLY AS A GENERAL REFERENCE Earliest Deploy: 12/3/04 Latest Recovery: 12/10/04 Graphic does not represent precise amounts or locations of oil

Figure 4. Location map showing the distribution of the snare sampling locations in the upper part of the spill zone (Division A).

M-B Monitoring Division Subsurface Oil Map created by NOAA

USE ONLY AS A GENERAL REFERENCE

Latest Recovery: 12/10/04

Graphic does not represent precise amounts or locations of oil

Earliest Deploy: 12/3/04

Figure 5. Location map showing the distribution of the snare sampling locations in the middle part of the spill zone (Division B).

Figure 6. Location map showing the distribution of the snare sampling locations in the lower part of the spill zone (Division C).

iii. Results

Most of the submerged, mobile oil occurred several feet off the bottom, though small amounts of oil were present on the snares suspended in the middle and upper water column. Highest amounts of oil were detected around Tinicum Island. Refer to the maps in Appendix 1 for detailed data presentation for all monitoring sites. Figure 7 shows the temporal trend for station MA-1A that is located just north of Tinicum Island and consistently had the highest amount of oil on the snare. The snare was first deployed on 4 December and recovered on 5 December, and there was 50% oil coverage of the lower snares. The next day, the oil coverage was 30%. The snare was inspected two days later, on 8 December, and the coverage was 65%. For the next three days, the oil coverage was less than 15%. The steady decline for the last three days is consistent with the V-SORS tows, which also show decreasing amounts of oil recovery around Tinicum Island over the same period. There were scattered stations with high oil coverage observed on one day over the period 3-8 December. Many of the other snare samplers in the upper river never were oiled. Since 9 December, the maximum oil coverage on snares in this area was 10-15% (near Tinicum Island). It appears that the submerged oil in this upper spill zone has decreased significantly.

Figure 8 shows the temporal trend for station MB-3B, which is west of Pea Patch Island, and the detailed maps are included in Appendix 1. The distribution of the submerged oil in this area is difficult to assess because of the spotty data.

No oil or less than 1% was observed on any of the snare samplers in Division MC, which covers the upper Delaware Bay. Again, the data are spotty because many of the original stations were lost due to the strong currents in this area. However, it appears that little to no submerged oil has entered the upper bay as of 11 December.

iv. Mobile Oil Recovery Methods and Results

The V-SORS were towed in a wide range of locations that were identified as likely areas of submerged oil. The highest oil recovery was in the vicinity of Tinicum Island. Figure 9 shows the track lines of the V-SORS tows near Tinicum Island, color-coded with the amount of oil observed on the snares for each tow track. A large amount of oil stranded on the sandy tidal flat on the southern side of Tinicum Island. Oil stranded on many other shoreline areas but the shoreline types upstream of Tinicum Island are mostly seawalls, riprap, and mixed sand and gravel beaches. Tinicum Island is the main area with a largely sandy substrate. The oil is very sticky and would pick up sand, and only 2-4 % sand by weight would be enough to make the oil slightly negatively buoyant. By 30 November, oil on Tinicum Island did not re-float with the rising tide, and pieces of oil were being eroded from the shoreline by wave action. This area is thought to be the major source of the oil that became submerged and moved with the currents along the bottom of the river. Most of the oil recovered by the V-SORS was from the subtidal areas south of Tinicum Island. Very little oil was detected in the shallow area north of the island, both by the V-SORS tows and the pooled oil surveys.

M-A Monitoring Division Subsurface Oil Map created by NOAA USE ONLY AS A GENERAL REFERENCE Earliest Deploy: 12/3/04 Latest Recovery: 12/10/04 Graphic does not represent precise amounts or locations of oil

Figure 7. The oil coverage on the snare sampler just north of Tinicum Island (the location with the highest amount of oil consistently) over time. The oil coverage on 8 December represents two days of deployment, compared to the one-day deployment of the other dates. The amount of oil has been below 15% for the last three dates.

Figure 8. The oil coverage on the snare sampler west of Pea Patch Island. There was a peak on 8 December, representing two days of deployment.

M/V Athos I, Delaware River, NJ/PA

M-B Monitoring Division Subsurface Oil Map created by NOAA

Date: 12/3/04

Figure 9. Track lines for the V-SORS coded according to the percent of visual oil coverage on the snares.

Additional V-SORS tows were conducted off the Salem Nuclear Power Plant on 8 December, with no oil detected. Small amounts of oil (~10%) were detected in Division MA, between the Commodore Barry Bridge and the Delaware Memorial Bridge on 8 December. Little to no oil was detected in the main shipping channel.

On 11 December, the V-SORS were directed to search for and recover oil in seventeen potential accumulation areas. Table 3 is a summary of these results. Oil was detected in the Marcus Hook Anchorage 7; a trace amount was found near Penns Grove, New Jersey (Cherry Flats).

Potential Oil Accumulation Site	Percent Oil on Snares
Camden	0
Pier slip in Philadelphia	0
Pier slip in Philadelphia	0
Philadelphia airport 1	0
Philadelphia airport 2	0
Philadelphia airport 3	0
Marcus Hook Anchorage 7	50
Cherry Flats DE side	0
Cherry Flats NJ side	2
DE Memorial bridge	0
Travis Cove	0
Pea Patch Island NJ side	0
Pea Patch Island anchorage	0
Delaware City	0
Reedy Island NJ side	0
Reedy Island DE side	0
Hope Creek jetty	low tide-did not survey

Table 3. V-SORS results for potential submerged oil accumulation sites on 11 December 2004.

V. SUMMARY

A significant but unknown amount of oil from the *Athos 1* oil spill did not float. The oil itself is buoyant, even after weathering, however two different mechanisms caused the oil to become submerged:

- 1. During the initial release, the oil was released under high pressure, cutting it's own trench in to the bottom. The highly viscous oil was held in the trench by cohesive forces. This is the only location where "pooled" oil was found.
- 2. The rest of the released oil initially floated and formed thick slicks. Most of the heavy oil stranded on man-made shorelines (seawalls and riprap), coating the intertidal zone. However, some thick slicks stranded on sandy shorelines (e.g., the wide intertidal sand flats on Tinicum Island) where the sticky oil picked up enough sandy sediments to make the oil slightly negatively buoyant. When this oil was eroded from the shoreline, it moved
along the bottom with the tidal currents. The mobile oil has not accumulated in significant amounts in depressions along the upper river.

The recovery of the oil in the trench will remove the only known area of pooled oil. There have been significant efforts to remove as much of the mobile oil as possible through shoreline cleanup of the re-floatable oil stranded on the intertidal zone and recovery of mobile, submerged oil using the V-SORS. Data from both the snare samplers and the V-SORS tows indicate that the amount of submerged oil has decreased over time.

For more technical information, please contact:

Hazardous Materials Response Division Office of Response & Restoration National Oceanic and Atmospheric Administration Seattle, Washington (206) 526-6317

APPENDIX D

Subtidal Sediment Analytical Results

- D.1. Subtidal sediment log.
- D.2. PAH data for subtidal sediment samples
- D.3. NOAA Mussel Watch sediment samples collected at Hope Creek (DBHC), Arnolds Point (DBAP), and Ben Davis Point Shoal (DBBD).

D.1. Subtidal sediment log.

Sample ID	Latitude	Longitude	Date	Total PAHs (ng/g dry)	Comments
SED-DBHC-	00 40007	75 40057	0.0.04	4000	
091204	39.42607	-75.49257	9-Dec-04	1030	Managa Hash, Laft Dassanding David
SMH-3	39.79850	-75.40993	10-Dec-04	5676	Marcus Hook, Left Descending Bank
SCR-4	39.70970	-75.49478	10-Dec-04	2023	Bank, closer to shore than CR#3
SCD-4	39.56947	-75.57192	10-Dec-04	5314	C & D Canal, Right Descending Bank, closer to shore than CD#3
SCD-5	39.57078	-75.52857	10-Dec-04	2224	C & D Canal, Left Descending Bank, closer to shore than CD#1
SED-UL-01	40.01215	-75.03547	10-Dec-04	2171	
SED-UL-02	40.01277	-75.03668	10-Dec-04	575	
SED-PTB-01	40.00893	-75.04340	10-Dec-04	2176	
SED-PTB-02	40.00977	-75.04660	10-Dec-04	11786	
SED-PTB-03	40.01125	-75.04950	10-Dec-04	209	
SLP-3	39.39867	-75.52060	11-Dec-04	264	Liston Point, RDB, closer to shore than WLP-3
SLP-2	39.40548	-75.49155	11-Dec-04	665	Liston Point, 200m towards LDB of channel
SCD-2	39.57440	-75.55315	11-Dec-04	6652	C & D Canal, center, directly below Pea Patch Is.
SCR-2	39.71293	-75.50470	11-Dec-04	1458	Christina River, center channel
SCR-1	39.71572	-75.51003	11-Dec-04	4190	Christina River, RDB, 50m downstream of red bouy
SED-WOOD-01	39.84177	-75.15462	11-Dec-04	23985	2
SED-WOOD-02	39.86520	-75.19585	11-Dec-04	10023	
SED-WOOD-03	39.86695	-75.19590	11-Dec-04	10210	
SED-MAN-01	39.83533	-75.23647	11-Dec-04	4653	
SED-MAN-02	39.85245	-75.23018	11-Dec-04	5810	
SED-MAN-03	39.85383	-75.23115	11-Dec-04	19735	
SED-TN-01	39.85957	-75.30862	11-Dec-04	12847	
SED-TN-02	39.85412	-75.30743	11-Dec-04	459	
SED-TN-03	39.84313	-75.31132	11-Dec-04	6052	
SED-TN-04	39.84282	-75.28133	11-Dec-04	5564	
SED-BTC-01	39.86962	-75.11958	11-Dec-04	13972	
SED-BTC-02	39.88358	-75.13423	11-Dec-04	11841	
SED-BTC-03	39.88542	-75.13513	11-Dec-04	9025	
Suppleme	ental Sample	es from NOAA	Mussel Wate	h Program (rep	ported as NS&T PAHs ng/g dry))
Sample ID	Latitude	Longitude	Date	Total PAHs (ng/g dry)	Comments
DBAP	39.2300	-75.2700	1-Jan-05	2509	Arnolds Point
DBHC	39.25604	-75.2560	1-Jan-05	2728	Hope Creek
DBBD	39.1514	-75.1817	1-Jan-05	384	Ben Davis Point Shoal

D.2. PAH data for subtidal sediment samples.

Sample Name	ETX3934.D	ETX3935.D	ETX3936.D	ETX3937.D	ETX3938.D	ETX3939.D
Client Name Natrix	SED-WOOD-01 Sediment	SED-WOOD-02 Sediment	SED-WOOD-03 Sediment	SED-MAN-01 Sediment	SED-MAN-02 Sectiment	SED-MAN-03
Collection Date	12/11/04	12/11/04	12/11/04	12/11/04	12/11/04	12/11/04
Received Date	12/14/04	12/14/04	12/14/04	12/14/04	12/14/04	12/14/04
Extraction Date	12/20/04	12/20/04	12/20/04	12/20/04	12/20/04	12/20/04
Date Acquired	12/25/04	12/25/04	12/25/04	12/25/04	12/25/04	01/03/05
Method	PAH-2002	PAH-2002	PAH-2002	PAH-2002	PAH-2002	PAH-2002
Sample Dry Weight (g)	15.0	15.0	15.0	15.0	15.0	15.0
% Moisture	72	58	64	34	45	57
Dilution	28 NA	42 NA	NA NA	NA	NA NA	43 NA
Target Compounds	Su Corrected Q Conc. (ng/dry g)	Su Corrected Q Conc. (ng/dry g)	Su Corrected Q Conc. (ng/drv g)	Su Corrected Q Conc. (na/dry a)	Su Corrected Q Conc. (no/drv c)	Su Corrected Q Conc. (ng/dry g)
Nonhtholene	306	270	370	220	120	e75
C1-Naphthalenes	222	167	229	168	75.0	154
C2-Naphthalenes	268	150	246	196	67.4	230
C3-Naphthalenes C4-Naphthalenes	212	107	185	128	56.8	356
Benzothiophene	14.5	9.1	15.2	10.8	40.4	20 7
C1-Benzothiophenes	52.6	17.8	40.8	11.8	7.9	53.2
C2-Benzothiophenes	39.9	13.5	23.7	13.8	7.6	63.9
C3-Benzomophenes Biohenvi	25.0	10.4	15.4	12.3	6.3	102
Acenaphthylene	153	78.5	127	67.1	43.8	51.1
Acenaphthene	94	39.8	57.3	26.4	18.8	29.4
Dibenzofuran	135	80.2	119	95.1	34,4	56.0
C1-Fluorenes	115	42.4	79.4	23.6	92.9	01.4
C2-Fluorenes	138	83.6	127	45.5	43.4	383
C3-Fluorenes	163	132	205	68.0	62.6	625
Carbazole	113	38.0	32.3	15.5	16.1	11.4
Phenanthrene	1160	421	417	216	87.0	142
C1-Phenanthrene/Anthracenes	467	281	282	137	144	209
C2-Phenanthrene/Anthracenes	427	245	255	114	142	587
C3-Phenanthrene/Anthracenes	341	195	217	88.6	123	956
Dibenzothiophene	58	30.6	30.0	40.4	13.9	761 50.8
C1-Dibenzothiophene	74	43.2	45.3	28.6	24.8	225
C2-Dibenzothiophene	112	69.2	73.9	43.4	47.3	870
C3-Dibenzotniopnene Fluoranthene	155	80.7	87.1	40.5	64.7	1220
Pyrene	2320	680	650	223	438	289
C1-Fluoranthenes/Pyrenes	850	444	449	160	260	594
C2-Fluoranthenes/Pyrenes	643	333	325	149	210	810
Naphthobenzothiophene	262	133	148	50.1	111	520
C1-Naphthobenzothiophenes	180	110	140	50.8	67.7	1370
C2-Naphthobenzothiophenes	207	119	139	44.7	83.1	1460
C3-Naphthobenzothiophenes	148	82.8	100	29.7	76.2	965
Chrysene	1580	4/0	442	202	267	292
C1-Chrysenes	1000	383	340	146	218	589
C2-Chrysenes	268	184	184	64.9	106	502
C4-Chorenes	101.0	71.8	78.8	26.1	64.9	218
Benzo(b)fluoranthene	2280	729	579	268	21.4	251
Benzo(k)fluoranthene	601	248	198	87.0	135	142
Benzo(e)pyrene	995	361	300	131	208	301
Pervlene	381	430	342	142	224	292
Indeno(1,2,3-c,d)pyrene	543	217	168	78.6	111	203
Dibenzo(a,h)anthracene Benzo(g,h,i)perviene	144 432	41.7	36.1 137	17.2	23.8	65
Total PAHs	23985	10023	10210	4653	5810	19735
individual Alkyl Isomers and Hopa	nes					
2-Methylnaphthalene	220	169	233	172	77.5	183
1-Methylnaphthalene	100	70.8	96.3	69.1	30.2	69.8
2,5-Dimethylnaphthalene 1,6,7-Trimethylnaphthalene	149	84.4	138	120	37.7	166
1-Methylphenanthrene	103.0	44.0	43.9	15.5	28.0	20.0
C29-Hopane	534	271	319	76.2	163	959
18a-Oleanane C30-Hopane	60.2 552	35.1 321	39.8 344	15.2 96.9	50.7 187	107 1140
Surrogate (Su)	Su Recovery (%)					
Naphthalene-d8	66	78	90	88	76	98
Acenaphthene-d10	61	91	87	80	90	91
Phenanthrene-d10	76	90	89	88	92	84
Chrysene-d12 Represented 12	62	82	90	90	83	84
r-ciylene-d12	10	01	98	/6	82	91

Qualifiers (Q): J=Below the MDL, U=Not detected, B=In procedural blank > 3x MDL, I=Interference, D=Diluted value, NA=Not Applicable, *=Outside QA limits, refer to narrative

Sample Name Client Name	ETX3940.D SED-TN-01	ETX3941.D SED-TN-02	ETX3942.D SED-TN-03	ETX3943.D SED-TN-04	ETX3944.D SED-BTC-01	ETX3945.D SED-BTC-02
Matrix	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment
Collection Date	12/11/04	12/11/04	12/11/04	12/11/04	12/11/04	12/11/04
Received Date	12/14/04	12/14/04	12/14/04	12/14/04	12/14/04	12/14/04
Extraction Date	12/20/04	12/20/04	12/20/04	12/20/04	12/20/04	12/20/04
Extraction Batch	ENV 1071					
Date Acquired	12/25/04	12/25/04	12/25/04	12/25/04	12/25/04	12/25/04
Method	PAH-2002	PAH-2002	PAH-2002	PAH-2002	PAH-2002	PAH-2002
Sample Dry Weight (g)	15.1	15.0	15.0	15.0	15.0	15.0
% Moisture	55	48	52	46	64	62
7 Dry	40	52	48	54	36	38
Diation		100	NA	N/A	NA	DIA.
Target Compounds	Su Corrected Q Conc. (ng/dry g)					
Naphthalene	253	14.2	172	149	354	468
C1-Naphthalenes	180	6.9	98.2	84.7	197	264
C2-Naphthalenes	255	8.5	82.5	75.8	202	249
C3-Naphthalenes	240	4.5	59.4	59.1	15/	182
Benzothionhene	10.6	0.0	47.4 6.4	45.0	142	137
C1-Benzothiophenes	28.0	<0.3 U	12.5	9.7	30.5	32.5
C2-Benzothiophenes	20.6	<0.3 U	7.5	66	20.6	28.3
C3-Benzothiophenes	18.3	<0.3 U	5.1	5.1	17.3	19.8
Biphenyl	42.5	4.4	19,1	16.0	41.4	51.5
Acenaphthylene	113	1.8	47.2	45.4	107	142
Acenaphthene	52.0	3.2	17.4	16.5	48.6	51.2
Dibenzofuran	96.9	9.8	38.2	35.3	98.5	115
Huorene	120	13.3	45.3	40.4	121	133
C1-Fluorenes	85.6	5.1	32.9	25.2	75.8	81.0
C3-Eluorenes	105	0.1	42.2	35.7	116	123
Carbazole	44 1	1.0	14.3	55./	211	1/4
Anthracene	159	30	91.8	75.4	245	32.5
Phenanthrene	477	18.3	232	226	607	392
C1-Phenanthrene/Anthracenes	335	11.6	201	156	348	298
C2-Phenanthrene/Anthracenes	385	12.4	164	134	420	311
C3-Phenanthrene/Anthracenes	349	9.3	118	110	498	256
C4-Phenanthrene/Anthracenes	187	8.9	55.1	52.3	358	159
Dibenzothiophene	32.9	0.8	16.6	16.2	45.8	31.5
C1-Dibenzothiophene	68.7	1.5	25.1	21.7	61.6	53.8
C2-Dibenzothiophene	124	1.8	36.8	37.2	168	95.1
Eluoranthene	100	<0.3 0	30.8	41.7	292	120
Pyrana	912	11.9	403	351	1080	762
C1-Elucranihenes/Pyrenes	573	11.3	326	300	999	748
C2-Fluoranthenes/Pyrenes	482	7.1	226	179	517	410
C3-Fluoranthenes/Pyrenes	180	<0.4 U	76.2	74.3	292	230
Naphthobenzothiophene	172	2.6	93.9	82.0	201	171
C1-Naphthobenzothiophenes	168	3.5	60.9	68.1	245	146
C2-Naphthobenzothiophenes	160	<0.4 U	61.8	68.2	360	159
C3-Naphthobenzothiophenes	93.3	<0.4 U	42.2	48.3	245	128.0
Benz(a)anthracene	592	5.5	306	267	465	521
C1-Choisenes	027	8.1	332	251	606	474
C2-Chrysenes	427	4.5	102	109	422	422
C3-Chrysenes	79.0	<0.3 U	44.3	36.3	136	112
C4-Chrysenes	36.4	<0.3 U	20.5	21.1	37.7	37.7
Benzo(b)fluoranthene	828	9.8	436	449	847	802
Benzo(k)fluoranthene	283	1.5	139	161	173	244
Benzo(e)pyrene	415	2.7	202	230	342	392
Benzo(a)pyrene	496	2.9	256	284	404	425
Perylene	240	197	210	217	296	284
Dibenzo(a b)astbracence	225	1.9	118	134	195	212
Benzo(g,h,i)perylene	177	1.4	88.1	33.4 107	49.0	47.4 169
Total PAHs Individual Alkyl Isomers and Hopan	12847 es	459	6052	5564	13972	11841
2-Methylnaphthalene	180	6.3	102	86.0	200	270
1-Methyinaphthalene	79.7	3.7	39.3	35.8	83.5	110
2,6-Dimethylnaphthalene	138	3.2	45.7	41.4	116	143
1,0,7-1 nmethyinaphthalene	32.0	1.3	8.9	7.4	19.0	20.8
C20 Hoppos	79.6	3.8	31.0	23.3	69.2	62.1
18a-Oleanane	300	<1.1 U	100	203	489	474
C30-Hopane	32.0	<1.1 U	19.7	30.0	59.9	71.9
Surrogate (Su)	Su Recovery (%)					
Nachthalene-d8	83	82	77	en		87
Acenanthan-dia	75	80	11	80	0] er	6/
Phenanthrene-d10	76	00	93	03	74	90
Chosene-d12	77	83	03	95	83	63
Perviene-d12	84	03	84	01	77	03
- any allowers						0L

Qualifiers (Q): J=Below the MDL, U=Not detected, B=In procedural blank > 3x MDL, I=Interference, D=Diluted value, NA=Not Applicable, *=Outside QA limits, refer to narrative

Sample Name	ETX3946.D	ETX3947.D	ETX3948.D	ETX3949.D	ETX3950.D	ETX3952.D
Client Name	SED-BTC-03	SED-UL-01	SED-UL-02	SED-PTB-01	SED-PTB-02	SLP-3 Sediment
Matrix	Sediment	12/10/D4	Sediment 12/10/04	12/10/04	12/10/04	12/11/04
Collection Date	12/14/04	12/14/04	12/14/04	12/14/04	12/14/04	12/14/04
Extraction Date	12/20/04	12/20/04	01/03/05	01/03/05	01/03/05	01/03/05
Extraction Batch	ENV 1071	ENV 1071	ENV 1074	ENV 1074	ENV 1074	ENV 1074
Date Acquired	12/25/04	12/25/04	01/07/05	01/07/05	01/07/05	01/07/05
Method	PAH-2002	PAH-2002	PAH-2002	PAH-2002	PAH-2002	PAH-2002
Sample Dry Weight (g)	15.0	15.0	15.1	15.0	15.0	15.0
% Moisture	47	43	26	33	28	26
% Dry	53	57	74	67	72	74
Dilution	NA	NA	NA	NA	NA	NA
Target Compounds	Su Corrected Q Conc. (ng/dry g)					
Naphthalene	349	48.2	20.3	60.6	224	6.6
C1-Naphthalenes	141	22.2	5.7	20.0	109	3.4
C2-Naphthalenes	116	22.2	5.0	19.5	62.1	4.3
C4-Naphthalenes	79.5 50.4	14.2	4.2	11.7	10.0	1.6
Benzothiophene	9.2	1.8	0.6	2.0	6.2	0.3
C1-Benzothiophenes	9.7	4.1	0.9	2.5	3.8	0.9
C2-Benzothiophenes	9.1	1.8	0.6	1.6	3.4	<0.3 U
C3-Benzothiophenes	8.0	1.1	<0.3 U	1.3	2.9	<0.3 U
Biphenyl	25.8	5.4	1.7	4.8	14.2	1.2
Acenaphthylene	70.4	26.8	4.6	17.5	41.1	2.3
Acenaphthene	37.6	8.4	2.4	8.3	130	0.7
Liberizoturan	55.5 66.4	15.2	4.6	13.7	93.6	1.8
C1-Elucroper	41.8	10.4	4.1	7.1	32.6	1.0
C2-Fluorenes	54.0	17.0	3.5	10.2	21.5	2.0
C3-Fluorenes	78.1	24.3	<0.4 U	27.9	20	<0.4 U
Carbazole	28.4	8.2	2.3	11.0	216	0.7
Anthracene	144	31.5	8.3	28.2	195	3.0
Phenanthrene	361	91.0	29.1	101	1180	8.6
C1-Phenanthrene/Anthracenes	247	55.7	13.8	44.9	301	5.6
C2-Phenanthrene/Anthracenes	199	49.1	11.8	41.5	153	6.1
C4-Phenanthrene/Anthracenes	140	30.3	9.5	32.0	25.0	4.0
Dibenzothionhene	23.2	5.6	2.0	21.0	55.4	3.2
C1-Dibenzothiophene	34.4	7.2	27	6.4	31.0	1.0
C2-Dibenzothiophene	46.9	11.0	3.2	9.0	17.3	1.7
C3-Dibenzothiophene	54.0	13.1	2.5	10.3	10.8	2.1
Fluoranthene	836	177	54.6	215	1360	14.6
Pyrene	764	171	47.6	154	1280	12.1
C1-Fluoranthenes/Pyrenes	373	97.0	30.1	111	545	12.8
C2-Fluoranthenes/Pyrenes	252	69.5	19.8	84.9	468	8.8
C3-Fluoranthenes/Pyrenes	116	25.1	10.5	32.1	150	4.1
Naphthobenzothiophene C1-Naphthobenzothiophenes	72.0	30.9	8.0	44.2	215	3.9
C2-Naphthobenzothiophenes	78.7	21.7	8.5	33.6	36.8	51
C3-Naphthobenzothiophenes	58.4	16.1	9.2	27.4	20.6	3.7
Benz(a)anthracene	436	114	28.4	123	901	12.4
Chrysene	509	120	27.7	107	469	11.2
C1-Chrysenes	289	74.0	15.7	53.8	186	7.5
C2-Chrysenes	125	29.6	8.7	27.0	82.4	5.0
C3-Chrysenes	53.5	13.2	4.7	17.6	42.4	2.5
C4-Chrysenes Benzo/b)duomothene	29.2	9.0	3.9	14.0	59.5	1.7
Benzo/kifluoranthene	234	60.9	10.9	23.6	176	4.6
Benzo(e)ovrene	323	86.0	13.0	52.3	229	6.7
Benzo(a)pyrene	399	101.0	19.0	82.9	574	8.9
Perylene	195	60.6	19.6	74,9	161	32.9
Indeno(1,2,3-c,d)pyrene	192	51.7	19.8	85.2	432	9.0
Dibenzo(a,h)anthracene	45.0	12.8	5.4	20.4	92.8	2.2
Total PAHs	9025	40.7	575	54.3 2176	11786	264
Individual Alkyl Isomers and Hopar	nes					
2-Methylnaphthalene	146	21.7	6.2	20.7	92.7	3.5
1-Methylnaphthalene	56.7	10.3	2.2	9.1	71.8	1.5
2,6-Dimethylnaphthalene	63.7	11.6	2.6	9.2	21.6	2.2
1,6,7-Trimethyinaphthalene	9.9	2.3	0.4	1.7	5.1	0.2
1-methylphenanthrene C29 Herane	53.1	10.8	3.3	10.2	67.3	1.4
18a-Oleanane	25.8	35.0	10.8	42.4	18.2	2.9
C30-Hopane	193	94,9	23.4	52.3	25.8	18.0
Surrogate (Su)	Su Recovery (%)					
Naphthalene-d8	89	93	82	76	79	89
Acenaphthene-d10	94	93	85	75	87	77
Phenanthrene-d10	91	99	86	77	70	81
Chrysene-d12	80	99	79	94	91	80
Perylene-d12	78	93	71	63	76	35

Qualifiers (Q): J=Beiow the MDL, U=Not detected, B=In procedural blank > 3x MDL, i=Interference, D=Diluted value, NA=Not Applicable, *=Outside QA limits, refer to narrative

Sample Name	ETX3953.D	ETX3954.D	ETX3955.D	ETX3956.D	ETX3957.D	ETX3958.D
Client Name	SLP-2	SCD-2	SCR-2	SCR-1	SMH-3	SCR-4
Matrix Collection Date	12/11/04	Sediment 12/11/04	Sediment	Sediment	Sediment	Sediment
Received Date	12/14/04	12/14/04	12/11/04	12/11/04	12/10/04	12/10/04
Extraction Date	01/03/05	01/03/05	01/03/05	01/03/05	01/03/05	01/03/05
Extraction Batch	ENV 1074					
Date Acquired	01/07/05	01/07/05	01/07/05	01/07/05	01/07/05	01/07/05
Method	PAH-2002	PAH-2002	PAH-2002	PAH-2002	PAH-2002	PAH-2002
Sample Dry weight (g)	15.0	15.0	15.0	15.0	15.0	15.0
% Drv	40 52	28	4/	34	55	30
Dilution	NA	NA	NA	NA	NA	NA
Target Compounds	Su Corrected Q Conc. (ng/dry g)					
Naphthalene	7.8	145	5.0	150	134	52.7
C1-Naphthalenes	2.6	86.2	2.5	82.0	77.5	30.9
C3-Naphthalenes	2.0	84.0	4.0	70.8	80.9	27.0
C4-Naphthalenes	1.2	75.3	2.4	32.7	41.2	13.6
Benzothiophene	0.4	5.0	0.2	4.9	5.2	2.0
C1-Benzothiophenes	1.6	13.5	2.5	11.8	13.2	3.3
C2-Benzothiophenes	0.5	10.7	1.2	6.9	7.3	3.6
Biphenyf	2.1	20.1	<0.3 U 2 1	5.2	4.2	2.7
Acenaphthylene	0.9	45.5	8.8	27.9	48.8	12.8
Acenaphthene	0.4	15.6	0.7	14.0	21.9	6.2
Dibenzofuran	4.5	33.1	3.8	29.5	36.7	11.0
Fluorene C1-Eluorenes	2.7	36.6	4.8	41.3	46.0	9.1
C2-Fluorenes	<0.4 U	87.6	5.5	29.3	28.5	10.9
C3-Fluorenes	<0.4 U	121	9.3	59.5	57.4	30.3
Carbazole	1.0	13.4	1.3	12.9	20.2	7.0
Anthracene	2.3	62.1	7.2	71.3	88.3	28.0
C1-Phenanthrene/Anthracenes	5.1	139	7.2	160	232	63.1
C2-Phenanthrene/Anthracenes	4.1	210	25.3	113	147	47.8
C3-Phenanthrene/Anthracenes	4.1	240	13.1	90.7	114	60.1
C4-Phenanthrene/Anthracenes	2.5	175	4.0	64.9	60.3	50.9
Dibenzothiophene C1 Dibenzathiophene	0.4	12.4	1.5	14.9	16.3	6.8
C2-Dibenzothiophene	0.5	39.3	4.4	21.2	21.8	10.4
C3-Dibenzothiophene	<0.3 U	192	4.5	40.7	38.7	23.8
Fluoranthene	11.3	305	26.4	214	511	124
Pyrene C1 Elvernethenen Burnnen	7.0	278	30.6	174	362	114
C2-Fluoranthenes/Pyrenes	9.0	209	50,4	198	334	114
C3-Fluoranthenes/Pyrenes	2.4	134	22.0	107	219	92.9
Naphthobenzothiophene	2.4	97.2	8.6	63.6	111	32.1
C1-Naphthobenzothiophenes	<0.4 U	160	8.1	69.3	93.8	37.0
C2-Naphthobenzothiophenes	<0.4 U	237	4.7	88.3	98.7	46.7
Benz(a)anthracene	-0.4 0	201	2.2	67.1	57.2	36.6
Chrysene	6.2	177	21.0	114	221	86.3
C1-Chrysenes	4.0	140	16.8	106	146	61.7
C2-Chrysenes	2.9	90.8	7.2	71.4	85.9	40.0
C4-Chrysenes	<0.3 U	24.0	<0.3 U	39.7	50.6	22.2
Benzo(b)fluoranthene	6.8	340	12.2	168	285	81.6
Benzo(k)fluoranthene	2.1	160	1.2	42.8	72.5	26.3
Benzo(e)pyrene	2.5	192	4.9	70.3	112	38.2
Perviena	3.7	205	5.8	117	189	55.7
Indeno(1,2,3-c,d)pyrene	3.8	209	4.8	94.1	164	513
Dibenzo(a,h)anthracene	2.1	55.3	4.7	26.1	40.9	12.9
Benzo(g,h,i)perylene	2.9	132	4.0	69.2	115	39.2
Total PAHs Individual Alkyl isomers and Hopan	665 es	6652	1458	4190	5676	2023
2.Mathunanhthalana	2.0	97.6				
1-Methylnaphthalene	2.0	40.8	2.4	3.8 B	81.6	31.7
2,6-Dimethylnaphthalene	1.4	44.9	1.7	40.3	43.5	14.4
1,6,7-Trimethylnaphthalene	0.1	11.3	0.4	5.2	7.1	2.4
1-Methylphenanthrene	1.8	26.0	3.6	24.0	31.6	10.5
18a-Oleanane	<1.1 U <1 1 U	297	17.9	218	149	65.5
C30-Hopane	<1.1 U	366	24.8	42.0	25.5	12.0
Surrogate (Su)	Su Recovery (%)					
Naphthaiene-d8	79	77	80	76	91	83
Acenaphthene-d10	71	91	78	88	92	91
Phenanthrene-d10	74	71	79	71	72	80
Chrysene-d12	77	84	84	85	93	84
Perylene-012	60	82	45	80	62	67

Qualifiers (Q): J=Below the MDL, U=Not detected, B=In procedural blank > 3x MDL, I=Interference, D=Diluted value, NA=Not Applicable, *=Outside QA limits, refer to narrative

Sample Name Client Name Matrix Collection Date Received Date Extraction Batch Date Acquired Method Sample Dry Weight (g) % Moisture % Dry Dilution Target Compounds	ETX3959.D SCD-4 Sediment 12/10/04 12/14/04 01/03/05 ENV 1074 01/07/05 PAH-2002 15.0 55 45 NA Su Corrected Conc. (ng/dy g)	ETX3960.D SCD-5 Sediment 12/10/04 12/14/04 01/03/05 ENV 1074 01/07/05 PAH-2002 15.0 49 51 NA Su Corrected Conc. (ng/dy.g)	ETX3961.D SED-DBHC-091204 Sediment 12/09/04 12/14/04 01/03/05 ENV 1074 01/07/05 PAH-2002 15.0 47 53 NA Su Corrected Cons. (re/dry a)	٥
	conte (ingrany gy	Conc. (ngrui y g)	conc. (ng/ory g)	
Naphthalene C1-Naphthalenes	222	61.5	27.9	
C2-Naphthalenes	57.5	34.5	17.0	
C3-Naphthalenes	37.8	27.4	12.6	
C4-Naphthalenes	21.7	17.4	7.7	
C1-Benzothiophenes	9.8	2.4	1.1	
C2-Benzothiophenes	4.4	3.3	3.4	
C3-Benzothlophenes	2.2	2.8	1.2	
Bipheny	31.0	9.2	4.6	
Acenaphthylene	31.9	18.9	8.1	
Dibenzofuran	70.5	15.7	2.6	
Fluorene	60.9	19.5	9.0	
C1-Fluorenes	26.4	14.3	5.7	
C2-Fluorenes C3-Fluorenes	21.6	17.7	9.0	
Carbazole	17.7	9.1	3.6	
Anthracene	102	29.3	14.5	
Phenanthrene C1-Phenanthrene/Anthrenener	257	81.1	36.6	
C2-Phenanthrene/Anthracenes	118	49.1	24.4	
C3-Phenanthrene/Anthracenes	102	46.4	21.2	
C4-Phenanthrene/Anthracenes	73.3	26.1	14.4	
C1-Dibenzothiophene	17.6	6.7	3.3	
C2-Dibenzothiophene	14.7	13.6	7.3	
C3-Dibenzothiophene	16.2	15.3	8.2	
Fluoranthene	346	148	61.2	
C1-Fluoranthenes/Pyrenes	230	130	48.5	
C2-Fluoranthenes/Pyrenes	180	88.2	39.0	
C3-Fluoranthenes/Pyrenes	90	48.7	17.8	
Naphthobenzothiophene C1-Naphthobenzothiophenes	77.6	39.7	16.1	
C2-Naphthobenzothiophenes	68.2	40 1	17.4	
C3-Naphthobenzothiophenes	35.3	31.3	16.0	
Benz(a)anthracene	252	101	39.3	
Chrysene C1-Chrysenes	148	79.3	36.0	
C2-Chrysenes	99.0	33.6	16.9	
C3-Chrysenes	50.3	18.4	10.4	
C4-Chrysenes Benzo/bit/uoranthene	17,1	9.3	5.8	
Benzo(k)fluoranthene	60.2	44.1	46.9	
Benzo(e)pyrene	88.1	49.0	21.4	
Benzo(a)pyrene	147	71.8	29.8	
indeno(1,2,3-c,d)ovrene	856	192	119	
Dibenzo(a,h)anthracene	32.6	17.2	8.1	
Benzo(g.h,i)perytene	77.8	47.6	22.4	
Total PAHs	5314	2224	1030	
Individual Alkyl Isomers and Hopan	les			
2-Methylnaphthalene	87.4	35.1	17.0	
1-Methylnaphthalene	29.0	16.4	7.7	
2,6-Dimethylnaphthalene	32.4	18.8	9.8	
1-Methylphenanthrene	4.4 28.2	1.3	1.2	
C29-Hopane	21.0	93.4	56.0	
18a-Oleanane	<1.1 U	15.1	8.3	
Surrogate (Su)	33.5 Su Recovery (%)	Su Recovery (%)	72.0 Su Recovery (%)	
Naahthalana de	07		70	
Naphthaiene-08 Acenanhthane-d10	87 94	77	78	
Phenanthrene-d10	74	73	75	
Chrysene-d12	97	86	84	
Perylene-d12	60	70	65	

Qualifiers (Q): J=Below the MDL, U=Not detected, B=In procedural blank > 3x MDL, I=Interference, D=Diluted value, NA=Not Applicable, *=Outside QA limits, refer to narrative

Comple Name	ETWORK D	
Client Name	ETX3951.D SED.PTB.03	
Matrix	Rocks	
Collection Date	12/10/04	
Received Date	12/14/04	
Extraction Date	12/20/04	
Date Acquired	ENV 1071 01/03/05	
Method	PAH-2002	
Sample Weight (mg)	15.0	
% Moisture	43	
% Dry	57	
Dilution	NA	
Target Compounds	Su Corrected	2
	Conc. (ng/mg)	
Naphthalene	3.4	
C1-Naphthalenes	2.0	
C2-Naphthalenes	3.0	
C3-Naphthalenes	1.8	
Benzothionhene	1.2	
C1-Benzothiophenes	<0.2	1
C2-Benzothiophenes	<0.3	j li
C3-Benzothiophenes	<0.3)
Acenanotitiviene	0.5	
Acenaphthene	2.1	
Dibenzofuran	0.9	
Fluorene	1.0	
C1-Fluorenes	<0.4	J
C3-Fluorenes	<0.4	1
Carbazole	<0.4	,
Anthracene	2.6	
Phenanthrene	4.1	
C1-Phenanthrene/Anthracenes	3	
C3-Phenanthrene/Anthracenes	5	
C4-Phenanthrene/Anthracenes	8	
Dibanzothiophene	0.5	
C1-Dibenzothiophene	1.2	
C2-Dibenzothiophene	3.0	
Fluoranthene	5.4	
Рутеле	13.4	
C1-Fluoranthenes/Pyrenes	11.2	
C2-Fluoranthenes/Pyrenes	11.4	
C3-Fluoranthenes/Pyrenes	4.4	
Naphthobenzothiophene C1-Naphthobenzothiophenes	3.2	
C2-Naphthobenzothiophanes	12.3	
C3-Naphthobenzothiophenes	15.3	
Benz(a)anthracene	5.6	
Circhorenee	5.9	
C2-Chrysenes	4.9	
C3-Chrysenes	5.5	
C4-Chrysenes	2.9	
Benzo(b)fluoranthene	7.5	
Benzo(k)nuoranthene Benzo(e)nyrene	2.5	
Benzo(a)pyrene	5.1	
Perylene	2.7	
Indeno(1,2,3-c,d)pyrene	3.2	
Dipenzo(a,h)anthracene Benzo(a,h)anthracene	1.1	
wowzo(0.m.)herkiene	3.6	
Total PAHs	209	
individual Alkyl Isomers and He	opanes	
2-Methvinaphthalene	53	
1-Methylnaphthaiene	2.3	
2,6-Dimethyfnaphthalene	3.1	
1,6,7-Trimethylnaphthalene	0.2	
1-Methylphenanthrene C20-Hoosoo	1	
18a-Oleanane	32.3	
C30-Hopane	39.8	
Surrogate (Su)	Su Recovery (%)	
Naphthalene-d8	80	
Acenaphthene-d10	89	
Phenanthrene-d10	75	
Chrysene-d12	85	
Perylene-d12	81	

Qualifiers (Q): J=Below the MDL, U=Not delected, B=in procedural blank > 3x MDL, I=Interference, D=Diluted value, NA=Not Applicable, *=Outside QA limits, refer to narrative

D.3. NOAA Mussel Watch sediment samples collected at Hope Creek (DBHC), Arnolds Point (DBAP), and Ben Davis Point Shoal (DBBD).

Sample Name Client Name Matrix Collection Date Received Date Extraction Date Extraction Batch Date Acquired Method Sample Wet Weight (g) Sample Dry Weight (g) % Moisture % Dry Dilution	NST1367.D DBAP Sediment 01/02/05 01/05/05 06/15/05 ENV1190 06/22/05 PAH-2002 43.1 15.1 65 35 NA				NST1368.D DBBD Sediment 01/02/05 01/05/05 06/15/05 ENV1190 06/22/05 PAH-2002 25.1 15.1 40 60 NA				NST1369.D DBHC Sediment 01/02/05 01/05/05 06/15/05 ENV1190 06/22/05 PAH-2002 44.0 15.0 66 34 NA			
Target Compounds	Su Corrected Conc. (ng/dry g)	Q1	Q2	Q3	Su Corrected Conc. (ng/dry g)	Q1	Q2	Q3	Su Corrected Conc. (ng/dry g)	Q1	Q2	Q3
Decalin	0.0	U			0.0	U			0.0	U		
C1-Decalins	0.0	U			0.0	U			0.0	U		
C2-Decalins	0.0	Ū			0.0	Ū			0.0	Ū		
C3-Decalins	0.0	Ū			0.0	Ū			0.0	Ū		
C4-Decalins	0.0	U			0.0	U			0.0	U		
Naphthalene	59.1				9.0				67.0			
C1-Naphthalenes	37.2				5.3				42.8			
C2-Naphthalenes	39.9				6.8				45.4			
C3-Naphthalenes	31.1				5.4				35.7			
C4-Naphthalenes	18.9				3.4				20.5			
Benzothiophene	2.3				0.3				2.6			
C1-Benzothiophenes	5.9				0.0	U			6.2			
C2-Benzothiophenes	3.0				0.0	U			3.4			
C3-Benzothiophenes	2.8				0.0	U			2.9			
Biphenyl	12.1				2.4				13.9			
Acenaphthylene	12.3				2.2				14.0			
Acenaphthene	8.7				1.5				10.4			
Dibenzofuran	18.7				3.3				21.7			
Fluorene	21.1				3.7				24.8			
C1-Fluorenes	12.8				2.2				14.3			
C2-Fluorenes	20.7				4.4				20.8			
C3-Fluorenes	14.4				0.0	U			18.0			
Carbazole	10.2				0.9				10.9			
Anthracene	38.7				5.8				42.3			
Phenanthrene C1- Phenanthrene/Anthracenes	96.8 76.6				13.0				109 80.4			
C2- Phenanthrene/Anthracenes	63.1				11.3				66.4			
C3- Phenanthrene/Anthracenes	54.7				6.9				50.5			
C4- Phenanthrene/Anthracenes	40.4				5.4				34.1			
Dibenzothiophene	9.3				1.3				10.2			
C1-Dibenzothiophenes	13.9				1.8				14.5			
C2-Dibenzothiophenes	22.5				2.5				21.2			
C3-Dibenzothiophenes	28.6				2.6				23.8			
Fluoranthene	159				26.0				173			
Pyrene	159				22.4				170			
C1-Fluoranthenes/Pyrenes	111				19.9				124			
C2-Fluoranthenes/Pyrenes	76.6				9.0				79.4			
C3-Fluoranthenes/Pyrenes	34.1				3.7				34.6			
Naphthobenzothiophene C1-	35.3				5.0				37.0			
Naphthobenzothiophenes	36.6				3.8				33.8			

C2-							
Naphthobenzothiophenes C3-	30.2		2.8		27.6		
Naphthobenzothiophenes	24.1		1.4		20.3		
Benz(a)anthracene	93.4		14.6		106		
Chrysene	123		16.9		135		
C1-Chrysenes	103		14.0		110		
C2-Chrysenes	61.7		7.8		65.7		
C3-Chrysenes	29.8		3.6		28.5		
C4-Chrysenes	13.6		0.0	U	14.4		
Benzo(b)fluoranthene	104		20.1		126		
Benzo(k)fluoranthene	40.1		6.5		48.3		
Benzo(e)pyrene	59.3		10.1		68.3		
Benzo(a)pyrene	81.7		15.5		98.2		
Perylene	232		44.0		259		
Indeno(1,2,3-c,d)pyrene	58.8		10.4		65.6		
Dibenzo(a,h)anthracene C1-	12.9		2.4		15.0		
Dibenzo(a,h)anthracenes C2-	0.0	U	0.0	U	0.0	U	
Dibenzo(a,h)anthracenes C3-	0.0	U	0.0	U	0.0	U	
Dibenzo(a,h)anthracenes	0.0	U	0.0	U	0.0	U	
Benzo(g,h,i)perylene	53.6		9.3		60.1		
Total PAHs	2509		384		2728		
Individual Isomers							
2-Methylnaphthalene	41.5		5.8		47.5		
1-Methylnaphthalene	16.5		2.5		19.3		
2,6-DimethyInaphthalene	25.9		4.4		29.4		
1,6,7-Trimethylnaphthalene	3.7		0.6		4.5		
1-Methylphenanthrene	14.0		2.4		15.7		
Surrogate (Su)	Su Recovery (%)		Su Recovery (%)		Su Recovery (%)		
	(/0)		(,~)		(/~)		
Naphthalene-d8	94		93		91		
Acenaphthene-d10	94		81		91		
Phenanthrene-d10	85		81		82		
Chrysene-d12	82		81		78		
Perylene-d12	67		72		67		
-							

Qualifiers (Q): J=Below the MDL, U=Not detected, B=In procedural blank > 3x MDL, I=Interference, D=Diluted value, NA=Not Applicable, *=Outside QA limits, refer to narrative

APPENDIX E

Intertidal Sediment Analyses

- E.1. Intertidal sediment sample log and summary PAH data.
- E.2. PAH data for intertidal sediment samples.
- E.3. Alkane analyses of intertidal sediment samples.
- E.4. Total organic carbon analysis of intertidal sediment samples.
- E.5. Biomarker analyses.

Sample ID	Latitude	Longitude	Date	Total PAHs (ng/g dry)	Comments
SED-RC-01	39.79985	-75.35778	14-Dec-04	8334	Raccoon Creek, top 1 cm of sediment in rice grass mud flats
SED-RC-02	39.80010	-75.35738	14-Dec-04	7853	Raccoon Creek, top 1 cm of sediment in rice grass mud flats
SED-RC-03	39.79570	-75.36352	14-Dec-04	7196	Raccoon Creek, top 1 cm of sediment in rice grass mud flats
SED-TI-01	39.85308	-75.26673	15-Dec-04	36772	Tinicum Island, top 1 cm of sediment in perennial mud flats
SED-TI-02	39.85298	-75.26677	15-Dec-04	44022	Tinicum Island, top 1 cm of sediment in perennial mud flats
SED-TI-03	39.85277	-75.26732	15-Dec-04	27845	Tinicum Island, top 1 cm of sediment in perennial mud flats
SED-TP-01	40.01073	-75.03833	15-Dec-04	948	Tacony-Palmyra bridge, top 1 cm, perennial mud flat control
SED-CW-01	40.16643	-75.70443	15-Dec-04	9917	Crosswick Creek, top 1 cm, rice grass mud flat control
SED-PP-01	39.58608	-75.57310	17-Dec-04	1333	Pea Patch Island, top 1 cm,
SED-PP-02	39.58609	-75.57319	17-Dec-04	1283	Pea Patch Island, top 1 cm,
SED-PP-03	39.58607	-75.57305	17-Dec-04	2104	Pea Patch Island, top 1 cm,

E.1. Intertidal sediment sample log and summary PAH data.

E.2. PAH data for intertidal sediment samples

Client Sample ID Sample Descriptor Original Sample	SED-RC-01 1020	SED-RC-02 1036
Sample Time	SAMP	C45281 SAMP
SDG	EC176	EC176
Dry Weight	4.37	4.63
Wet Weight	18.32	19.99
Sample Size Units	Grams	Grams
Matrix	Sediment	Sediment
% solid	23.9	23.2
% Lipid		
Reporting Units	ng/g	ng/g
Calculation Basis (dry/wet)	Dry	Dry
QC Batch ID	M3324	M3324
Method	GCMS	GCMS
Collection Date	12/14/04	12/14/04
Receive Date	12/16/04	12/16/04
Extraction Date	12/20/04	12/20/04
Analysis Date	01/06/05	01/06/05
Surrogate Compounds	%Recovery	%Recovery
d8-Naphthalene	69.3	70.0
d10-Acenaphthene	98.7	87.0
d10-Phenanthrene	102.5	88.5
d12-Chrysene	106.8	86.4
d12-Perylene	61.0	47.1
Total PAHs	Concentration	Concentration
Total PAHs with Perylene	8333.8	7852.7
Total PAHs without Perylene	7996.5	7488.4
Total NS&T PAHs	3648.5	3871.0

Client Sample ID	SED-RC-01		SED-RC-02				
Sample Descriptor	1020		1036				
Original Sample							
GERG ID	C45280		C45281				
Sample Type	SAMP		SAMP				
SDG	EC176		EC176				
PAH Compounds	Concentration	MDL	Concentration	MDL			
Naphthalene	214.04	1.21	201.56	1.14			
C1-Naphthalenes	192.50	3.86	175.37	3.65			
C2-Naphthalenes	128.83	1.00	114.49	0.94			
C3-Naphthalenes	103.72	2.10	85.98	1.98			
C4-Naphthalenes	75.52	2.10	53.47	1.98			
Biphenyl	32.73	0.82	31.44	0.77			
Acenaphthylene	51.71	1.16	55.03	1.10			
Acenaphthene	36.61	2.02	50.02	1.91			
Fluorene	79.66	1.03	79.59	0.97			
C1-Fluorenes	81.27	2.06	70.20	1.95			
C2-Fluorenes	125.83	2.06	95.63	1.95			
C3-Fluorenes	196.09	2.06	138.34	1.95			
Phenanthrene	273.98	1.00	286.68	0.94			
Anthracene	183.40	1.11	189.38	1.05			
C1-Phenanthrenes/Anthracenes	218.38	1.99	207.51	1.87			
C2-Phenanthrenes/Anthracenes	277.22	1.99	206.70	1.87			
C3-Phenanthrenes/Anthracenes	269.04	1.99	178.68	1.87			
C4-Phenanthrenes/Anthracenes	277.69	1.99	191.34	1.87			
Dibenzothiophene	27.45	0.67	26.67	0.63			
C1-Dibenzothiophenes	63.71	1.33	45.68	1.26			
C2-Dibenzothiophenes	193.53	1.33	102.44	1.26			
C3-Dibenzothiophenes	274.90	1.33	121.42	1.26			
Fluoranthene	472.32	1.82	502.28	1.72			
Pyrene	478.02	2.08	505.03	1.96			
C1-Fluoranthenes/Pyrenes	334.12	3.89	328.02	3.68			
C2-Fluoranthenes/Pyrenes	292.95	3.89	266.34	3.68			
C3-Fluoranthenes/Pyrenes	227.77	3.89	159.12	3.68			
Benzo(a)anthracene	288 34	1.06	333.82	1.00			
Chrysene	300.94	1.26	336.54	1 19			
C1-Chrysenes	260.85	2 51	246.55	2 37			
C2-Chrysenes	186.04	2.51	122.48	2.37			
C3-Chrysenes	78.86	2.51	57.83	2.37			
C4-Chrysenes	11.74	2.51	677	2.37			
Benzo(b)fluoranthene	11.74	1.16	516.45	1.09			
Benzo(k)fluoranthene	110.05	1.10	131.14	0.05			
Benzo(e)pyrene	241.24	1.01	271.22	1.01			
Benzo(a)pyrene	241.34	1.07	262 50	1.01			
Pervlene	342.22	2.52	364.27	2.20			
Indeno(1,2,3-c,d)pyrene	357.52	2.33	200.62	2.39			
Dibenz(a h)anthracene	202.50	1.47	509.62	1.59			
Benzo(g h i)pervlene	52.74	0.75	60.56	0.69			
Zenno Giuli Per Jiene	232.22	1.38	263.28	1.30			
2-Methylnaphthalene	138.31	2.19	124.70	2.07			
1-Methylnaphthalene	54.19	1.67	50.67	1.58			
2,6-Dimethylnaphthalene	64.75	0.50	64.11	0.47			
1,6,7-Trimethylnaphthalene	29.66	1.05	26.93	0.99			
1-Methylphenanthrene	57.56	0.99	55.33	0.94			

NA Not Applicable Q Results Outside QC

I Interference

B Blank Contamination >3xMDL

Client Sample ID Sample Descriptor Original Sample	SED-RC-03 1107	SED-TI-01 Diluted 1:50	
GERGID	C45282	C45283	
Sample Type	SAMP	SAMP	
SDG	EC176	EC176	
Dry Weight	3.36	13.15	
Wet Weight	20.14	18.64	
Sample Size Units	Grams	Grams	
Matrix	Sediment	Sediment	
% solid	16.7	70.5	
% Lipid	ng/g	ng/g	
Reporting Units	Dry	Dry	
Calculation Basis (dry/wet)			
QC Batch ID	M3324	M3324	
Method	GCMS	GCMS	
Collection Date	12/14/04	12/15/04	
Extraction Date	12/16/04	12/16/04	
Analysis Date	12/20/04	12/20/04	
-	01/06/05	01/07/05	
Surrogate Compounds	%Recovery	%Recovery	
d8-Naphthalene	70.5		D
d10-Acenaphthene	94.8		D
d10-Phenanthrene	103.7		D
d12-Chrysene	108.9		D
d12-Perylene	61.1		D
Total PAHs	Concentration	Concentration	
Total PAHs with Perylene	7195.6	36771.8	
Total PAHs without Perylene	6850.5	36245.7	
Total NS&T PAHs	3620.0	20250.6	

- ND Not Detected
- <MDL J
- NA Not Applicable Q Results Outside QC
- Interference Ι
- B Blank Contamination >3xMDL

Client Sample ID	SED-RC-03		SED-TI-01			
Sample Descriptor	1107		Diluted 1:50			
Original Sample						
GERG ID	C45282		C45283			
Sample Type	SAMP		SAMP			
SDG	EC176		EC176			
DAIL Common de	Ctti	MDI	Ctti	MDI		
PAH Compounds	Concentration	MDL	Concentration	MDL		
Naphthalene	223.16	1.57	575.84	20.08		
C2 Neghthelenes	212.32	5.03	291.51	64.23		
C2-Naphthalenes	138.03	1.30	188.57	16.59		
C4 Northholonos	101.56	2.74	221.02	34.92		
C4-Naphinaienes	61.57	2.74	115./3	34.92		
Accordentiation	34.77	1.06	50.90	13.57		
Acenaphthylene	58.27	1.51	285.11	19.33		
Elvoreno	38.60	2.63	240.72	33.57		
C1 Elucropes	101.05	1.54	351.05	17.15		
C2 Elucropes	89.30	2.69	283.41	34.30		
C3 Elucrenes	112.97	2.69	287.44	34.30		
Dhononthrono	142.99	2.69	224.66	34.30		
Anthracono	295.54	1.30	1537.25	16.57		
C1 Phononthronos/Anthrononas	200.15	1.45	1067.53	18.48		
C2 Phononthronos/Anthronos	200.69	2.59	1406.50	33.01		
C2-Filenanthrenes/Anthracenes	174.08	2.59	950.67	33.01		
C4 Phenanthrenes/Anthracenes	156.94	2.59	454.03	33.01		
Dibenzothiophene	182.48	2.59	209.96	33.01		
C1 Dibenzothiophenes	28.93	0.87	99.03	11.06		
C2 Dibenzothiophenes	44.81	1.73	139.45	22.12		
C2-Diberzothiophenes	84.13	1.73	172.02	22.12		
Elucranthana	101.25	1.73	128.53	22.12		
Durance	512.46	2.37	3433.23	30.23		
C1 Elucronthonos/Duronos	466.49	2.70	2876.93	34.51		
C2 Elucronthonos/Duronos	296.78	5.07	2664.89	64.74		
C2-Fluoranthenes/Pyrenes	250.23	5.07	1287.78	64.74		
Co-riuoranthenes/Fyrenes	153.62	5.07	505.05	64.74		
Chrysene	231.35	1.38	2543.06	17.61		
C1 Chrysenes	280.28	1.64	1880.11	20.90		
C2 Chrysenes	200.56	3.27	1388.11	41.80		
C3-Chrysenes	106.74	3.27	470.88	41.80		
C4 Chrysenes	52.77	3.27	109.52	41.80		
Benzo(h)fluoranthene	5.74	3.27	/.1/	41.80 J		
Benzo(k)fluoranthene	414.35	1.50	2427.27	19.21		
Benzo(e)nvrene	102.69	1.31	908.53	16.75		
Benzo(a)pyrene	213.96	1.40	1188.72	17.84		
Pervlene	291.94	2.33	2863.49	29.77		
Indeno(1 2 3-c d)pyrene	345.11	3.30	526.09	42.13		
Dibenz(a h)anthracene	239.80	1.92	1257.65	24.52		
Benzo(g h i)pervlene	46.67	0.95	304.67	12.11		
Denzo(z,n,r)peryrene	199.89	1.80	847.14	22.96		
2-Methylnaphthalene	151.93	2.86	213.88	36.48		
1-Methylnaphthalene	60.39	2.17	77.63	27.75		
2,6-Dimethylnaphthalene	73.13	0.65	108.63	8.29		
1,6,7-Trimethylnaphthalene	31.54	1.37	85.88	17.46		
1-Methylphenanthrene	52.47	1.29	410.27	16.51		

- NA Not Applicable Q Results Outside QC

I Interference

B Blank Contamination >3xMDL

Client Sample ID Sample Descriptor Original Sample GERG ID	SED-TI-02 Diluted 1:50	SED-TI-03 Diluted 1:25		
Sample Type	C45284	C45285		
SDG	SAMP	SAMP		
	EC176	EC176		
Dry Weight	13.28	12.82		
Wet Weight	20.22	19.85		
Sample Size Units	Grams	Grams		
Matrix	Sediment	Sediment		
% solid	65.7	64.6		
% Lipid	ng/g	ng/g		
Reporting Units	Dry	Dry		
Calculation Basis (dry/wet)				
QC Batch ID	M3324	M3324		
Method	GCMS	GCMS		
Collection Date	12/15/04	12/15/04		
Extraction Date	12/16/04	12/16/04		
Analysis Date	12/20/04	12/20/04		
·	01/07/05	01/07/05		
Surrogate Compounds	%Recovery	%Recovery D		
d8-Naphthalene		D D		
d10-Acenaphthene		D D		
d10-Phenanthrene		ם ם מ ח		
d12-Chrysene		D		
d12-Perylene				
Total PAHs	Concentration	Concentration		
Total PAHs with Perylene	44021.9	27844.6		
Total PAHs without Perylene	43429.6	27415.5		
Total NS&T PAHs	24350.0	14988.6		

- ND Not Detected
- <MDL J
- NA Not Applicable Q Results Outside QC
- Interference Ι
- B Blank Contamination >3xMDL

Client Sample ID	SED-TI-02		SED-TI-03				
Sample Descriptor	Diluted 1:50		Diluted 1:25				
Original Sample							
GERG ID	C45284		C45285				
Sample Type	SAMP		SAMP				
SDG	EC176		EC176				
			a				
PAH Compounds	Concentration	MDL	Concentration	MDL			
Naphthalene	508.68	19.87	310.20	10.29			
C1-Naphthalenes	281.63	63.57	169.35	32.94			
C2-Naphthalenes	190.87	16.41	113.54	8.50			
C3-Naphthalenes	248.58	34.56	166.63	17.90			
C4-Naphthalenes	152.82	34.56	103.13	17.90			
Bipnenyi	44.87	13.42	27.85	6.96			
Acenaphthylene	313.72	19.13	233.28	9.91			
Acenaphtnene	201.62	33.22	102.49	17.21			
Fluorene	344.61	16.97	196.24	8.79			
C1-Fluorenes	445.35	33.94	287.91	17.59			
C2-Fluorenes	321.46	33.94	234.58	17.59			
C3-Fluorenes	307.71	33.94	163.30	17.59			
Phenanthrene	1953.35	16.39	940.19	8.49			
Anthracene	1346.79	18.29	790.74	9.47			
C1-Phenanthrenes/Anthracenes	1751.93	32.67	1097.68	16.93			
C2-Phenanthrenes/Anthracenes	1166.52	32.67	770.29	16.93			
C3-Phenanthrenes/Anthracenes	577.86	32.67	363.82	16.93			
C4-Phenanthrenes/Anthracenes	571.99	32.67	173.64	16.93			
CI Dila di al	111.09	10.95	60.57	5.67			
C1-Dibenzothiophenes	152.56	21.90	101.43	11.34			
C2-Dibenzothiophenes	168.54	21.90	109.88	11.34			
C3-Dibenzothiophenes	120.96	21.90	97.01	11.34			
Fluoranthene	4627.73	29.92	2814.49	15.50			
Pyrene	3858.95	34.15	2343.64	17.70			
C1-Fluoranthenes/Pyrenes	3313.93	64.07	2251.22	33.20			
C2-Fluoranthenes/Pyrenes	1481.04	64.07	1059.36	33.20			
C3-Fluoranthenes/Pyrenes	610.49	64.07	390.41	33.20			
Benzo(a)anthracene	2952.90	17.42	1883.55	9.03			
Chrysene	2182.81	20.68	1421.02	10.72			
C1-Chrysenes	1524.03	41.37	1018.23	21.43			
C2-Chrysenes	475.75	41.37	383.30	21.43			
C3-Chrysenes	81.16	41.37	55.67	21.43			
C4-Chrysenes	6.67	41.37 J	3.85	21.43 J			
Benzo(b)fluoranthene	2801.12	19.01	1807.37	9.85			
Benzo(k)fluoranthene	1041.49	16.58	669.19	8.59			
Benzo(e)pyrene	1296.06	17.65	849.38	9.15			
Benzo(a)pyrene	3199.44	29.46	2094.81	15.26			
Perylene	592.29	41.70	429.14	21.60			
Indeno(1,2,3-c,d)pyrene	1392.72	24.27	913.14	12.57			
Dibenz(a,h)anthracene	336.92	11.99	219.50	6.21			
Benzo(g,h,i)perylene	962.91	22.72	623.58	11.77			
2-Methylnaphthalene	196.52	36.10	126.66	18.71			
1-Methylnaphthalene	85.11	27.47	42.69	14.23			
2.6-Dimethylnaphthalene	95.15	8.21	60.49	4.25			
1.6.7-Trimethylnaphthalene	93.47	17.28	60.63	8.95			
1-Methylphenanthrene	526.18	16.33	335.51	8.46			
2 I							

- NA Not Applicable Q Results Outside QC

Interference I

B Blank Contamination >3xMDL

Client Sample ID Sample Descriptor Original Sample	SED-TP-01 1206	SED-CW-01 1315			
Semula True	C45286		C45287		
Sample Type	SAMP		SAMP		
500	EC176		EC176		
Dry Weight	11.16		6.04		
Wet Weight	19.74		19.28		
Sample Size Units	Grams		Grams		
Matrix	Sediment		Sediment		
% solid	56.5		31.3		
% Lipid	ng/g		ng/g		
Reporting Units	Dry		Dry		
Calculation Basis (dry/wet)					
QC Batch ID	M3324		M3324		
Method	GCMS		GCMS		
Collection Date	12/15/04		12/15/04		
Receive Date	12/16/04		12/16/04		
Analysis Date	12/20/04		12/20/04		
	01/06/05		01/06/05		
Surrogate Compounds	%Recovery		%Recovery		
d8-Naphthalene	93.3		91.5		
d10-Acenaphthene	98.1		117.0		
d10-Phenanthrene	101.2		115.5		
d12-Chrysene	112.1		102.7		
d12-Perylene	10.4	Q	55.7		
Total PAHs	Concentration		Concentration		
Total PAHs with Perylene	948.4		9916.6		
Total PAHs without Perylene	737.8		9540.8		
Total NS&T PAHs	595.4	5309.6			

- ND Not Detected
- <MDL J
- NA Not Applicable Q Results Outside QC
- Interference Ι
- B Blank Contamination >3xMDL

Client Sample ID	SED-TP-01		SED-CW-01			
Sample Descriptor	1206			1315		
Original Sample						
GERG ID	C45286			C45287		
Sample Type	SAMP			SAMP		
SDG	EC176			EC176		
PAH Compounds	Concentration	MDI		Concentration	MDI	
Nantthalana	42.05	0.47		01.25	0.87	
C1 Naphthalenes	42.03	0.47		91.33	0.87	
C2-Naphthalenes	15.55 8 24	0.20		92.10	2.80	
C2-Naphthalenes	6.34 6.45	0.39		04.14 54.60	0.72	
C4 Naphthalenes	0.45	0.82		25.14	1.52	
Biphenyl	4.95	0.82		55.14 15.22	0.50	
A cenanthhylene	5.99	0.32		13.32	0.39	
A canaphthana	5.00	0.46		00.37 24.62	0.84	
Fluorene	4.08	0.79		24.02	1.40	
C1 Eluorenes	12.19	0.40		55.44	0.73	
C2 Eluoronos	12.10	0.81		61.09	1.49	
C2-Fluorenes	12.00	0.81		03.98	1.49	
Departhrene	15.36	0.81		112.91	1.49	
Anthracene	39.93	0.39		328.81	0.72	
C1 Phononthronos/Anthronos	20.55	0.44		234.93	0.80	
C1-Phenanthrenes/Anthracenes	22.20	0.78		222.39	1.44	
C2-Phenanthrenes/Anthracenes	19.32	0.78		178.36	1.44	
C4 Phononthronos/Anthroponos	15.91	0.78		114.55	1.44	
C4-Phenanthrenes/Anthracenes	19.07	0.78		53.55	1.44	
C1 Dihargathianhanas	3.03	0.26		22.80	0.48	
C1-Dibenzothiophenes	3.40	0.52		30.09	0.96	
C2-Diberzothiophenes	5.48	0.52		43.96	0.96	
C3-Dibenzotniopnenes	5.02	0.52		42.78	0.96	
Pluoranunene	61.85	0.71		857.55	1.32	
Pyrene	56.52	0.81		762.64	1.50	
C1-Fluoranthenes/Pyrenes	34.10	1.53		426.43	2.82	
C2-Fluoranthenes/Pyrenes	24.85	1.53		286.03	2.82	
CS-Fluoranthenes/Pyrelies	12.86	1.53		130.97	2.82	
Chrysone	30.01	0.41		571.56	0.77	
C1 Character	32.55	0.49		559.09	0.91	
C1-Chrysenes	21.04	0.98		350.05	1.82	
C2-Chrysenes	9.52	0.98		141.13	1.82	
C4 Character	3.20	0.98	-	39.49	1.82	
C4-Chrysenes	0.95	0.98	J	6.29	1.82	
Benzo(b)fluoranthene	47.51	0.45		872.54	0.84	
Benzo(k)nuorannene	11.00	0.39		244.34	0.73	
Benzo(e)pyrene	21.45	0.42		432.26	0.78	
Benzo(a)pyrene	26.49	0.70		705.41	1.30	
rei yielie	210.61	0.99		375.86	1.84	
Dihang(a, h)anthrasana	23.71	0.58		567.69	1.07	
Panzo(a h i)porvlopo	4.84	0.29		117.44	0.53	
Benzo(g,n,r)peryrene	18.35	0.54		440.56	1.00	
2-Methylnaphthalene	10.99	0.86		58.34	1.59	
1-Methylnaphthalene	4.36	0.65		33.76	1.21	
2,6-Dimethylnaphthalene	4.98	0.20		28.16	0.36	
1,6,7-Trimethylnaphthalene	2.76	0.41		17.98	0.76	
1-Methylphenanthrene	7.32	0.39		59.04	0.72	

NA Not Applicable Q Results Outside QC

I Interference

B Blank Contamination >3xMDL

Client Sample ID	SED-PP-01	SED-PP-02			
Sample Descriptor	10:41	10:49			
Original Sample					
GERG ID	C45291	C45292			
Sample Type	SAMP	SAMP			
SDG	F1178	F1178			
Dry Weight	14.49	13.48			
Wet Weight	20.67	21.75			
Sample Size Units	Grams	Grams			
Matrix	Sediment	Sediment			
% solid	70.1	62.0			
% Lipid	ng/g	ng/g			
Reporting Units	Dry	Dry			
Calculation Basis (dry/wet)					
QC Batch ID	M3324	M3324			
Method	GCMS	GCMS			
Collection Date	12/17/04	12/17/04			
Receive Date	12/18/04	12/18/04			
Analysis Date	12/20/04	12/20/04			
	01/06/05	01/06/05			
Surrogate Compounds	%Recovery	%Recovery			
d8-Naphthalene	84.7	90.7			
d10-Acenaphthene	103.6	109.1			
d10-Phenanthrene	108.5	114.7			
d12-Chrysene	116.4	119.0			
d12-Perylene	64.7	64.9			
Total PAHs	Concentration	Concentration			
Total PAHs with Perylene	1333.4	1283.3			
Total PAHs without Perylene	1220.8	1167.9			
Total NS&T PAHs	665.5	678.1			

- ND Not Detected
- <MDL J
- NA Not Applicable Q Results Outside QC
- Interference I
- B Blank Contamination >3xMDL

Client Sample ID SED-PP-01			SED-PP-02				
Sample Descriptor	10:41		10:49				
Original Sample							
GERG ID	C45291		C45292				
Sample Type	SAMP		SAMP				
SDG	F1178		F1178				
PAH Compounds	Concentration	MDL	Concentration	MDL			
Naphthalene	39.44	0.36	33.89	0.39			
C1-Naphthalenes	31.54	1.17	27.32	1.25			
C2-Naphthalenes	17.30	0.30	15.67	0.32			
C3-Naphthalenes	13.56	0.63	12.10	0.68			
C4-Naphthalenes	9.62	0.63	8.14	0.68			
Biphenyl	6.28	0.25	5.34	0.26			
Acenaphthylene	10.03	0.35	9.55	0.38			
Acenaphthene	5.66	0.61	5.20	0.65			
Fluorene	15.65	0.31	14.44	0.33			
C1-Fluorenes	11.92	0.62	11.77	0.67			
C2-Fluorenes	17.20	0.62	15.88	0.67			
C3-Fluorenes	24.85	0.62	17.07	0.67			
Phenanthrene	42.56	0.30	41.92	0.32			
Anthracene	34.74	0.34	33.21	0.36			
C1-Phenanthrenes/Anthracenes	34.55	0.60	33.26	0.64			
C2-Phenanthrenes/Anthracenes	34.17	0.60	29.45	0.64			
C3-Phenanthrenes/Anthracenes	27.06	0.60	24.61	0.64			
C4-Phenanthrenes/Anthracenes	18.37	0.60	29.10	0.64			
Dibenzothiophene	4.31	0.20	4.00	0.22			
C1-Dibenzothiophenes	7.15	0.40	6.12	0.43			
C2-Dibenzothiophenes	12.85	0.40	10.80	0.43			
C3-Dibenzothiophenes	15.35	0.40	13.86	0.43			
Fluoranthene	77.57	0.55	76.97	0.59			
Pyrene	73.74	0.63	71.40	0.67			
C1-Fluoranthenes/Pyrenes	61.50	1.17	57.86	1.26			
C2-Fluoranthenes/Pyrenes	55.27	1.17	43.38	1.26			
C3-Fluoranthenes/Pyrenes	52.14	1.17	24.92	1.26			
Benzo(a)anthracene	48.07	0.32	56.53	0.34			
Chrysene	49.29	0.38	53,54	0.41			
C1-Chrysenes	46.69	0.76	48.58	0.82			
C2-Chrysenes	29.53	0.76	22.31	0.82			
C3-Chrysenes	19.14	0.76	8.79	0.82			
C4-Chrysenes	2.21	0.76	1.28	0.82			
Benzo(b)fluoranthene	66.96	0.35	79.63	0.37			
Benzo(k)fluoranthene	20.15	0.30	21.48	0.33			
Benzo(e)pyrene	38.11	0.32	40.39	0.35			
Benzo(a)pyrene	62.75	0.54	74.20	0.58			
Perylene	112.55	0.76	115.34	0.82			
Indeno(1,2,3-c,d)pyrene	39.89	0.44	41.68	0.48			
Dibenz(a,h)anthracene	9.07	0.22	9.34	0.24			
Benzo(g,h,i)perylene	34.60	0.42	32.95	0.45			
2-Methylnaphthalene	23.05	0.66	19.83	0.71			
1-Methylnaphthalene	8.49	0.50	7.49	0.54			
2.6-Dimethylnaphthalene	9.89	0.15	8.93	0.16			
1.6.7-Trimethylnaphthalene	4.52	0.32	4.12	0.34			
1-Methylphenanthrene	8.56	0.30	10.09	0.32			

- NA Not Applicable Q Results Outside QC

I Interference

B Blank Contamination >3xMDL

Client Sample ID Sample Descriptor Original Sample GERG ID Sample Type SDG	SED-PP-03 10:58 C45293 SAMP F1178	
Dry Weight Wet Weight Sample Size Units Matrix % solid % Lipid Reporting Units Calculation Basis (dry/wet)	15.04 22.92 Grams Sediment 65.6 ng/g Dry	
QC Batch ID Method Collection Date Receive Date Extraction Date Analysis Date	M3324 GCMS 12/17/04 12/18/04 12/20/04 01/06/05	
Surrogate Compounds d8-Naphthalene d10-Acenaphthene d10-Phenanthrene d12-Chrysene d12-Perylene	%Recovery 76.6 88.0 104.4 104.0 46.8	
Total PAHs Total PAHs with Perylene Total PAHs without Perylene Total NS&T PAHs	Concentration 2104.3 1965.1 1063.0	

ND Not Detected

<MDL J

- NA Not Applicable Q Results Outside QC
- Interference I
- B Blank Contamination >3xMDL

Client Sample ID	SED-PP-03	
Sample Descriptor	10:58	
Original Sample		
GERG ID	C45293	
Sample Type	SAMP	
SDG	F1178	
PAH Compounds	Concentration	MDL
Naphthalene	59.02	0.35
C1-Naphthalenes	49.79	1.12
C2-Naphthalenes	30.01	0.29
C3-Naphthalenes	22.67	0.61
C4-Naphthalenes	16.62	0.61
Biphenyl	11.71	0.24
Acenaphthylene	17.26	0.34
Acenaphthene	7.61	0.59
Fluorene	26.80	0.30
C1-Fluorenes	19.65	0.60
C2-Fluorenes	27.87	0.60
C3-Fluorenes	45.45	0.60
Phenanthrene	7/ 13	0.00
Anthracene	18 56	0.22
C1-Phenanthrenes/Anthracenes	48.00	0.52
C2-Phenanthrenes/Anthracenes	51.69	0.58
C3-Phenanthrenes/Anthracenes	40.12	0.58
C4-Phenanthrenes/Anthracenes	49.12	0.58
Dibenzothionhene	55.58 7.50	0.38
C1-Dibenzothiophenes	1.39	0.19
C2-Dibenzothiophenes	21.04	0.39
C3-Dibenzothiophenes	21.60	0.39
Eluoranthene	27.01	0.59
Purene	129.45	0.55
C1-Eluoranthenes/Pyrenes	120.57	0.60
C2-Eluoranthenes/Pyrenes	98.28	1.15
C2 Fluoranthenes/Pyrenes	12.30	1.15
Benzo(a)anthracene	48.55	1.15
Chrysene	100.57	0.31
C1 Chrysenes	/6.94	0.37
C2 Chrysenes	/3.85	0.73
C2-Chrysenes	36.19	0.73
C4 Chrysenes	15.78	0.73
Benzo(b)fluoranthene	1.43	0.73
Benzo(k)fluoranthene	113.55	0.34
Panzo(a)pyrana	36.54	0.29
Banzo(a)pyrana	62.70	0.31
Derulana	104.52	0.52
Indeno(1,2,2, a d) nyrana	139.18	0.74
Dihanz(a, h)anthracana	69.57	0.43
Banzo(a h i)perulana	15.64	0.21
Belizo(g,ii,i)peryiene	55.92	0.40
2-Methylnaphthalene	36.61	0.64
1-Methylnaphthalene	13.18	0.49
2,6-Dimethylnaphthalene	19.31	0.14
1,6,7-Trimethylnaphthalene	7.73	0.31
1-Methylphenanthrene	16.45	0.29

.

ND Not Detected

J <MDL

NA Not Applicable Q Results Outside QC

I Interference

B Blank Contamination >3xMDL

E.3. Alkane Anayses of Intertidal Sediment Samples

Client Sample ID	MDL	SED-RC-01		SED-RC-02		SED-RC-03	
Dry Weight	15.1	4.37		4.63		3.36	
Wet Weight		18.32		19.99		20.14	
Sample Size Units	Grams	Grams		Grams		Grams	
Matrix	Sediment	Sediment		Sediment		Sediment	
% solid		23.9		23.2		16.7	
Reporting Units	ng/g	ng/g		ng/g		ng/g	
Calculation Basis (dry/wet)	Dry	Dry		Dry		Dry	
QC Batch ID		M3324		M3324		M3324	
Method		GCFID		GCFID		GCFID	
Collection Date		12/14/04		12/14/04		12/14/04	
Receive Date		12/16/04		12/16/04		12/16/04	
Extraction Date		12/20/04		12/20/04		12/20/04	
Analysis Date		01/08/05		01/08/05		01/08/05	
Surrogate Compounds		%Recovery		%Recovery		%Recovery	
d26-C12		63.0		75.0		72.0	
d42-C20		75.0		77.0		87.0	
d50-C24		44.0		62.0		67.0	
d62-C30		225.0		55.0		74.0	
Alkanes		Concentration	MDL	Concentration	MDL	Concentration	MDL
n-C10	5.7	118.3	19.7	167.9	18.6	161.1	25.7
n-C11	10.5	142.1	36.3	178.4	34.3	191.3	47.3
n-C12	18.4	271.2	63.5	111.6	60.0	126.3	82.7
n-C13	5.3	185.0	18.3	236.7	17.3	255.0	23.9
n-C14	7.0	111.8	24.2	159.9	22.8	153.8	31.5
n-C15	23.9	1069.8	82.2	2879.4	77.6	610.9	107.1
n-C16	34.5	154.5	119.0	167.3	112.4	189.0	155.0
n-C17	24.0	3201.3	85.9	1763.1	81.1	2209.4	111.8
Dristana	20.1	228.3	60 1	213.1	65.3	212.8	00.1
n-C18	34.0	367.7	117.3	421.6	110.8	333.0	152.8
Dhutana	7.2	2063	24.0	302.0	23.5	334.7	32.4
n_C10	21.8	200.5	75.2	300.5	71.0	343.1	07.0
n-C20	25.7	400.7	99.5	443.5	93.5	560.5	115.2
n-C21	25.6	521.6	99.3	745.6	93.3	603.2	114.0
n-C21	10.0	220.2	64.7	574.9	61.2	555.4	0.4.2
n-C22	14.0	2025 7	51.0	1904.4	49.2	333.4	66.4
n-025	14.0	2033.7	06.0	1804.4	40.2	2323.7	110.2
n-024	23.0	430.0	30.2	303.0	20.7	357.9	42.5
n-025	9.4	2027.2	22.3	2010.7	22.0	1052.0	70.5
n-C20	8.0	908.7	29.5	4060.9	27.9	5226.0	20.2
n-027	0.5	1000.0	22.3	4009.8	64.2	1022.6	29.5
n-028	19.9	02541	200.0	7150.6	04.7	1237.3	39.2
n-029	8.7	8350.1	29.9	/150.0	28.2	8325.8	38.9
n-C30	25.9	1291.0	89.1	1225.5	84.2	1415.0	110.1
n-031	10.1	0191.8	34.8	5572.8	52.9	5997.9	45.5
n-C32	21.5	885.1	75.5	/0/.4	09.5	805.8	95.8
n-C33	4.8	1652.3	16.6	1874.7	15.7	1745.3	21.6
n-C34	26.3	308.3	90.6	801.4	85.6	1148.3	118.0
n-C35	7.5	436.5	25.7	791.1	24.3	496.1	33.5
Total Alkanes		38558.6		37703.9		40835.8	
Reporting Units	ug/g	ug/g		ug/g		ug/g	
Total Resolved	0.5	137.2	1.7	132.5	1.6	154.9	2.2
Total UCM	10.0	\$19.1	34.5	669.6	32.6	669.6	44.9
T . 1 T . 1	10.0	956.2	34.5	802.1	32.6	824.4	44.0

Client Sample ID Sample Descriptor	MDL	SED-TI-01		SED-TI-02		SED-TI-03	
Original Sample							
GERG ID		C45283		C45284		C45285	
Sample Type	MDL	SAMP		SAMP		SAMP	
SDG		EC176		EC176		EC176	
D W/11		10.15		12.20		10.00	
Dry Weight		13.15		13.28		12.82	
Wet Weight		18.64		20.22		19.85	
Sample Size Units	Grams	Grams		Grams		Grams	
Matrix	nt	Sediment		Sediment		Sediment	
% solid		70.5		65.7		64.6	
% Lipid							
Reporting Units	ng/g	ng/g		ng/g		ng/g	
Calculation Basis (dry/wet)	Dry	Dry		Dry		Dry	
				·			
QC Batch ID		M3324		M3324		M3324	
Method		GCFID		GCFID		GCFID	
Collection Date		12/15/04		12/15/04		12/15/04	
Receive Date		12/16/04		12/16/04		12/16/04	
Extraction Date		12/20/04		12/20/04		12/20/04	
Analysis Date		01/08/05		01/08/05		01/08/05	
Surrogate Compounds		%Recoverv		%Recoverv		%Recoverv	
d26-C12		75.0		75.0		55.0	
d42-C20		76.0		75.0		80.0	
d50-C24		81.0		77.0		109.0	
d62-C30		60.0		77.0		83.0	
Allzonos		Concentration	MDI	Concentration	MDI	Concentration	MDI
n C10	57	146.5	MDL 6.6	126.5	6.5		MDL 67
n-C11	$-\frac{5.7}{10.5}$	140.5	12.1	93.9	12.0	71.5	12.4
n-C12	$-\frac{10.3}{18.4}$	110.4	21.1	105.6	20.9	68.0	21.6
n-C13	5 3	/13.9	61	341.8	6.0	210.8	63
n-C14	7.0	100.7	8.0	105.6	8.0	67.3	83
n-C15	23.9	115.0	27.3	117.7	27.1	88.7	28.0
n-C16	34.5	139.5	39.6	147.4	39.2	97.4	40.6
n-C17	24.9	104.9	28.6	148.7	28.3	113.3	29.3
Pristane	20.1	123.9	23.0	65.2	22.8	90.9	23.6
n-C18	34.0	63.4	39.0	35.7	38.6	27.3	40.0
Phytane	7.2	32.5	8.3	41.1	8.2	40.2	8.5
n-C19	21.8	692.2	25.0	746.4	24.7	435.4	25.6
n-C20	25.7	46.6	29.4	76.8	29.1	51.3	30.2
n-C21	25.6	292.7	29.3	425.7	29.0	245.9	30.1
n-C22	18.8	174.5	21.5	227.4	21.3	148.5	22.1
n-C23	14.8	34.7	17.0	116.0	16.8	157.0	17.4
n-C24	25.0	1005.2	28.7	1195.4	28.4	738.6	29.4
n-C25	9.4	192.6	10.8	271.8	10.7	264.0	11.1
n-C26	8.6	659.9	9.8	663.5	9.7	457.5	10.1
n-C27	6.5	171.2	7.5	269.4	7.4	315.7	7.7
n-C28	19.9	1624.8	22.8	2727.5	22.6	2252.2	23.4
n-C29	8.7	192.0	9.9	333.3	9.8	479.1	10.2
n-C30	25.9	7.4	29.6	17.4	29.3	1.1	30.4
n-C31	10.1	129.4	11.6	342.0	11.5	328.1	11.9
n-C32	21.3	122.7	24.5	128.3	24.2	149.0	25.1
n-C33	4.8	247.9	5.5	317.9	5.5	314.1	5.7
n-C34	_ 26.3 _	163.9	30.1	129.9	29.8	475.2	30.9
n-C35	7.5	134.3	8.5	104.1	8.5	115.2	8.8
Total Alkanes		7353.1		9421.7		7898.1	
Reporting Units	ug/g	ug/g		ug/g		ug/g	
Total Resolved	0.5	66.6	06	71.0	0.6	15 5	0.6
	0.5	00.0	0.0	/1.2	0.0	45.5	0.0
Total UCM	0.5	218.2	0.8 11.5	218.2	11.3	191.0	11.8

Client Sample ID	MDL	SED-TP-01		SED-CW-01		SED-PP-01	
Sample Descriptor							
Original Sample							
GERG ID		C45286		C45287		C45291	
Sample Type	MDL	SAMP		SAMP		SAMP	
SDG		EC176		EC176		EC178	
Dry Weight	15.1	11.16		6.04		14.49	
Wet Weight		19.74		19.28		20.67	
Sample Size Units	Grams	Grams		Grams		Grams	
Matrix	Sediment	Sediment		Sediment		Sediment	
% solid		56.5		31.3		70.1	
% Lipid							
Reporting Units	ng/g	ng/g		ng/g		ng/g	
Calculation Basis (dry/wet)	Dry	Dry		Dry		Dry	
QC Batch ID		M3324		M3324		M3324	
Method		GCFID		GCFID		GCFID	
Collection Date		12/15/04		12/15/04		12/17/04	
Receive Date		12/16/04		12/16/04		12/18/04	
Extraction Date		12/20/04		12/20/04		12/20/04	
Analysis Date		01/08/05		01/08/05		01/08/05	
Surrogate Compounds		%Recovery		%Recovery		%Recovery	
d26-C12		81.0		77.0		82.0	
d42-C20		101.0		104.0		90.0	
d50-C24		85.0		83.0		86.0	
d62-C30		64.0		497.0		86.0	
Alkanes		Concentration	MDL	Concentration	MDL	Concentration	MDL
n-C10	5.7	25.8	7.7	48.9	14.3	146.1	6.0
n-C11	10.5	37.5	14.2	51.1	26.3	155.1	11.0
n-C12	18.4	23.5	24.9	168.5	46.0	82.4	19.2
n-C13	5.3	11.0	7.2	43.8	13.3	52.2	5.5
n-C14	7.0	14.2	9.5	64.2	17.5	26.2	7.3
n-C15	23.9	23.0	32.2	237.8	59.5	26.0	24.8
n-C16	34.5	13.4	46.6	104.9	86.2	34.3	35.9
n-C17	24.9	52.9	33.6	650.7	62.2	65.4	25.9
Pristane	20.1	2.2	27.1	117.0	50.1	23.2	20.9
n-C18	34.0	27.8	45.9	223.2	85.0	39.4	35.4
Phytane	7.2	23.0	9.7	153.7	18.0	29.0	7.5
n-C19	21.8	53.5	29.4	213.2	54.4	45.7	22.7
n-C20	25.7	58.0	34.6	310.5	64.1	25.3	26.7
n-C21	25.6	146.1	34.5	506.9	63.9	63.7	26.6
n-C22	18.8	92.3	25.4	245.0	46.9	29.4	19.5
n-C23	14.8	541.5	20.0	982.1	36.9	155.3	15.4
n-C24	25.0	185.5	33.8	488.5	62.4	58.2	26.0
n-C25	9.4	736.0	12.7	1868.1	23.5	238.5	9.8
n-C26	8.6	206.6	11.6	562.5	21.4	103.7	8.9
n-C27	6.5	1082.0	8.8	3997.0	16.3	363.0	6.8
n-C28	19.9	322.3	26.8	1019.7	49.6	131.6	20.7
n-C29	8.7	1655.1	11.7	9598.2	21.6	591.6	9.0
n-C30	25.9	238.7	34.9	1140.2	64.5	155.2	26.9
n-C31	10.1	1373.9	13.6	7976.1	25.2	548.5	10.5
n-C32	21.3	229.9	28.8	596.5	53.3	223.6	22.2
n-C33	4.8	544.5	6.5	2862.9	12.0	262.8	5.0
n-C34	26.3	89.4	35.5	813.6	65.6	65.7	27.3
n-C35	7.5	200.3	10.1	729.0	18.6	111.4	7.8
Total Alkanes		8009.9		35773.5		3852.4	
Reporting Units	11σ/σ	ug/g		ug/g		ug/g	
Total Resolved	0.5	20.5	0.7	120.4	12	11.6	0.5
Total UCM	10.0	36.1	13.5	318.4	25.0	83.3	10.4
Total TDH	10.0	56.6	13.5	438.9	25.0	94.9	10.4

Client Sample ID Sample Descriptor Original Sample	MDL	SED-PP-02		SED-PP-03	
GERG ID		C45292		C45293	
Sample Type	MDL	SAMP		SAMP	
SDG		EC178		EC178	
Dry Weight	15.1	13.48		15.04	
Wet Weight		21.75		22.92	
Sample Size Units	Grams	Grams		Grams	
Matrix	Sediment	Sediment		Sediment	
% solid	bediment	62 0		65.6	
% Lipid		02.0		05.0	
Reporting Units	no/o	no/o		ng/g	
Calculation Basis (dry/w	et) Dry	Dry		Dry	
OC Batch ID		M3324		M3324	
Method		GCFID		GCFID	
Collection Date		12/17/04		12/17/04	
Receive Date		12/18/04		12/18/04	
Extraction Date		12/20/04		12/20/04	
		12/20/04		12/20/04	
Analysis Date		01/08/05		01/08/05	
Surrogate Compounds		%Recovery		%Recovery	
d26-C12		87.0		83.0	
d42-C20		94.0		95.0	
d50-C24		90.0		85.0	
d62-C30		84.0		83.0	
Alkanes		Concentration	MDL	Concentration	MDL
n-C10	5.7	65.3	6.4	53.6	5.7
n-C11	10.5	66.2	11.8	59.1	10.6
n-C12	18.4	47.3	20.6	45.4	18.5
n-C13	5.3	15.2	5.9	48.8	5.3
n-C14	7.0	19.6	7.8	24.2	7.0
n-C15	23.9	20.1	26.7	26.0	23.9
n-C16	34.5	14.6	38.6	19.4	34.6
n-C17	24.9	59.4	27.9	58.5	25.0
Pristane	20.1	20.2	22.4	33.1	20.1
n-C18	34.0	58.6	38.1	29.9	34.1
Phytane	7.2	25.5	8.1	35.0	7.2
n-C19	21.8	48.3	24.4	65.3	21.8
n-C20	25.7	27.0	28.7	30.2	25.7
n-C21	25.6	66.9	28.6	80.8	25.6
n-C22	18.8	36.0	21.0	31.2	18.8
n-C23	14.8	196.6	16.5	151.6	14.8
n-C24	25.0	108.5	28.0	82.6	25.1
n-C25	9.4	311.9	10.5	294.7	9.4
n-C26	8.6	125.9	9.6	116.3	8.6
n-C27	6.5	468.2	7.3	429.0	6.5
n-C28	19.9	166.5	22.2	160.3	19.9
n-C29	8./	672.0	9.7	692.3	8.7
n-C30	25.9	141.2	28.9	184.4	25.9
n-C31	10.1	000.7	11.5	039.0	10.1
n-C32	21.3	311.0	23.9 5 4	242.0	∠1.4 1 9
n-C34	4.8	203.3	3.4 20.4	203.2	4.0 26.2
n-C35	20.3	47.9	29.4	0.0 147.4	20.5
II-C3J	1.5	144.1	0.3	147.4	1.5
Total Alkanes		4153.7		4073.1	
Reporting Units	ug/g	ug/g		ug/g	
Total Resolved	0.5	15.2	0.6	10.9	0.5
Total UCM		(2 , 2 , 1)	11.0	101.2	10.0
	10.0	63.3	11.2	104.2	10.0
Total TPH	10.0 10.0	63.3 78.5	11.2	104.2	10.0 10.0

GERG ID	Sample Description	Matrix	Sample Type	Collection Date	Collection Time	SDG	Receipt Date	QC Batch	Preparation Date	Analysis Date	% Dry Wt	Dry Wt	% TOC	DL	Qual	RPD	% Recov
Samples																	
C45280	SED-RC-01	Sediment	SAMP	12/14/2004	1020	EC176	12/16/2004	TOC517	6/20/2005	6/23/2005	23.9	0.101	5.34	0.12			
C45281	SED-RC-02	Sediment	SAMP	12/14/2004	1036	EC176	12/16/2004	TOC517	6/20/2005	6/23/2005	23.2	0.104	4.88	0.12			
C45282	SED-RC-03	Sediment	SAMP	12/14/2004	1107	EC176	12/16/2004	TOC517	6/20/2005	6/23/2005	16.7	0.100	7.66	0.12			
C45283	SED-TI-01	Sediment	SAMP	12/15/2004	1022	EC176	12/16/2004	TOC517	6/20/2005	6/23/2005	70.5	0.102	4.00	0.12			
C45284	SED-TI-02	Sediment	SAMP	12/15/2004	1026	EC176	12/16/2004	TOC517	6/20/2005	6/23/2005	65.7	0.101	2.71	0.12			
C45285	SED-TI-03	Sediment	SAMP	12/15/2004	1030	EC176	12/16/2004	TOC517	6/20/2005	6/23/2005	64.6	0.102	2.37	0.12			
C45286	SED-TP-01	Sediment	SAMP	12/15/2004	1206	EC176	12/16/2004	TOC517	6/20/2005	6/23/2005	56.5	0.101	1.53	0.12			
C45287	SED-CW-01	Sediment	SAMP	12/15/2004	1315	EC176	12/16/2004	TOC517	6/20/2005	6/23/2005	31.3	0.101	5.24	0.12			
C45291	SED-PP-01	Sediment	SAMP	12/17/2004	1041	F1178	12/18/2004	TOC517	6/20/2005	6/23/2005	70.1	0.102	0.81	0.12			
C45292	SED-PP-02	Sediment	SAMP	12/17/2004	1049	F1178	12/18/2004	TOC517	6/20/2005	6/23/2005	62.0	0.102	1.11	0.12			
C45293	SED-PP-03	Sediment	SAMP	12/17/2004	1058	F1178	12/18/2004	TOC517	6/20/2005	6/23/2005	65.6	0.101	1.24	0.12			
QA Proc Blanks																	
PB062305E	Preparation Blank	Sediment	BLANK					TOC517	6/20/2005	6/23/2005		0.300	0.04	0.04	l		
Duplicates																	
C45280 C45280D	SED-RC-01 SED-RC-01	Sediment Sediment	DUP	12/14/2004 12/14/2004	1020	EC176 EC176	12/16/2004 12/16/2004	TOC517 TOC517	6/20/2005 6/20/2005	6/23/2005 6/23/2005	23.9	0.101	5.34 5.91	0.12		10.2%	
SRM	(Certified value 4.4%)	6 . No. 1						500012	600.0005	602,0005		0.102	3.60				00.49/
SRM062305 SRM062305D	NIST 1944 NIST 1944	Sediment Sediment	SRM					TOC517 TOC517	6/20/2005 6/20/2005	6/23/2005 6/23/2005		0.103	3.89 3.39	0.12 0.12		13.7%	88.4% 77.0%

E.5. Biomarker Analyses

STERANE AND TRITERPANE BIOMARKERS Project: ATHOS I Oil Spill

Project: ATHOS I Oil Spill Lab Sample ID: C45280

Sample Descriptor: SED-RC-01 Analysis Date: 1/7/2005

No.	COMPOUND NAME	RT	ION	AREA	CONC	%
	TERPANES				(ng/g)	
н	C19 TRICYCLIC TERPANE	28.94	191	1271	12.67	0.5
Α	C20 TRICYCLIC TERPANE	30.71	191	13714	136.66	5.5
в	C21 TRICYCLIC TERPANE	32.57	191	8137	\$1.09	3.3
С	C22 TRICYCLIC TERPANE	34.42	191	3023	30.12	1.2
D	C23 TRICYCLIC TERPANE	36.73	191	18654	185.89	7.5
E	C24 TRICYCLIC TERPANE	37.98	191	10001	99.66	4.0
1	C25 TRICYCLIC TERPANE	40.64	191	11477	114.37	4.6
4	C24 TETRACYCLIC TERPANE	42.57	191	7376	73.50	3.0
5	C26 TRICYCLIC TERPANE (22R)	42.64	191	2987	29.77	1.2
6	C26 TRICYCLIC TERPANE (228)	42.78	191	4202	41.87	1.7
9	C28 TRICYCLIC TERPANE (22R)	44.32	191	1637	16.31	0.7
10	C28 TRICYCLIC TERPANE (228)	45.11	191	556	5.54	0.2
11	C29 TRICYCLIC TERPANE (22R)	47.25	191	6004	59.83	2.4
12	C29 TRICYCLIC TERPANE (228)	47.52	191	3064	30.53	1.2
13	C27 18a-22,29,30-TRISNORNEOHOPANE (Ts)	49.86	191	9353	93.20	3.8
Ι	C27 PENTACYCLIC TERPANE (Y)	50.52	191	233	2.32	0.1
14	C27 17a-22,29,30-TRISNORHOPANE (Tm)	50.79	191	10511	104.74	4.2
15	C30 TRICYCLIC TERPANE (22R)	51.08	191	3714	37.01	1.5
16	C30 TRICYCLIC TERPANE (228)	51.34	191	1610	16.04	0.6
17	C28 17a,21b-28,30-BISNORHOPANE	52.87	191	4476	44.60	1.8
J	C29 17a,21b-25-NORHOPANE	52.97	191	314	3.13	0.1
19	C29 17a,21b-30-NORHOPANE	53.61	191	26165	260.74	10.5
20	C29 18a-NORNEOHOPANE (29Ts)	53.69	191	4429	44.14	1.8
F	C30 DIAHOPANE	54.04	191	2005	19.98	0.8
21	C29 17b,21a-30-NORMORETANE	54.70	191	4836	48.19	1.9
22	C30 18a-OLEANANE	55.03	191	3784	37.71	1.5
23	C30 17a,21b-HOPANE	55.36	191	28847	287.46	11.6
24	C30 17b,21a-MORETANE	56.20	191	5149	51.31	2.1
27	C31 17a,21b-HOMOHOPANE (22S)	57.40	191	9460	94.27	3.8
28	C31 17a,21b-HOMOHOPANE(22R)	57.64	191	7361	73.35	3.0
G	C30 GAMMACERANE	58.04	191	2519	25.10	1.0
30	C32 17a,21b-HOMOHOPANE (22S)	58.94	191	3356	33.44	1.4
31	C32 17a,21b-HOMOHOPANE (22R)	59.33	191	3525	35.13	1.4
34	C33 17a,21b-HOMOHOPANE (22S)	60.92	191	3552	35.40	1.4
35	C33 17a,21b-HOMOHOPANE (22R)	61.35	191	2516	25.07	1.0
36	C34 17a,21b-HOMOHOPANE (22S)	62.61	191	7021	69.96	2.8
37	C34 17a,21b-HOMOHOPANE (22R)	63.33	191	8712	86.82	3.5
38	C35 17a,21b-HOMOHOPANE (22S)	64.93	191	1975	19.68	0.8
39	C35 17a,21b-HOMOHOPANE (22R)	65.67	191	844	8.41	0.3

STERANE AND TRITERPANE BIOMARKERS Project: ATHOS I Oil Spill

Project: ATHOS I Oil Spill Lab Sample ID: C45280 Sample Descriptor: SED-RC-01

Analysis Date: 1/7/2005

No.	COMPOUND NAME	RT	ION	AREA	CONC	%
	STERANES				(ng/mg)	
Α	C21 DIAPREGNANE	0.00	217	0	0.00	0.0
1	C21 PREGNANE	34.81	217	4724	71.45	7.9
в	C22 DIAHOMOPREGNANE	34.94	217	2399	36.28	4.0
2	C22 HOMOPREGNANE	37.36	217	3160	47.80	5.3
3	C27 13b,17a DIASTERANE (20S)	44.98	217	3943	60.34	6.6
4	C27 13b,17a DIASTERANE (20R)	45.70	217	2306	35.29	3.9
8	C27 13a,17b DIASTERANE (20S)	46.32	217	1249	19.12	2.1
9	C27 13a,17b DIASTERANE (20R)	46.67	217	1597	24.44	2.7
10	C28 13b,17a DIASTERANE (20S) (24R/24S ?)	47.60	217	215	3.29	0.4
11	C28 13b,17a DIASTERANE (20S) (24R/24S ?)	47.80	217	1566	23.97	2.6
14+15	C28 13b,17a DIASTERANE (20R) (24R/24S ?)	48.17	217	637	9.75	1.1
16	C28 13a,17b DIASTERANE (20S)	48.34	217	626	9.70	1.1
17	C27 5a,14a,17a STERANE (20S)	48.42	217	2862	44.33	4.9
18	C27 5a,14b,17b ISOSTERANE (20R)	48.61	217	2451	37.96	4.2
	+ C29 13b,17a DIASTERANE (20S)					
19	C27 5a,14b,17b ISOSTERANE (20S)	48.83	217	2502	38.75	4.3
20	C28 13a,17b DIASTERANE (20R)	49.02	217	385	5.96	0.7
22	C27 5a,14a,17a STERANE (20R)	49.24	217	1711	26.50	2.9
23	C29 13b,17a DIASTERANE (20R)	49.51	217	3105	48.09	5.3
24	C29 13a,17b DIASTERANE (20S)	49.94	217	1650	25.56	2.8
26	C28 5a,14a,17a STERANE (20S)	50.48	217	883	14.58	1.6
27	C29 13a,17b DIASTERANE (20R)	50.60	217	1458	24.07	2.7
28	C28 5a,14b,17b ISOSTERANE (20R)	50.79	217	2324	38.37	4.2
29	C28 5a,14b,17b ISOSTERANE (20S)	50.99	217	2142	35.36	3.9
31	C28 5a,14a,17a STERANE (20R)	51.55	217	1036	17.10	1.9
33	C29 5a,14a,17a STERANE (20S)	52.35	217	72	1.27	0.1
34	C29 5a,14b,17b ISOSTERANE (20R)	52.56	217	2899	51.24	5.6
35	C29 5a,14b,17b ISOSTERANE (20S)	52.74	217	2325	41.10	4.5
37	C29 5a,14a,17a STERANE (20R)	53.42	217	1983	35.05	3.9
38	C30 5a,14a,17a STERANE (20S)	53.61	217	1263	22.33	2.5
39	C30 5a,14b,17b ISOSTERANE (20R)	54.04	217	215	3.80	0.4
40	C30 5a,14b,17b ISOSTERANE (20S)	54.23	217	1292	22.84	2.5
41	C30 5a,14a,17a STERANE (20R)	54.95	217	1826	32.28	3.6

Percent composition data for saturated biomarkers are based on concentration data

STERANE AND TRITERPANE BIOMARKERS

Project: ATHOS I Oil Spill Lab Sample ID: C45280 Sample Descriptor: SED-RC-01 Analysis Date: 1/7/2005

PARAMETERS

A:LEVEL OF MATURITY

Steranes

<u>Terpanes</u>

		_	
% 20S C29 STERANES	3.5	% 22S C31 HOMOHOPANE	56.2
% C29 ISOSTERANES (abb)	71.8	% C30 HOPANE	84.9
% REGULAR STERANES	21.3	% TS/TS+TM (C27)	47.1
% ISOSTERANES	27.6	TS/TM (C27)	0.89
% DIASTERANES	34.0	% C30 MORETANE	15.1
% SHORT-CHAIN STERANES	17.1	% C29 NORMORETANE	15.6
		DIAHOPANE INDEX (%)	6.5
		% TRICYCLIC TERPANES	36.3

B:ORGANIC FACIES AND DEPOSITIONAL ENVIRONMENT

% TOTAL C20+C21	17.1	OLEANANE INDEX (%)	11.6
% TOTAL C27	29.5	GAMMACERANE INDEX (%)	8.0
% TOTAL C28	17.4	BISNORHOPANE INDEX (%)	13.4
% TOTAL C29	27.0	25-NORHOPANE INDEX (%)	1.1
% TOTAL C30	8.9	DIAHOPANE INDEX (%)	6.5
HOPANES/STERANES	2.7	% TRICYCLIC TERPANES	36.3
% DIASTERANES	34.0	% C24 TETRACYCLIC TERPANE	20.4
TOTAL STERANES (ppm)	908	% MORETANES	15.4
		% TOTAL C31 PENTACYCLICS	34.8
Other Biological Markers		% TOTAL C32 PENTACYCLICS	14.2
		% TOTAL C33 PENTACYCLICS	12.6
b-Carotane (ppm)	3.0	% TOTAL C34 PENTACYCLICS	32.6
		% TOTAL C35 PENTACYCLICS	5.8
		C35/C34 HOMOHOPANES	0.18
		29/30 HOPANES	0.91
		TOTAL TRITERPANES (ppm)	2475.0

All ratios based on concentrations

STERANE AND TRITERPANE BIOMARKERS Project: ATHOS I Oil Spill Lab Sample ID: C45280 Sample Descriptor: SED-RC-01 Analysis Date: 1/7/2005

STERANE AND TRITERPANE BIOMARKERS Project: ATHOS I Oil Spill

Lab Sample ID: C45281 Sample Descriptor: SED-RC-02 Analysis Date: 1/8/2005

No.	COMPOUND NAME	RT	ION	AREA	CONC	%
	TERPANES				(ng/g)	
Н	C19 TRICYCLIC TERPANE	28.96	191	1062	8.95	0.5
Α	C20 TRICYCLIC TERPANE	30.71	191	9620	81.05	4.1
в	C21 TRICYCLIC TERPANE	32.57	191	4124	34.74	1.8
С	C22 TRICYCLIC TERPANE	34.42	191	2169	18.27	0.9
D	C23 TRICYCLIC TERPANE	36.72	191	11482	96.73	4.9
Е	C24 TRICYCLIC TERPANE	37.98	191	6526	54.98	2.8
1	C25 TRICYCLIC TERPANE	40.64	191	7702	64.89	3.3
4	C24 TETRACYCLIC TERPANE	42.57	191	6009	50.62	2.6
5	C26 TRICYCLIC TERPANE (22R)	42.63	191	1933	16.28	0.8
б	C26 TRICYCLIC TERPANE (22S)	42.78	191	2816	23.72	1.2
9	C28 TRICYCLIC TERPANE (22R)	44.34	191	1671	14.08	0.7
10	C28 TRICYCLIC TERPANE (22S)	45.12	191	868	7.31	0.4
11	C29 TRICYCLIC TERPANE (22R)	47.25	191	3921	33.03	1.7
12	C29 TRICYCLIC TERPANE (22S)	47.51	191	2275	19.17	1.0
13	C27 18a-22,29,30-TRISNORNEOHOPANE (Ts)	49.86	191	9293	78.29	4.0
Ι	C27 PENTACYCLIC TERPANE (Y)	50.50	191	138	1.16	0.1
14	C27 17a-22,29,30-TRISNORHOPANE (Tm)	50.79	191	10255	86.40	4.4
15	C30 TRICYCLIC TERPANE (22R)	51.08	191	3101	26.12	1.3
16	C30 TRICYCLIC TERPANE (22S)	51.34	191	1376	11.59	0.6
17	C28 17a,21b-28,30-BISNORHOPANE	52.87	191	3594	30.28	1.5
J	C29 17a,21b-25-NORHOPANE	52.95	191	104	0.88	0.0
19	C29 17a,21b-30-NORHOPANE	53.61	191	28600	240.95	12.2
20	C29 18a-NORNEOHOPANE (29Ts)	53.69	191	5011	42.22	2.1
F	C30 DIAHOPANE	54.02	191	1788	15.06	0.8
21	C29 17b,21a-30-NORMORETANE	54.68	191	6126	51.61	2.6
22	C30 18a-OLEANANE	55.03	191	4820	40.61	2.1
23	C30 17a,21b-HOPANE	55.36	191	31441	264.88	13.5
24	C30 17b,21a-MORETANE	56.20	191	6747	56.84	2.9
27	C31 17a,21b-HOMOHOPANE (22S)	57.40	191	10199	85.92	4.4
28	C31 17a,21b-HOMOHOPANE(22R)	57.64	191	8503	71.64	3.6
G	C30 GAMMACERANE	58.05	191	2495	21.02	1.1
30	C32 17a,21b-HOMOHOPANE (22S)	58.94	191	3390	28.56	1.5
31	C32 17a,21b-HOMOHOPANE (22R)	59.35	191	4039	34.03	1.7
34	C33 17a,21b-HOMOHOPANE (22S)	60.92	191	4796	40.40	2.1
35	C33 17a,21b-HOMOHOPANE (22R)	61.35	191	4118	34.69	1.8
36	C34 17a,21b-HOMOHOPANE (22S)	62.61	191	7313	61.61	3.1
37	C34 17a,21b-HOMOHOPANE (22R)	63.33	191	11222	94.54	4.8
38	C35 17a,21b-HOMOHOPANE (22S)	64.93	191	1675	14.11	0.7
39	C35 17a,21b-HOMOHOPANE (22R)	65.67	191	1271	10.71	0.5

STERANE AND TRITERPANE BIOMARKERS Project: ATHOS I Oil Spill

Lab Sample ID: C45281

Sample Descriptor: SED-RC-02

Analysis Date: 1/8/2005

No.	COMPOUND NAME		ION	AREA	CONC	%
	STERANES				(ng/mg)	
Α	C21 DIAPREGNANE	33.06	217	1550	19.82	2.8
1	C21 PREGNANE	34.79	217	2819	36.05	5.2
в	C22 DIAHOMOPREGNANE	34.91	217	1266	16.19	2.3
2	C22 HOMOPREGNANE	37.36	217	1856	23.73	3.4
3	C27 13b,17a DIASTERANE (20S)	44.98	217	3492	45.18	6.5
4	C27 13b,17a DIASTERANE (20R)	45.70	217	2062	26.68	3.8
8	C27 13a,17b DIASTERANE (20S)	46.34	217	1125	14.56	2.1
9	C27 13a,17b DIASTERANE (20R)	46.69	217	857	11.09	1.6
10	C28 13b,17a DIASTERANE (20S) (24R/24S ?)	47.62	217	58	0.75	0.1
11	C28 13b,17a DIASTERANE (20S) (24R/24S ?)	47.78	217	1716	22.20	3.2
14+15	C28 13b,17a DIASTERANE (20R) (24R/24S ?)	48.17	217	548	7.09	1.0
16	C28 13a,17b DIASTERANE (20S)	48.34	217	650	8.51	1.2
17	C27 5a,14a,17a STERANE (20S)	48.42	217	2693	35.26	5.1
18	C27 5a,14b,17b ISOSTERANE (20R)	48.60	217	2293	30.02	4.3
	+ C29 13b,17a DIASTERANE (20S)					
19	C27 5a,14b,17b ISOSTERANE (20S)	48.83	217	2279	29.84	4.3
20	C28 13a,17b DIASTERANE (20R)	49.00	217	345	4.52	0.6
22	C27 5a,14a,17a STERANE (20R)	49.24	217	1333	17.45	2.5
23	C29 13b,17a DIASTERANE (20R)	49.49	217	2665	34.90	5.0
24	C29 13a,17b DIASTERANE (20S)	49.96	217	1216	15.92	2.3
26	C28 5a,14a,17a STERANE (20S)	50.50	217	587	8.19	1.2
27	C29 13a,17b DIASTERANE (20R)	50.62	217	1907	26.62	3.8
28	C28 5a,14b,17b ISOSTERANE (20R)	50.77	217	2304	32.16	4.6
29	C28 5a,14b,17b ISOSTERANE (20S)	51.01	217	1952	27.25	3.9
31	C28 5a,14a,17a STERANE (20R)	51.55	217	1140	15.91	2.3
33	C29 5a,14a,17a STERANE (20S)	52.37	217	14	0.21	0.0
34	C29 5a,14b,17b ISOSTERANE (20R)	52.56	217	2944	43.99	6.3
35	C29 5a,14b,17b ISOSTERANE (20S)	52.76	217	2020	30.19	4.3
37	C29 5a,14a,17a STERANE (20R)	53.40	217	2174	32.49	4.7
38	C30 5a,14a,17a STERANE (20S)	53.63	217	945	14.12	2.0
39	C30 5a,14b,17b ISOSTERANE (20R)	54.04	217	447	6.68	1.0
40	C30 5a,14b,17b ISOSTERANE (20S)	54.23	217	1314	19.64	2.8
41	C30 5a,14a,17a STERANE (20R)	54.95	217	2586	38.64	5.6

Percent composition data for saturated biomarkers are based on concentration data
Project: ATHOS I Oil Spill Lab Sample ID: C45281 Sample Descriptor: SED-RC-02 Analysis Date: 1/8/2005

PARAMETERS A:LEVEL OF MATURITY

Steranes Terpanes % 22S C31 HOMOHOPANE % 20S C29 STERANES 0.6 54.5 % C29 ISOSTERANES (abb) 69.4 % C30 HOPANE 82.3 % REGULAR STERANES 23.3 % TS/TS+TM (C27) 47.5 % ISOSTERANES 29.4 0.91 TS/TM (C27) % DIASTERANES 33.5 % C30 MORETANE 17.7 % SHORT-CHAIN STERANES 13.8 % C29 NORMORETANE 17.6 DIAHOPANE INDEX (%) 5.4 % TRICYCLIC TERPANES 26.0 B:ORGANIC FACIES AND DEPOSITIONAL ENVIRONMENT % TOTAL C20+C21 13.8 OLEANANE INDEX (%) 13.3 % TOTAL C27 28.0 GAMMACERANE INDEX (%) 7.4 % TOTAL C28 18.2 BISNORHOPANE INDEX (%) 10.3 % TOTAL C29 28.6 25-NORHOPANE INDEX (%) 0.3 % TOTAL C30 11.4 DIAHOPANE INDEX (%) 5.4 2.8 % TRICYCLIC TERPANES 26.0 HOPANES/STERANES % DIASTERANES 33.5 % C24 TETRACYCLIC TERPANE 16.0 TOTAL STERANES (ppm) 696 % MORETANES 17.7 % TOTAL C31 PENTACYCLICS 33.1 Other Biological Markers % TOTAL C32 PENTACYCLICS 13.1 % TOTAL C33 PENTACYCLICS 15.8 2.0 % TOTAL C34 PENTACYCLICS 32.8 b-Carotane (ppm) % TOTAL C35 PENTACYCLICS 5.2 C35/C34 HOMOHOPANES 0.16 29/30 HOPANES 0.91 TOTAL TRITERPANES (ppm) 1967.9

Project: ATHOS I Oil Spill Lab Sample ID: C45282

Sample Descriptor: SED-RC-03 Analysis Date: 1/8/2005

No.	COMPOUND NAME	RT	ION	AREA	CONC	%
	TERPANES				(ng/g)	
Н	C19 TRICYCLIC TERPANE	28.94	191	777	11.42	0.5
Α	C20 TRICYCLIC TERPANE	30.71	191	5131	75.42	3.2
в	C21 TRICYCLIC TERPANE	32.57	191	2964	43.57	1.8
С	C22 TRICYCLIC TERPANE	34.42	191	1093	16.07	0.7
D	C23 TRICYCLIC TERPANE	36.72	191	7203	105.88	4.5
Е	C24 TRICYCLIC TERPANE	37.98	191	4166	61.24	2.6
1	C25 TRICYCLIC TERPANE	40.64	191	4516	66.38	2.8
4	C24 TETRACYCLIC TERPANE	42.55	191	4129	60.69	2.6
5	C26 TRICYCLIC TERPANE (22R)	42.63	191	1002	14.73	0.6
6	C26 TRICYCLIC TERPANE (22S)	42.78	191	1621	23.83	1.0
9	C28 TRICYCLIC TERPANE (22R)	44.32	191	1062	15.61	0.7
10	C28 TRICYCLIC TERPANE (22S)	45.10	191	599	8.80	0.4
11	C29 TRICYCLIC TERPANE (22R)	47.25	191	2724	40.04	1.7
12	C29 TRICYCLIC TERPANE (22S)	47.51	191	1426	20.96	0.9
13	C27 18a-22,29,30-TRISNORNEOHOPANE (Ts)	49.86	191	6422	94.40	4.0
Ι	C27 PENTACYCLIC TERPANE (Y)	50.50	191	158	2.32	0.1
14	C27 17a-22,29,30-TRISNORHOPANE (Tm)	50.79	191	7023	103.23	4.4
15	C30 TRICYCLIC TERPANE (22R)	51.05	191	1922	28.25	1.2
16	C30 TRICYCLIC TERPANE (22S)	51.34	191	875	12.86	0.5
17	C28 17a,21b-28,30-BISNORHOPANE	52.85	191	2340	34.40	1.5
J	C29 17a,21b-25-NORHOPANE	52.95	191	104	1.53	0.1
19	C29 17a,21b-30-NORHOPANE	53.61	191	18339	269.57	11.4
20	C29 18a-NORNEOHOPANE (29Ts)	53.67	191	2962	43.54	1.8
F	C30 DIAHOPANE	54.02	191	1608	23.64	1.0
21	C29 17b,21a-30-NORMORETANE	54.68	191	3335	49.02	2.1
22	C30 18a-OLEANANE	55.03	191	3301	48.52	2.1
23	C30 17a,21b-HOPANE	55.34	191	23206	341.11	14.5
24	C30 17b,21a-MORETANE	56.18	191	6529	95.97	4.1
27	C31 17a,21b-HOMOHOPANE (22S)	57.38	191	6889	101.26	4.3
28	C31 17a,21b-HOMOHOPANE(22R)	57.62	191	6195	91.06	3.9
G	C30 GAMMACERANE	58.05	191	2064	30.34	1.3
30	C32 17a,21b-HOMOHOPANE (22S)	58.92	191	2331	34.26	1.5
31	C32 17a,21b-HOMOHOPANE (22R)	59.33	191	2734	40.19	1.7
34	C33 17a,21b-HOMOHOPANE (22S)	60.90	191	3497	51.40	2.2
35	C33 17a,21b-HOMOHOPANE (22R)	61.35	191	2641	38.82	1.6
36	C34 17a,21b-HOMOHOPANE (22S)	62.60	191	4684	68.85	2.9
37	C34 17a,21b-HOMOHOPANE (22R)	63.33	191	10812	158.93	6.7
38	C35 17a,21b-HOMOHOPANE (22S)	64.91	191	1193	17.54	0.7
39	C35 17a 21b-HOMOHOPANE (22R)	65 67	191	908	13 35	0.6

Project: ATHOS I Oil Spill Lab Sample ID: C45282 Sample Descriptor: SED-RC-03

Analysis Date: 1/8/2005

No.	COMPOUND NAME	RT	ION	AREA	CONC	%
	STERANES				(ng/mg)	
Α	C21 DIAPREGNANE	33.08	217	1170	26.10	3.1
1	C21 PREGNANE	34.81	217	1827	40.76	4.8
в	C22 DIAHOMOPREGNANE	34.91	217	903	20.15	2.4
2	C22 HOMOPREGNANE	37.36	217	1097	24.47	2.9
3	C27 13b,17a DIASTERANE (20S)	44.98	217	2324	52.46	6.2
4	C27 13b,17a DIASTERANE (20R)	45.68	217	1282	28.94	3.4
8	C27 13a,17b DIASTERANE (20S)	46.32	217	649	14.65	1.7
9	C27 13a,17b DIASTERANE (20R)	46.67	217	590	13.32	1.6
10	C28 13b,17a DIASTERANE (20S) (24R/24S ?)	47.60	217	68	1.54	0.2
11	C28 13b,17a DIASTERANE (20S) (24R/24S ?)	47.78	217	899	20.30	2.4
14+15	C28 13b,17a DIASTERANE (20R) (24R/24S ?)	48.15	217	384	8.67	1.0
16	C28 13a,17b DIASTERANE (20S)	48.34	217	499	11.40	1.3
17	C27 5a,14a,17a STERANE (20S)	48.40	217	1607	36.71	4.3
18	C27 5a,14b,17b ISOSTERANE (20R)	48.58	217	1507	34.43	4.1
	+ C29 13b,17a DIASTERANE (20S)					
19	C27 5a,14b,17b ISOSTERANE (20S)	48.83	217	1752	40.03	4.7
20	C28 13a,17b DIASTERANE (20R)	48.97	217	168	3.84	0.5
22	C27 5a,14a,17a STERANE (20R)	49.22	217	1032	23.58	2.8
23	C29 13b,17a DIASTERANE (20R)	49.51	217	2555	58.37	6.9
24	C29 13a,17b DIASTERANE (20S)	49.96	217	1007	23.01	2.7
26	C28 5a,14a,17a STERANE (20S)	50.48	217	273	6.65	0.8
27	C29 13a,17b DIASTERANE (20R)	50.60	217	1115	27.15	3.2
28	C28 5a,14b,17b ISOSTERANE (20R)	50.79	217	1970	47.98	5.6
29	C28 5a,14b,17b ISOSTERANE (20S)	50.99	217	1483	36.12	4.3
31	C28 5a,14a,17a STERANE (20R)	51.53	217	714	17.39	2.0
33	C29 5a,14a,17a STERANE (20S)	0.00	217	0	0.00	0.0
34	C29 5a,14b,17b ISOSTERANE (20R)	52.56	217	2004	52.25	6.2
35	C29 5a,14b,17b ISOSTERANE (20S)	52.74	217	1330	34.68	4.1
37	C29 5a,14a,17a STERANE (20R)	53.40	217	1087	28.34	3.3
38	C30 5a,14a,17a STERANE (20S)	53.61	217	1280	33.37	3.9
39	C30 5a,14b,17b ISOSTERANE (20R)	54.00	217	172	4.48	0.5
40	C30 5a,14b,17b ISOSTERANE (20S)	54.23	217	962	25.08	3.0
41	C30 5a,14a,17a STERANE (20R)	54.95	217	2037	53.11	6.3

Project: ATHOS I Oil Spill Lab Sample ID: C45282 Sample Descriptor: SED-RC-03 Analysis Date: 1/8/2005

PARAMETERS A:LEVEL OF MATURITY

A:LEVEL OF MATURITY					
<u>Steranes</u>		Terpanes			
% 20S C29 STERANES	0.0	% 22S C31 HOMOHOPANE	52.7		
% C29 ISOSTERANES (abb)	75.4	% C30 HOPANE	78.0		
% REGULAR STERANES	23.4	% TS/TS+TM (C27)	47.8		
% ISOSTERANES	30.4	TS/TM (C27)	0.91		
% DIASTERANES	33.1	% C30 MORETANE	22.0		
% SHORT-CHAIN STERANES	13.1	% C29 NORMORETANE	15.4		
		DIAHOPANE INDEX (%)	6.5		
	I	% TRICYCLIC TERPANES	23.1		

B:ORGANIC FACIES AND DEPOSITIONAL ENVIRONMENT

% TOTAL C20+C21	13.1	OLEANANE INDEX (%)	12.5
% TOTAL C27	26.7	GAMMACERANE INDEX (%)	8.2
% TOTAL C28	18.1	BISNORHOPANE INDEX (%)	9.2
% TOTAL C29	28.4	25-NORHOPANE INDEX (%)	0.4
% TOTAL C30	13.7	DIAHOPANE INDEX (%)	6.5
HOPANES/STERANES	2.7	% TRICYCLIC TERPANES	23.1
% DIASTERANES	33.1	% C24 TETRACYCLIC TERPANE	15.1
TOTAL STERANES (ppm)	849	% MORETANES	19.2
		% TOTAL C31 PENTACYCLICS	31.2
Other Biological Markers		% TOTAL C32 PENTACYCLICS	12.1
		% TOTAL C33 PENTACYCLICS	14.7
b-Carotane (ppm)	3.7	% TOTAL C34 PENTACYCLICS	37.0
		% TOTAL C35 PENTACYCLICS	5.0
		C35/C34 HOMOHOPANES	0.14
		29/30 HOPANES	0.79
		TOTAL TRITERPANES (ppm)	2359.0

Sample Descriptor: SED-RC-03 Analysis Date: 1/8/2005

Project: ATHOS I Oil Spill Lab Sample ID: C45283 Sample Descriptor: SED-TI-01

No. COMPOUND NAME RT ION AREA CONC % TERPANES (ng/g) н C19 TRICYCLIC TERPANE 28.96 191 14494 37.41 4.0 A C20 TRICYCLIC TERPANE 30.71 191 218363 563.54 60.3 B C21 TRICYCLIC TERPANE 32.59 191 11438 29.52 3.2 С C22 TRICYCLIC TERPANE 34.44 191 4713 12.16 1.3 D C23 TRICYCLIC TERPANE 36.72 191 6900 17.81 1.9 E C24 TRICYCLIC TERPANE 37.98 191 4466 11 53 12 C25 TRICYCLIC TERPANE 40.68 191 4172 10.77 1.2 1 4 C24 TETRACYCLIC TERPANE 42.57 191 4104 10.59 1.1 C26 TRICYCLIC TERPANE (22R) 5 42.63 191 1375 3.55 0.4 C26 TRICYCLIC TERPANE (22S) 6 42.78 191 1648 4.25 0.5 9 C28 TRICYCLIC TERPANE (22R) 44.34 191 857 2.21 0.2 10 C28 TRICYCLIC TERPANE (22S) 45.12 191 574 1.48 0.2 11 C29 TRICYCLIC TERPANE (22R) 47.25 2274 5.87 191 0.6 12 C29 TRICYCLIC TERPANE (22S) 47.51 191 1438 0.4 3.71 13 C27 18a-22,29,30-TRISNORNEOHOPANE (Ts) 49.86 5848 191 15.09 1.6 C27 PENTACYCLIC TERPANE (Y) 50.48 191 279 0.72 0.1 Т 14 C27 17a-22,29,30-TRISNORHOPANE (Tm) 50.79 191 6793 17.53 1.9 15 C30 TRICYCLIC TERPANE (22R) 51.10 191 1701 4 3 9 0.5 16 C30 TRICYCLIC TERPANE (22S) 51.34 191 652 1.68 0.2 17 C28 17a,21b-28,30-BISNORHOPANE 52.85 5.42 191 2100 0.6 C29 17a,21b-25-NORHOPANE T 52.99 191 172 0.44 0.0 19 C29 17a,21b-30-NORHOPANE 53.61 191 15896 41.02 4.4 20 C29 18a-NORNEOHOPANE (29Ts) 53.67 191 2595 6.70 0.7 F C30 DIAHOPANE 54.02 191 1547 3.99 0.4 21 C29 17b,21a-30-NORMORETANE 54.68 191 3311 8.54 0.9 22 C30 18a-OLEANANE 55.01 191 8.30 0.9 3218 50.54 23 C30 17a,21b-HOPANE 55.34 191 19584 54 24 C30 17b,21a-MORETANE 56.20 191 3503 9.04 1.0 C31 17a,21b-HOMOHOPANE (22S) 57.40 5259 27 191 13.57 1.5 28 C31 17a,21b-HOMOHOPANE(22R) 57.62 191 3926 10.13 1.1 G C30 GAMMACERANE 58.05 191 1159 2.99 0.3 30 C32 17a,21b-HOMOHOPANE (22S) 58.94 191 306 0.79 0.1 31 C32 17a,21b-HOMOHOPANE (22R) 59.33 191 2048 5 29 0.6 34 C33 17a,21b-HOMOHOPANE (22S) 1454 3.75 0.4 60.90 191 35 C33 17a,21b-HOMOHOPANE (22R) 61.35 191 867 2.24 0.2 36 C34 17a,21b-HOMOHOPANE (22S) 62.58 191 337 0.87 0.1 37 C34 17a,21b-HOMOHOPANE (22R) 63 33 191 1597 4.12 04 38 C35 17a,21b-HOMOHOPANE (22S) 64.93 191 603 1.56 0.2 39 C35 17a,21b-HOMOHOPANE (22R) 65.65 191 378 0.98 0.1

Analysis Date: 1/8/2005

Project: ATHOS I Oil Spill Lab Sample ID: C45283 Sample Descriptor: SED-TI-01

Analysis Date: 1/8/2005

No.	COMPOUND NAME	RT	ION	AREA	CONC	%
	STERANES				(ng/mg)	
А	C21 DIAPREGNANE	33.04	217	3830	15.00	7.6
1	C21 PREGNANE	34.81	217	8789	34.43	17.4
В	C22 DIAHOMOPREGNANE	34.87	217	7029	27.53	13.9
2	C22 HOMOPREGNANE	37.36	217	5687	22.28	11.2
3	C27 13b,17a DIASTERANE (20S)	44.98	217	1553	6.16	3.1
4	C27 13b,17a DIASTERANE (20R)	45.70	217	784	3.11	1.6
8	C27 13a,17b DIASTERANE (20S)	46.34	217	430	1.70	0.9
9	C27 13a,17b DIASTERANE (20R)	46.69	217	535	2.12	1.1
10	C28 13b,17a DIASTERANE (20S) (24R/24S ?)	47.60	217	72	0.29	0.1
11	C28 13b,17a DIASTERANE (20S) (24R/24S ?)	47.80	217	1102	4.37	2.2
14+15	C28 13b,17a DIASTERANE (20R) (24R/24S ?)	48.17	217	110	0.44	0.2
16	C28 13a,17b DIASTERANE (20S)	48.34	217	929	3.73	1.9
17	C27 5a,14a,17a STERANE (20S)	48.42	217	1103	4.42	2.2
18	C27 5a,14b,17b ISOSTERANE (20R)	48.62	217	\$28	3.32	1.7
	+ C29 13b,17a DIASTERANE (20S)					
19	C27 5a,14b,17b ISOSTERANE (20S)	48.83	217	1349	5.41	2.7
20	C28 13a,17b DIASTERANE (20R)	49.00	217	138	0.55	0.3
22	C27 5a,14a,17a STERANE (20R)	49.24	217	696	2.79	1.4
23	C29 13b,17a DIASTERANE (20R)	49.51	217	2183	8.76	4.4
24	C29 13a,17b DIASTERANE (20S)	49.96	217	676	2.71	1.4
26	C28 5a,14a,17a STERANE (20S)	50.50	217	560	2.39	1.2
27	C29 13a,17b DIASTERANE (20R)	50.60	217	949	4.06	2.0
28	C28 5a,14b,17b ISOSTERANE (20R)	50.77	217	1222	5.22	2.6
29	C28 5a,14b,17b ISOSTERANE (20S)	50.99	217	985	4.21	2.1
31	C28 5a,14a,17a STERANE (20R)	51.53	217	658	2.81	1.4
33	C29 5a,14a,17a STERANE (20S)	52.35	217	28	0.13	0.1
34	C29 5a,14b,17b ISOSTERANE (20R)	52.56	217	1883	8.62	4.4
35	C29 5a,14b,17b ISOSTERANE (20S)	52.74	217	1568	7.18	3.6
37	C29 5a,14a,17a STERANE (20R)	53.40	217	1401	6.41	3.2
38	C30 5a,14a,17a STERANE (20S)	53.63	217	421	1.93	1.0
39	C30 5a,14b,17b ISOSTERANE (20R)	54.06	217	138	0.63	0.3
40	C30 5a,14b,17b ISOSTERANE (20S)	54.23	217	624	2.86	1.4
41	C30 5a,14a,17a STERANE (20R)	54.95	217	541	2.48	1.3

Project: ATHOS I Oil Spill Lab Sample ID: C45283 Sample Descriptor: SED-TI-01 Analysis Date: 1/8/2005

PARAMETERS A:LEVEL OF MATURITY

Steranes Terpanes % 20S C29 STERANES % 22S C31 HOMOHOPANE 57.3 2.0 % C29 ISOSTERANES (abb) 70.7 % C30 HOPANE 84.8 % REGULAR STERANES 11.8 % TS/TS+TM (C27) 46.3 % ISOSTERANES 18.1 TS/TM (C27) 0.86 % DIASTERANES 20.0 % C30 MORETANE 15.2 % SHORT-CHAIN STERANES 17.2 50.1 % C29 NORMORETANE DIAHOPANE INDEX (%) 7.3 76.0 % TRICYCLIC TERPANES B:ORGANIC FACIES AND DEPOSITIONAL ENVIRONMENT % TOTAL C20+C21 50.1 OLEANANE INDEX (%) 14.1 % TOTAL C27 13.8 GAMMACERANE INDEX (%) 5.6 % TOTAL C28 12.1 BISNORHOPANE INDEX (%) 9.7 % TOTAL C29 20.0 25-NORHOPANE INDEX (%) 0.9 % TOTAL C30 4.0 DIAHOPANE INDEX (%) 7.3 % TRICYCLIC TERPANES HOPANES/STERANES 4.7 76.0 % DIASTERANES 20.0 % C24 TETRACYCLIC TERPANE 17.3 TOTAL STERANES (ppm) 198 % MORETANES 16.1 % TOTAL C31 PENTACYCLICS 54.8 14.0 Other Biological Markers % TOTAL C32 PENTACYCLICS % TOTAL C33 PENTACYCLICS 13.8 b-Carotane (ppm) 0.4 % TOTAL C34 PENTACYCLICS 11.5 % TOTAL C35 PENTACYCLICS 5.8 C35/C34 HOMOHOPANES 0.51 29/30 HOPANES 0.81 TOTAL TRITERPANES (ppm) 934.1

Project: ATHOS I Oil Spill Lab Sample ID: C45283 Sample Descriptor: SED-TI-01 Analysis Date: 1/8/2005

STERANE AND TRITERPANE BIOMARKERS Project: ATHOS I Oil Spill Lab Sample ID: C45284 Sample Descriptor: SED-TI-02

Analysis Date: 1/8/2005

No.	COMPOUND NAME	RT	ION	AREA	CONC	%
	TERPANES				(ng/g)	
н	C19 TRICYCLIC TERPANE	28.96	191	7225	20.53	2.5
Α	C20 TRICYCLIC TERPANE	30.71	191	118459	336.54	41.4
в	C21 TRICYCLIC TERPANE	32.57	191	9836	27.94	3.4
С	C22 TRICYCLIC TERPANE	34.44	191	3786	10.76	1.3
D	C23 TRICYCLIC TERPANE	36.73	191	8589	24.40	3.0
E	C24 TRICYCLIC TERPANE	37.98	191	5002	14.21	1.7
1	C25 TRICYCLIC TERPANE	40.64	191	2512	7.14	0.9
4	C24 TETRACYCLIC TERPANE	42.55	191	4852	13.78	1.7
5	C26 TRICYCLIC TERPANE (22R)	42.63	191	1387	3.94	0.5
6	C26 TRICYCLIC TERPANE (22S)	42.78	191	1869	5.31	0.7
9	C28 TRICYCLIC TERPANE (22R)	44.32	191	1390	3.95	0.5
10	C28 TRICYCLIC TERPANE (228)	45.11	191	542	1.54	0.2
11	C29 TRICYCLIC TERPANE (22R)	47.25	191	2565	7.29	0.9
12	C29 TRICYCLIC TERPANE (228)	47.51	191	946	2.69	0.3
13	C27 18a-22,29,30-TRISNORNEOHOPANE (Ts)	49.86	191	7248	20.59	2.5
I	C27 PENTACYCLIC TERPANE (Y)	50.48	191	240	0.68	0.1
14	C27 17a-22,29,30-TRISNORHOPANE (Tm)	50.79	191	8788	24.97	3.1
15	C30 TRICYCLIC TERPANE (22R)	51.08	191	1838	5.22	0.6
16	C30 TRICYCLIC TERPANE (22S)	51.34	191	877	2.49	0.3
17	C28 17a,21b-28,30-BISNORHOPANE	52.87	191	2330	6.62	0.8
J	C29 17a,21b-25-NORHOPANE	52.95	191	209	0.59	0.1
19	C29 17a,21b-30-NORHOPANE	53.59	191	21157	60.11	7.4
20	C29 18a-NORNEOHOPANE (29Ts)	53.65	191	5291	15.03	1.8
F	C30 DIAHOPANE	54.02	191	1844	5.24	0.6
21	C29 17b,21a-30-NORMORETANE	54.68	191	4384	12.45	1.5
22	C30 18a-OLEANANE	55.03	191	3741	10.63	1.3
23	C30 17a,21b-HOPANE	55.34	191	26547	75.42	9.3
24	C30 17b,21a-MORETANE	56.20	191	4536	12.89	1.6
27	C31 17a,21b-HOMOHOPANE (22S)	57.40	191	8120	23.07	2.8
28	C31 17a,21b-HOMOHOPANE(22R)	57.62	191	5651	16.05	2.0
G	C30 GAMMACERANE	58.04	191	1391	3.95	0.5
30	C32 17a,21b-HOMOHOPANE (22S)	58.92	191	392	1.11	0.1
31	C32 17a,21b-HOMOHOPANE (22R)	59.33	191	3223	9.16	1.1
34	C33 17a,21b-HOMOHOPANE (22S)	60.90	191	2671	7.59	0.9
35	C33 17a,21b-HOMOHOPANE (22R)	61.33	191	1495	4.25	0.5
36	C34 17a,21b-HOMOHOPANE (22S)	62.59	191	633	1.80	0.2
37	C34 17a,21b-HOMOHOPANE (22R)	63.33	191	2745	7.80	1.0
38	C35 17a,21b-HOMOHOPANE (22S)	64.93	191	985	2.80	0.3
39	C35 17a,21b-HOMOHOPANE (22R)	65.63	191	746	2.12	0.3

Project: ATHOS I Oil Spill Lab Sample ID: C45284 Sample Descriptor: SED-TI-02 Analysis Date: 1/8/2005

No.	COMPOUND NAME	RT	ION	AREA	CONC	%
	STERANES				(ng/mg)	
Α	C21 DIAPREGNANE	33.06	217	1143	4.93	2.2
1	C21 PREGNANE	34.79	217	5236	22.58	10.2
в	C22 DIAHOMOPREGNANE	34.95	217	4867	20.99	9.5
2	C22 HOMOPREGNANE	37.36	217	4551	19.62	8.9
3	C27 13b,17a DIASTERANE (20S)	44.98	217	2115	9.23	4.2
4	C27 13b,17a DIASTERANE (20R)	45.68	217	1328	5.79	2.6
8	C27 13a,17b DIASTERANE (20S)	46.30	217	679	2.96	1.3
9	C27 13a,17b DIASTERANE (20R)	46.67	217	421	1.84	0.8
10	C28 13b,17a DIASTERANE (20S) (24R/24S ?)	47.58	217	206	0.90	0.4
11	C28 13b,17a DIASTERANE (20S) (24R/24S ?)	47.78	217	1489	6.50	2.9
14+15	5 C28 13b,17a DIASTERANE (20R) (24R/24S ?)	48.17	217	552	2.41	1.1
16	C28 13a,17b DIASTERANE (20S)	48.36	217	783	3.46	1.6
17	C27 5a,14a,17a STERANE (20S)	48.42	217	1573	6.95	3.2
18	C27 5a,14b,17b ISOSTERANE (20R)	48.61	217	702	3.10	1.4
	+ C29 13b,17a DIASTERANE (20S)					
19	C27 5a,14b,17b ISOSTERANE (20S)	48.83	217	1684	7.44	3.4
20	C28 13a,17b DIASTERANE (20R)	49.02	217	332	1.47	0.7
22	C27 5a,14a,17a STERANE (20R)	49.24	217	930	4.11	1.9
23	C29 13b,17a DIASTERANE (20R)	49.49	217	2712	11.98	5.4
24	C29 13a,17b DIASTERANE (20S)	49.96	217	1401	6.19	2.8
26	C28 5a,14a,17a STERANE (20S)	50.50	217	646	3.04	1.4
27	C29 13a,17b DIASTERANE (20R)	50.60	217	\$31	3.91	1.8
28	C28 5a,14b,17b ISOSTERANE (20R)	50.77	217	2101	9.89	4.5
29	C28 5a,14b,17b ISOSTERANE (20S)	50.99	217	1722	8.11	3.7
31	C28 5a,14a,17a STERANE (20R)	51.53	217	1117	5.26	2.4
33	C29 5a,14a,17a STERANE (20S)	52.33	217	210	1.06	0.5
34	C29 5a,14b,17b ISOSTERANE (20R)	52.56	217	2531	12.75	5.8
35	C29 5a,14b,17b ISOSTERANE (208)	52.74	217	1927	9.71	4.4
37	C29 5a,14a,17a STERANE (20R)	53.40	217	1811	9.13	4.1
38	C30 5a,14a,17a STERANE (20S)	53.61	217	799	4.03	1.8
39	C30 5a,14b,17b ISOSTERANE (20R)	54.04	217	394	1.99	0.9
40	C30 5a,14b,17b ISOSTERANE (208)	54.23	217	861	4.34	2.0
41	C30 5a,14a,17a STERANE (20R)	54.97	217	950	4.79	2.2

Project: ATHOS I Oil Spill Lab Sample ID: C45284 Sample Descriptor: SED-TI-02 Analysis Date: 1/8/2005

PARAMETERS

A:LEVEL OF MATURITY

Steranes

<u>Terpanes</u>

59.0 85.4 45.2 0.82 14.6 17.2 6.5 58.3

% 20S C29 STERANES	10.4	% 22S C31 HOMOHOPANE
% C29 ISOSTERANES (abb)	68.8	% C30 HOPANE
% REGULAR STERANES	17.4	% TS/TS+TM (C27)
% ISOSTERANES	25.3	TS/TM (C27)
% DIASTERANES	26.4	% C30 MORETANE
% SHORT-CHAIN STERANES	30.9	% C29 NORMORETANE
		DIAHOPANE INDEX (%)
		% TRICYCLIC TERPANES

B:ORGANIC FACIES AND DEPOSITIONAL ENVIRONMENT

% TOTAL C20+C21	30.9	OLEANANE INDEX (%)	12.4
% TOTAL C27	18.1	GAMMACERANE INDEX (%)	5.0
% TOTAL C28	18.6	BISNORHOPANE INDEX (%)	8.1
% TOTAL C29	25.5	25-NORHOPANE INDEX (%)	0.8
% TOTAL C30	6.9	DIAHOPANE INDEX (%)	6.5
HOPANES/STERANES	3.6	% TRICYCLIC TERPANES	58.3
% DIASTERANES	26.4	% C24 TETRACYCLIC TERPANE	15.5
TOTAL STERANES (ppm)	220	% MORETANES	15.8
		% TOTAL C31 PENTACYCLICS	51.7
Other Biological Markers		% TOTAL C32 PENTACYCLICS	13.6
		% TOTAL C33 PENTACYCLICS	15.6
b-Carotane (ppm)	0.7	% TOTAL C34 PENTACYCLICS	12.7
		% TOTAL C35 PENTACYCLICS	6.5
		C35/C34 HOMOHOPANES	0.51
		29/30 HOPANES	0.80
		TOTAL TRITERPANES (ppm)	812.6

Project: ATHOS I Oil Spill Lab Sample ID: C45285 Sample Descriptor: SED-TI-03 Analysis Date: 1/8/2005

No.	COMPOUND NAME	RT	ION	AREA	CONC	%
	TERPANES				(ng/g)	
Н	C19 TRICYCLIC TERPANE	28.96	191	3642	10.87	1.7
Α	C20 TRICYCLIC TERPANE	30.69	191	53038	158.27	25.0
в	C21 TRICYCLIC TERPANE	32.56	191	5709	17.04	2.7
С	C22 TRICYCLIC TERPANE	34.42	191	2432	7.26	1.1
D	C23 TRICYCLIC TERPANE	36.70	191	7277	21.72	3.4
Е	C24 TRICYCLIC TERPANE	37.96	191	4216	12.58	2.0
1	C25 TRICYCLIC TERPANE	40.64	191	3151	9.40	1.5
4	C24 TETRACYCLIC TERPANE	42.55	191	4610	13.76	2.2
5	C26 TRICYCLIC TERPANE (22R)	42.63	191	1337	3.99	0.6
б	C26 TRICYCLIC TERPANE (228)	42.78	191	1865	5.57	0.9
9	C28 TRICYCLIC TERPANE (22R)	44.32	191	965	2.88	0.5
10	C28 TRICYCLIC TERPANE (228)	45.10	191	384	1.15	0.2
11	C29 TRICYCLIC TERPANE (22R)	47.24	191	2623	7.83	1.2
12	C29 TRICYCLIC TERPANE (228)	47.51	191	1221	3.64	0.6
13	C27 18a-22,29,30-TRISNORNEOHOPANE (Ts)	49.86	191	7466	22.28	3.5
Ι	C27 PENTACYCLIC TERPANE (Y)	50.50	191	170	0.51	0.1
14	C27 17a-22,29,30-TRISNORHOPANE (Tm)	50.79	191	8439	25.18	4.0
15	C30 TRICYCLIC TERPANE (22R)	51.07	191	2020	6.03	1.0
16	C30 TRICYCLIC TERPANE (228)	51.32	191	923	2.75	0.4
17	C28 17a,21b-28,30-BISNORHOPANE	52.85	191	2409	7.19	1.1
J	C29 17a,21b-25-NORHOPANE	52.97	191	264	0.79	0.1
19	C29 17a,21b-30-NORHOPANE	53.59	191	22059	65.83	10.4
20	C29 18a-NORNEOHOPANE (29Ts)	53.65	191	4861	14.51	2.3
F	C30 DIAHOPANE	54.02	191	2140	6.39	1.0
21	C29 17b,21a-30-NORMORETANE	54.68	191	3862	11.52	1.8
22	C30 18a-OLEANANE	55.01	191	4673	13.94	2.2
23	C30 17a,21b-HOPANE	55.34	191	25910	77.32	12.2
24	C30 17b,21a-MORETANE	56.20	191	5214	15.56	2.5
27	C31 17a,21b-HOMOHOPANE (22S)	57.40	191	7689	22.95	3.6
28	C31 17a,21b-HOMOHOPANE(22R)	57.62	191	5910	17.64	2.8
G	C30 GAMMACERANE	58.03	191	1308	3.90	0.6
30	C32 17a,21b-HOMOHOPANE (22S)	58.94	191	471	1.41	0.2
31	C32 17a,21b-HOMOHOPANE (22R)	59.33	191	3055	9.12	1.4
34	C33 17a,21b-HOMOHOPANE (22S)	60.92	191	2566	7.66	1.2
35	C33 17a,21b-HOMOHOPANE (22R)	61.33	191	1597	4.77	0.8
36	C34 17a,21b-HOMOHOPANE (22S)	62.58	191	629	1.88	0.3
37	C34 17a,21b-HOMOHOPANE (22R)	63.33	191	3433	10.24	1.6
38	C35 17a,21b-HOMOHOPANE (22S)	64.93	191	1704	5.08	0.8
39	C35 17a,21b-HOMOHOPANE (22R)	65.67	191	719	2.15	0.3

Project: ATHOS I Oil Spill Lab Sample ID: C45285 Sample Descriptor: SED-TI-03 Analysis Date: 1/8/2005

No.	COMPOUND NAME	RT	ION	AREA	CONC	%
	STERANES				(ng/mg)	
Α	C21 DIAPREGNANE	33.06	217	1502	6.80	3.0
1	C21 PREGNANE	34.79	217	6457	29.25	12.9
В	C22 DIAHOMOPREGNANE	34.93	217	3669	16.62	7.3
2	C22 HOMOPREGNANE	37.36	217	2952	13.37	5.9
3	C27 13b,17a DIASTERANE (20S)	44.98	217	2390	10.95	4.8
4	C27 13b,17a DIASTERANE (20R)	45.68	217	1363	6.25	2.8
8	C27 13a,17b DIASTERANE (20S)	46.32	217	705	3.23	1.4
9	C27 13a,17b DIASTERANE (20R)	46.67	217	807	3.70	1.6
10	C28 13b,17a DIASTERANE (20S) (24R/24S ?)	47.59	217	70	0.32	0.1
11	C28 13b,17a DIASTERANE (20S) (24R/24S ?)	47.78	217	1371	6.28	2.8
14+15	C28 13b,17a DIASTERANE (20R) (24R/24S ?)	48.17	217	526	2.41	1.1
16	C28 13a,17b DIASTERANE (20S)	48.32	217	918	4.26	1.9
17	C27 5a,14a,17a STERANE (20S)	48.42	217	1862	8.64	3.8
18	C27 5a,14b,17b ISOSTERANE (20R)	48.58	217	993	4.61	2.0
	+ C29 13b,17a DIASTERANE (20S)					
19	C27 5a,14b,17b ISOSTERANE (20S)	48.81	217	1475	6.84	3.0
20	C28 13a,17b DIASTERANE (20R)	48.97	217	366	1.70	0.7
22	C27 5a,14a,17a STERANE (20R)	49.22	217	959	4.45	2.0
23	C29 13b,17a DIASTERANE (20R)	49.49	217	2541	11.79	5.2
24	C29 13a,17b DIASTERANE (20S)	49.94	217	973	4.51	2.0
26	C28 5a,14a,17a STERANE (20S)	50.48	217	574	2.84	1.2
27	C29 13a,17b DIASTERANE (20R)	50.60	217	1387	6.86	3.0
28	C28 5a,14b,17b ISOSTERANE (20R)	50.79	217	1765	8.73	3.8
29	C28 5a,14b,17b ISOSTERANE (20S)	50.99	217	1566	7.74	3.4
31	C28 5a,14a,17a STERANE (20R)	51.51	217	957	4.73	2.1
33	C29 5a,14a,17a STERANE (20S)	52.31	217	103	0.55	0.2
34	C29 5a,14b,17b ISOSTERANE (20R)	52.56	217	2597	13.75	6.1
35	C29 5a,14b,17b ISOSTERANE (20S)	52.74	217	1673	8.86	3.9
37	C29 5a,14a,17a STERANE (20R)	53.40	217	1881	9.96	4.4
38	C30 5a,14a,17a STERANE (20S)	53.59	217	1172	6.20	2.7
39	C30 5a,14b,17b ISOSTERANE (20R)	54.04	217	259	1.37	0.6
40	C30 5a,14b,17b ISOSTERANE (20S)	54.20	217	1018	5.39	2.4
41	C30 5a,14a,17a STERANE (20R)	54.95	217	792	4.19	1.8

Project: ATHOS I Oil Spill Lab Sample ID: C45285 Sample Descriptor: SED-TI-03 Analysis Date: 1/8/2005

PARAMETERS

A:LEVEL OF MATURITY

Steranes		Terpanes				
% 20S C29 STERANES	5.2	% 22S C31 HOMOHOPANE	56.5			
% C29 ISOSTERANES (abb)	68.3	% C30 HOPANE	83.2			
% REGULAR STERANES	18.3	% TS/TS+TM (C27)	46.9			
% ISOSTERANES	24.2	TS/TM (C27)	0.88			
% DIASTERANES	28.4	% C30 MORETANE	16.8			
% SHORT-CHAIN STERANES	29.1	% C29 NORMORETANE	14.9			
		DIAHOPANE INDEX (%)	7.6			
		% TRICYCLIC TERPANES	42.8			

B:ORGANIC FACIES AND DEPOSITIONAL ENVIRONMENT

% TOTAL C20+C21	29.1	OLEANANE INDEX (%)	15.3
% TOTAL C27	20.4	GAMMACERANE INDEX (%)	4.8
% TOTAL C28	17.2	BISNORHOPANE INDEX (%)	8.5
% TOTAL C29	25.8	25-NORHOPANE INDEX (%)	1.0
% TOTAL C30	7.6	DIAHOPANE INDEX (%)	7.6
HOPANES/STERANES	2.7	% TRICYCLIC TERPANES	42.8
% DIASTERANES	28.4	% C24 TETRACYCLIC TERPANE	15.1
TOTAL STERANES (ppm)	227	% MORETANES	15.9
		% TOTAL C31 PENTACYCLICS	49.0
Other Biological Markers		% TOTAL C32 PENTACYCLICS	12.7
		% TOTAL C33 PENTACYCLICS	15.0
b-Carotane (ppm)	0.6	% TOTAL C34 PENTACYCLICS	14.6
		% TOTAL C35 PENTACYCLICS	8.7
		C35/C34 HOMOHOPANES	0.60
		29/30 HOPANES	0.85
		TOTAL TRITERPANES (ppm)	632.5

Lab Sample ID: C45285 Sample Descriptor: SED-TI-03 Analysis Date: 1/8/2005

Project: ATHOS I Oil Spill Lab Sample ID: C45286 Sample Descriptor: SED-TP-01 Analysis Date: 1/8/2005

No.	COMPOUND NAME	RT	ION	AREA	CONC	%
	TERPANES				(ng/g)	
Н	C19 TRICYCLIC TERPANE	28.94	191	337	1.30	1.1
Α	C20 TRICYCLIC TERPANE	30.69	191	1168	4.51	3.9
в	C21 TRICYCLIC TERPANE	32.57	191	490	1.89	1.6
С	C22 TRICYCLIC TERPANE	34.40	191	208	0.80	0.7
D	C23 TRICYCLIC TERPANE	36.71	191	883	3.41	2.9
Ε	C24 TRICYCLIC TERPANE	37.94	191	762	2.94	2.5
1	C25 TRICYCLIC TERPANE	40.60	191	565	2.18	1.9
4	C24 TETRACYCLIC TERPANE	42.55	191	434	1.67	1.4
5	C26 TRICYCLIC TERPANE (22R)	42.63	191	172	0.66	0.6
б	C26 TRICYCLIC TERPANE (228)	42.76	191	211	0.81	0.7
9	C28 TRICYCLIC TERPANE (22R)	44.30	191	336	1.30	1.1
10	C28 TRICYCLIC TERPANE (228)	45.08	191	70	0.27	0.2
11	C29 TRICYCLIC TERPANE (22R)	47.23	191	481	1.86	1.6
12	C29 TRICYCLIC TERPANE (228)	47.49	191	145	0.56	0.5
13	C27 18a-22,29,30-TRISNORNEOHOPANE (Ts)	49.84	191	972	3.75	3.2
Ι	C27 PENTACYCLIC TERPANE (Y)	50.48	191	31	0.12	0.1
14	C27 17a-22,29,30-TRISNORHOPANE (Tm)	50.77	191	1306	5.04	4.3
15	C30 TRICYCLIC TERPANE (22R)	51.04	191	324	1.25	1.1
16	C30 TRICYCLIC TERPANE (22S)	51.32	191	231	0.89	0.8
17	C28 17a,21b-28,30-BISNORHOPANE	52.85	191	198	0.76	0.7
J	C29 17a,21b-25-NORHOPANE	52.97	191	105	0.41	0.3
19	C29 17a,21b-30-NORHOPANE	53.59	191	3700	14.28	12.2
20	C29 18a-NORNEOHOPANE (29Ts)	53.69	191	728	2.81	2.4
F	C30 DIAHOPANE	54.02	191	91	0.35	0.3
21	C29 17b,21a-30-NORMORETANE	54.68	191	1400	5.40	4.6
22	C30 18a-OLEANANE	55.01	191	483	1.86	1.6
23	C30 17a,21b-HOPANE	55.34	191	3756	14.49	12.4
24	C30 17b,21a-MORETANE	0.00	191	0	0.00	0.0
27	C31 17a,21b-HOMOHOPANE (22S)	57.38	191	1629	6.29	5.4
28	C31 17a,21b-HOMOHOPANE(22R)	57.62	191	3069	11.84	10.1
G	C30 GAMMACERANE	57.99	191	358	1.38	1.2
30	C32 17a,21b-HOMOHOPANE (22S)	58.90	191	1372	5.29	4.5
31	C32 17a,21b-HOMOHOPANE (22R)	59.33	191	882	3.40	2.9
34	C33 17a,21b-HOMOHOPANE (22S)	60.92	191	653	2.52	2.2
35	C33 17a,21b-HOMOHOPANE (22R)	61.33	191	429	1.66	1.4
36	C34 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
37	C34 17a,21b-HOMOHOPANE (22R)	63.33	191	1705	6.58	5.6
38	C35 17a,21b-HOMOHOPANE (22S)	64.91	191	210	0.81	0.7
39	C35 17a,21b-HOMOHOPANE (22R)	65.67	191	394	1.52	1.3

Project: ATHOS I Oil Spill Lab Sample ID: C45286 Sample Descriptor: SED-TP-01

Analysis Date: 1/8/2005

No.	COMPOUND NAME	RT	ION	AREA	CONC	%
	STERANES				(ng/mg)	
А	C21 DIAPREGNANE	33.04	217	164	0.96	3.3
1	C21 PREGNANE	34.79	217	256	1.50	5.1
в	C22 DIAHOMOPREGNANE	34.91	217	122	0.71	2.4
2	C22 HOMOPREGNANE	37.36	217	163	0.95	3.3
3	C27 13b,17a DIASTERANE (20S)	44.96	217	276	1.64	5.6
4	C27 13b,17a DIASTERANE (20R)	45.66	217	221	1.31	4.5
8	C27 13a,17b DIASTERANE (20S)	46.28	217	151	0.89	3.1
9	C27 13a,17b DIASTERANE (20R)	46.67	217	135	0.80	2.7
10	C28 13b,17a DIASTERANE (20S) (24R/24S ?)	47.60	217	78	0.46	1.6
11	C28 13b,17a DIASTERANE (20S) (24R/24S ?)	47.76	217	126	0.75	2.6
14+15	C28 13b,17a DIASTERANE (20R) (24R/24S ?)	48.13	217	49	0.29	1.0
16	C28 13a,17b DIASTERANE (20S)	48.30	217	152	0.91	3.1
17	C27 5a,14a,17a STERANE (20S)	48.36	217	126	0.76	2.6
18	C27 5a,14b,17b ISOSTERANE (20R)	48.61	217	140	0.84	2.9
	+ C29 13b,17a DIASTERANE (20S)					
19	C27 5a,14b,17b ISOSTERANE (20S)	48.83	217	83	0.50	1.7
20	C28 13a,17b DIASTERANE (20R)	49.00	217	23	0.14	0.5
22	C27 5a,14a,17a STERANE (20R)	49.20	217	201	1.21	4.1
23	C29 13b,17a DIASTERANE (20R)	49.49	217	238	1.43	4.9
24	C29 13a,17b DIASTERANE (20S)	49.96	217	161	0.97	3.3
26	C28 5a,14a,17a STERANE (20S)	50.46	217	44	0.28	1.0
27	C29 13a,17b DIASTERANE (20R)	50.60	217	238	1.52	5.2
28	C28 5a,14b,17b ISOSTERANE (20R)	50.75	217	315	2.01	6.9
29	C28 5a,14b,17b ISOSTERANE (20S)	50.97	217	124	0.79	2.7
31	C28 5a,14a,17a STERANE (20R)	0.00	217	0	0.00	0.0
33	C29 5a,14a,17a STERANE (20S)	52.33	217	15	0.10	0.4
34	C29 5a,14b,17b ISOSTERANE (20R)	52.54	217	295	2.02	6.9
35	C29 5a,14b,17b ISOSTERANE (20S)	52.74	217	320	2.19	7.5
37	C29 5a,14a,17a STERANE (20R)	53.42	217	121	0.83	2.8
38	C30 5a,14a,17a STERANE (20S)	0.00	217	0	0.00	0.0
39	C30 5a,14b,17b ISOSTERANE (20R)	54.02	217	51	0.35	1.2
40	C30 5a,14b,17b ISOSTERANE (20S)	54.25	217	185	1.27	4.3
41	C30 5a,14a,17a STERANE (20R)	54.93	217	128	0.88	3.0

Project: ATHOS I Oil Spill Lab Sample ID: C45286 Sample Descriptor: SED-TP-01 Analysis Date: 1/8/2005

PARAMETERS

A:LEVEL OF MATURITY						
Steranes		Terpanes				
% 20S C29 STERANES	11.0	% 22S C31 HOMOHOPANE	34.7			
% C29 ISOSTERANES (abb)	81.9	% C30 HOPANE	100.0			
% REGULAR STERANES	13.8	% TS/TS+TM (C27)	42.7			
% ISOSTERANES	32.6	TS/TM (C27)	0.74			
% DIASTERANES	39.4	% C30 MORETANE	0.0			
% SHORT-CHAIN STERANES	14.1	% C29 NORMORETANE	27.5			
		DIAHOPANE INDEX (%)	2.4			
		% TRICYCLIC TERPANES	21.1			
B:ORGANIC FAC	TES AND	DEPOSITIONAL ENVIRONMENT				
% TOTAL C20+C21	14.1	OLEANANE INDEX (%)	11.4			
% TOTAL C27	25.7	GAMMACERANE INDEX (%)	8.7			
% TOTAL C28	19.3	BISNORHOPANE INDEX (%)	5.0			
% TOTAL C29	32.4	25-NORHOPANE INDEX (%)	2.7			
% TOTAL C30	8.5	DIAHOPANE INDEX (%)	2.4			
HOPANES/STERANES	3.9	% TRICYCLIC TERPANES	21.1			
% DIASTERANES	39.4	% C24 TETRACYCLIC TERPANE	10.4			
TOTAL STERANES (ppm)	29	% MORETANES	15.8			
		% TOTAL C31 PENTACYCLICS	45.4			
Other Biological Markers		% TOTAL C32 PENTACYCLICS	21.8			
		% TOTAL C33 PENTACYCLICS	10.5			
b-Carotane (ppm)	1.0	% TOTAL C34 PENTACYCLICS	16.5			
		% TOTAL C35 PENTACYCLICS	5.8			
		C35/C34 HOMOHOPANES	0.35			
		29/30 HOPANES	0.99			
		TOTAL TRITERPANES (ppm)	116.9			

STERANE AND TRITERPANE BIOMARKERS Project: ATHOS I Oil Spill Lab Sample ID: C45286 Sample Descriptor: SED-TP-01 Analysis Date: 1/8/2005

Project: ATHOS I Oil Spill Lab Sample ID: C45287 Sample Descriptor: SED-CW-01 Analysis Date: 1/8/2005

No.	COMPOUND NAME	RT	ION	AREA	CONC	%
	TERPANES				(ng/g)	
н	C19 TRICYCLIC TERPANE	28.96	191	1032	6.74	0.6
А	C20 TRICYCLIC TERPANE	30.69	191	8357	54.58	4.5
в	C21 TRICYCLIC TERPANE	32.57	191	2226	14.54	1.2
С	C22 TRICYCLIC TERPANE	34.42	191	1248	8.15	0.7
D	C23 TRICYCLIC TERPANE	36.70	191	7354	48.03	3.9
E	C24 TRICYCLIC TERPANE	37.96	191	4197	27.41	2.3
1	C25 TRICYCLIC TERPANE	40.64	191	3507	22.91	1.9
4	C24 TETRACYCLIC TERPANE	42.55	191	4971	32.47	2.7
5	C26 TRICYCLIC TERPANE (22R)	42.63	191	1272	8.31	0.7
б	C26 TRICYCLIC TERPANE (22S)	42.78	191	2119	13.84	1.1
9	C28 TRICYCLIC TERPANE (22R)	44.32	191	1223	7.99	0.7
10	C28 TRICYCLIC TERPANE (22S)	45.10	191	482	3.15	0.3
11	C29 TRICYCLIC TERPANE (22R)	47.25	191	3195	20.87	1.7
12	C29 TRICYCLIC TERPANE (22S)	47.49	191	1854	12.11	1.0
13	C27 18a-22,29,30-TRISNORNEOHOPANE (Ts)	49.86	191	7248	47.34	3.9
Ι	C27 PENTACYCLIC TERPANE (Y)	50.50	191	177	1.16	0.1
14	C27 17a-22,29,30-TRISNORHOPANE (Tm)	50.79	191	7905	51.63	4.2
15	C30 TRICYCLIC TERPANE (22R)	51.07	191	2571	16.79	1.4
16	C30 TRICYCLIC TERPANE (22S)	51.32	191	1658	10.83	0.9
17	C28 17a,21b-28,30-BISNORHOPANE	52.85	191	2373	15.50	1.3
J	C29 17a,21b-25-NORHOPANE	52.97	191	1037	6.77	0.6
19	C29 17a,21b-30-NORHOPANE	53.59	191	26086	170.38	14.0
20	C29 18a-NORNEOHOPANE (29Ts)	53.69	191	4091	26.72	2.2
F	C30 DIAHOPANE	54.02	191	1536	10.03	0.8
21	C29 17b,21a-30-NORMORETANE	54.68	191	4247	27.74	2.3
22	C30 18a-OLEANANE	55.01	191	2388	15.60	1.3
23	C30 17a,21b-HOPANE	55.34	191	25924	169.32	13.9
24	C30 17b,21a-MORETANE	56.20	191	4418	28.86	2.4
27	C31 17a,21b-HOMOHOPANE (22S)	57.40	191	9681	63.23	5.2
28	C31 17a,21b-HOMOHOPANE(22R)	57.62	191	7618	49.76	4.1
G	C30 GAMMACERANE	58.03	191	2817	18.40	1.5
30	C32 17a,21b-HOMOHOPANE (22S)	58.94	191	4194	27.39	2.3
31	C32 17a,21b-HOMOHOPANE (22R)	59.33	191	4396	28.71	2.4
34	C33 17a,21b-HOMOHOPANE (22S)	60.92	191	4489	29.32	2.4
35	C33 17a,21b-HOMOHOPANE (22R)	61.33	191	4203	27.45	2.3
36	C34 17a,21b-HOMOHOPANE (22S)	62.60	191	3984	26.02	2.1
37	C34 17a,21b-HOMOHOPANE (22R)	63.33	191	6680	43.63	3.6
38	C35 17a,21b-HOMOHOPANE (22S)	64.91	191	2288	14.94	1.2
39	C35 17a,21b-HOMOHOPANE (22R)	65.65	191	1153	7.53	0.6

Project: ATHOS I Oil Spill Lab Sample ID: C45287 Sample Descriptor: SED-CW-01

Analysis Date: 1/8/2005

No.	COMPOUND NAME	RT	ION	AREA	CONC	%
	STERANES				(ng/mg)	
А	C21 DIAPREGNANE	33.06	217	1030	10.21	2.1
1	C21 PREGNANE	34.79	217	1989	19.72	4.0
в	C22 DIAHOMOPREGNANE	34.91	217	1051	10.42	2.1
2	C22 HOMOPREGNANE	37.36	217	1240	12.29	2.5
3	C27 13b,17a DIASTERANE (20S)	44.98	217	2861	28.70	5.9
4	C27 13b,17a DIASTERANE (20R)	45.68	217	1898	19.04	3.9
8	C27 13a,17b DIASTERANE (20S)	46.30	217	1027	10.30	2.1
9	C27 13a,17b DIASTERANE (20R)	46.67	217	1159	11.63	2.4
10	C28 13b,17a DIASTERANE (20S) (24R/24S ?)	47.60	217	104	1.04	0.2
11	C28 13b,17a DIASTERANE (20S) (24R/24S ?)	47.78	217	1340	13.44	2.8
14+15	C28 13b,17a DIASTERANE (20R) (24R/24S ?)	48.15	217	476	4.77	1.0
16	C28 13a,17b DIASTERANE (20S)	48.30	217	460	4.67	1.0
17	C27 5a,14a,17a STERANE (20S)	48.40	217	2473	25.10	5.1
18	C27 5a,14b,17b ISOSTERANE (20R)	48.58	217	1536	15.59	3.2
	+ C29 13b,17a DIASTERANE (20S)					
19	C27 5a,14b,17b ISOSTERANE (20S)	48.81	217	2649	26.89	5.5
20	C28 13a,17b DIASTERANE (20R)	49.00	217	149	1.51	0.3
22	C27 5a,14a,17a STERANE (20R)	49.22	217	1437	14.59	3.0
23	C29 13b,17a DIASTERANE (20R)	49.49	217	2635	26.75	5.5
24	C29 13a,17b DIASTERANE (20S)	49.92	217	615	6.24	1.3
26	C28 5a,14a,17a STERANE (20S)	50.48	217	\$70	9.41	1.9
27	C29 13a,17b DIASTERANE (20R)	50.60	217	1400	15.15	3.1
28	C28 5a,14b,17b ISOSTERANE (20R)	50.77	217	2235	24.19	5.0
29	C28 5a,14b,17b ISOSTERANE (20S)	51.01	217	1744	18.87	3.9
31	C28 5a,14a,17a STERANE (20R)	51.53	217	1282	13.87	2.8
33	C29 5a,14a,17a STERANE (20S)	52.33	217	48	0.56	0.1
34	C29 5a,14b,17b ISOSTERANE (20R)	52.56	217	3165	36.67	7.5
35	C29 5a,14b,17b ISOSTERANE (20S)	52.74	217	2162	25.05	5.1
37	C29 5a,14a,17a STERANE (20R)	53.40	217	1959	22.70	4.7
38	C30 5a,14a,17a STERANE (20S)	53.63	217	1453	16.83	3.5
39	C30 5a,14b,17b ISOSTERANE (20R)	54.04	217	420	4.87	1.0
40	C30 5a,14b,17b ISOSTERANE (208)	54.22	217	1018	11.79	2.4
41	C30 5a,14a,17a STERANE (20R)	54.95	217	2156	24.98	5.1

Project: ATHOS I Oil Spill Lab Sample ID: C45287 Sample Descriptor: SED-CW-01 Analysis Date: 1/8/2005

PARAMETERS

A:LEVEL OF MATURITY <u>Terpanes</u> Steranes 2.4 56.0 % 20S C29 STERANES I % 22S C31 HOMOHOPANE % C30 HOPANE 85.4 47.8 % C29 ISOSTERANES (abb) 72.6 26.2 % REGULAR STERANES % TS/TS+TM (C27) 32.0 0.92 TS/TM (C27) % ISOSTERANES % DIASTERANES 31.0 % C30 MORETANE 14.6 % SHORT-CHAIN STERANES % C29 NORMORETANE 10.8 14.0 DIAHOPANE INDEX (%) 5.6 % TRICYCLIC TERPANES 22.7

B:ORGANIC FACIES AND DEPOSITIONAL ENVIRONMENT

% TOTAL C20+C21	10.8	OLEANANE INDEX (%)	8.4
% TOTAL C27	29.5	GAMMACERANE INDEX (%)	9.8
% TOTAL C28	18.8	BISNORHOPANE INDEX (%)	8.4
% TOTAL C29	28.9	25-NORHOPANE INDEX (%)	3.8
% TOTAL C30	12.0	DIAHOPANE INDEX (%)	5.6
HOPANES/STERANES	2.5	% TRICYCLIC TERPANES	22.7
% DIASTERANES	31.0	% C24 TETRACYCLIC TERPANE	16.1
TOTAL STERANES (ppm)	488	% MORETANES	14.3
		% TOTAL C31 PENTACYCLICS	35.5
Other Biological Markers		% TOTAL C32 PENTACYCLICS	17.6
		% TOTAL C33 PENTACYCLICS	17.9
b-Carotane (ppm)	3.4	% TOTAL C34 PENTACYCLICS	21.9
		% TOTAL C35 PENTACYCLICS	7.1
		C35/C34 HOMOHOPANES	0.32
		29/30 HOPANES	1.01
		TOTAL TRITERPANES (ppm)	1216.2

STERANE AND TRITERPANE BIOMARKERS Project: ATHOS I Oil Spill Lab Sample ID: C45291 Sample Descriptor: SED-PP-01 Analysis Date: 1/8/2005

No.	COMPOUND NAME	RT	ION	AREA	CONC	%
	TERPANES				(ng/g)	
н	C19 TRICYCLIC TERPANE	28.94	191	1139	1.51	0.7
А	C20 TRICYCLIC TERPANE	30.69	191	13265	17.60	7.6
в	C21 TRICYCLIC TERPANE	32.56	191	3715	4.93	2.1
С	C22 TRICYCLIC TERPANE	34.40	191	1616	2.14	0.9
D	C23 TRICYCLIC TERPANE	36.70	191	8599	11.41	4.9
Е	C24 TRICYCLIC TERPANE	37.96	191	4991	6.62	2.9
1	C25 TRICYCLIC TERPANE	40.62	191	3794	5.03	2.2
4	C24 TETRACYCLIC TERPANE	42.55	191	4578	6.07	2.6
5	C26 TRICYCLIC TERPANE (22R)	42.61	191	1750	2.32	1.0
6	C26 TRICYCLIC TERPANE (22S)	42.78	191	2240	2.97	1.3
9	C28 TRICYCLIC TERPANE (22R)	44.32	191	1129	1.50	0.6
10	C28 TRICYCLIC TERPANE (22S)	45.10	191	380	0.50	0.2
11	C29 TRICYCLIC TERPANE (22R)	47.22	191	3306	4.39	1.9
12	C29 TRICYCLIC TERPANE (22S)	47.51	191	1738	2.31	1.0
13	C27 18a-22,29,30-TRISNORNEOHOPANE (Ts)	49.86	191	7981	10.59	4.6
Ι	C27 PENTACYCLIC TERPANE (Y)	50.48	191	384	0.51	0.2
14	C27 17a-22,29,30-TRISNORHOPANE (Tm)	50.79	191	8291	11.00	4.7
15	C30 TRICYCLIC TERPANE (22R)	51.07	191	1908	2.53	1.1
16	C30 TRICYCLIC TERPANE (228)	51.32	191	\$80	1.17	0.5
17	C28 17a,21b-28,30-BISNORHOPANE	52.85	191	2515	3.34	1.4
J	C29 17a,21b-25-NORHOPANE	52.95	191	485	0.64	0.3
19	C29 17a,21b-30-NORHOPANE	53.59	191	20441	27.11	11.7
20	C29 18a-NORNEOHOPANE (29Ts)	53.69	191	2979	3.95	1.7
F	C30 DIAHOPANE	54.02	191	1906	2.53	1.1
21	C29 17b,21a-30-NORMORETANE	54.68	191	6285	8.34	3.6
22	C30 18a-OLEANANE	55.01	191	4801	6.37	2.7
23	C30 17a,21b-HOPANE	55.34	191	24747	32.83	14.1
24	C30 17b,21a-MORETANE	56.20	191	5338	7.08	3.0
27	C31 17a,21b-HOMOHOPANE (22S)	57.37	191	7315	9.70	4.2
28	C31 17a,21b-HOMOHOPANE(22R)	57.62	191	6305	8.36	3.6
G	C30 GAMMACERANE	58.01	191	1480	1.96	0.8
30	C32 17a,21b-HOMOHOPANE (228)	58.96	191	1901	2.52	1.1
31	C32 17a,21b-HOMOHOPANE (22R)	59.33	191	2966	3.93	1.7
34	C33 17a,21b-HOMOHOPANE (22S)	60.90	191	2987	3.96	1.7
35	C33 17a,21b-HOMOHOPANE (22R)	61.35	191	1788	2.37	1.0
36	C34 17a,21b-HOMOHOPANE (22S)	62.60	191	2313	3.07	1.3
37	C34 17a,21b-HOMOHOPANE (22R)	63.33	191	4749	6.30	2.7
38	C35 17a,21b-HOMOHOPANE (22S)	64.93	191	1361	1.81	0.8
39	C35 17a,21b-HOMOHOPANE (22R)	65.67	191	733	0.97	0.4

Project: ATHOS I Oil Spill Lab Sample ID: C45291

Sample Descriptor: SED-PP-01

Analysis Date: 1/8/2005

No.	COMPOUND NAME	RT	ION	AREA	CONC	%
	STERANES				(ng/mg)	
Α	C21 DIAPREGNANE	33.06	217	1588	3.20	3.8
1	C21 PREGNANE	34.79	217	2969	5.98	7.0
в	C22 DIAHOMOPREGNANE	34.91	217	1488	3.00	3.5
2	C22 HOMOPREGNANE	37.36	217	1481	2.98	3.5
3	C27 13b,17a DIASTERANE (20S)	44.98	217	2524	5.14	6.0
4	C27 13b,17a DIASTERANE (20R)	45.68	217	1587	3.23	3.8
8	C27 13a,17b DIASTERANE (20S)	46.32	217	998	2.03	2.4
9	C27 13a,17b DIASTERANE (20R)	46.65	217	744	1.52	1.8
10	C28 13b,17a DIASTERANE (20S) (24R/24S ?)	47.60	217	141	0.29	0.3
11	C28 13b,17a DIASTERANE (20S) (24R/24S ?)	47.78	217	1207	2.46	2.9
14+15	C28 13b,17a DIASTERANE (20R) (24R/24S ?)	48.17	217	446	0.91	1.1
16	C28 13a,17b DIASTERANE (20S)	48.34	217	614	1.27	1.5
17	C27 5a,14a,17a STERANE (20S)	48.40	217	1518	3.13	3.7
18	C27 5a,14b,17b ISOSTERANE (20R)	48.60	217	1059	2.18	2.6
	+ C29 13b,17a DIASTERANE (20S)					
19	C27 5a,14b,17b ISOSTERANE (20S)	48.81	217	1498	3.09	3.6
20	C28 13a,17b DIASTERANE (20R)	49.02	217	117	0.24	0.3
22	C27 5a,14a,17a STERANE (20R)	49.24	217	971	2.00	2.4
23	C29 13b,17a DIASTERANE (20R)	49.49	217	3323	6.85	8.0
24	C29 13a,17b DIASTERANE (20S)	49.94	217	876	1.81	2.1
26	C28 5a,14a,17a STERANE (20S)	50.50	217	419	0.92	1.1
27	C29 13a,17b DIASTERANE (20R)	50.60	217	1907	4.19	4.9
28	C28 5a,14b,17b ISOSTERANE (20R)	50.77	217	2381	5.23	6.1
29	C28 5a,14b,17b ISOSTERANE (20S)	50.99	217	1848	4.06	4.8
31	C28 5a,14a,17a STERANE (20R)	51.51	217	1129	2.48	2.9
33	C29 5a,14a,17a STERANE (20S)	52.31	217	93	0.22	0.3
34	C29 5a,14b,17b ISOSTERANE (20R)	52.56	217	2035	4.79	5.6
35	C29 5a,14b,17b ISOSTERANE (20S)	52.74	217	1355	3.19	3.7
37	C29 5a,14a,17a STERANE (20R)	53.40	217	1418	3.34	3.9
38	C30 5a,14a,17a STERANE (20S)	53.61	217	714	1.68	2.0
39	C30 5a,14b,17b ISOSTERANE (20R)	0.00	217	0	0.00	0.0
40	C30 5a,14b,17b ISOSTERANE (20S)	54.20	217	681	1.60	1.9
41	C30 5a,14a,17a STERANE (20R)	54.95	217	909	2.14	2.5

Project: ATHOS I Oil Spill Lab Sample ID: C45291 Sample Descriptor: SED-PP-01 Analysis Date: 1/8/2005

PARAMETERS

A:LEVEL OF MATURITY

<u>Steranes</u>		Terpanes	
% 20S C29 STERANES	6.2	% 22S C31 HOMOHOPANE	53.7
% C29 ISOSTERANES (abb)	69.2	% C30 HOPANE	82.3
% REGULAR STERANES	18.7	% TS/TS+TM (C27)	49.0
% ISOSTERANES	27.1	TS/TM (C27)	0.96
% DIASTERANES	36.4	% C30 MORETANE	17.7
% SHORT-CHAIN STERANES	17.8	% C29 NORMORETANE	23.5
		DIAHOPANE INDEX (%)	7.2
		% TRICYCLIC TERPANES	28.8

B:ORGANIC FACIES AND DEPOSITIONAL ENVIRONMENT

% TOTAL C20+C21	17.8	OLEANANE INDEX (%)	16.2
% TOTAL C27	24.9	GAMMACERANE INDEX (%)	5.6
% TOTAL C28	21.0	BISNORHOPANE INDEX (%)	9.2
% TOTAL C29	29.9	25-NORHOPANE INDEX (%)	1.9
% TOTAL C30	6.4	DIAHOPANE INDEX (%)	7.2
IOPANES/STERANES	2.7	% TRICYCLIC TERPANES	28.8
% DIASTERANES	36.4	% C24 TETRACYCLIC TERPANE	15.6
DTAL STERANES (ppm)	85	% MORETANES	20.5
		% TOTAL C31 PENTACYCLICS	42.0
ther Biological Markers		% TOTAL C32 PENTACYCLICS	15.0
		% TOTAL C33 PENTACYCLICS	14.7
b-Carotane (ppm)	0.3	% TOTAL C34 PENTACYCLICS	21.8
		% TOTAL C35 PENTACYCLICS	6.5
		C35/C34 HOMOHOPANES	0.30
		29/30 HOPANES	0.83
		TOTAL TRITERPANES (ppm)	232.2
% TOTAL C28 % TOTAL C30 % TOTAL C30 % DIASTERANES % DIASTERANES DTAL STERANES (ppm) ther Biological Markers b-Carotane (ppm)	21.0 29.9 6.4 2.7 36.4 85 0.3	25-NORHOPANE INDEX (%) DIAHOPANE INDEX (%) % TRICYCLIC TERPANES % C24 TETRACYCLIC TERPANE % MORETANES % TOTAL C31 PENTACYCLICS % TOTAL C32 PENTACYCLICS % TOTAL C32 PENTACYCLICS % TOTAL C35 PENTACYCLICS % TOTAL C35 PENTACYCLICS C35/C34 HOMOHOPANES 29/30 HOPANES TOTAL TRITERPANES (ppm)	9 1 7 28 15 20 40 15 14 21 6 0. 0. 23

Project: ATHOS I Oil Spill Lab Sample ID: C45292 Sample Descriptor: SED-PP-02 Analysis Date: 1/8/2005

No.	COMPOUND NAME	RT	ION	AREA	CONC	%
	TERPANES				(ng/g)	
Н	C19 TRICYCLIC TERPANE	28.94	191	730	1.14	0.5
А	C20 TRICYCLIC TERPANE	30.71	191	5649	8.84	4.0
в	C21 TRICYCLIC TERPANE	32.57	191	2618	4.10	1.9
C	C22 TRICYCLIC TERPANE	34.42	191	945	1.48	0.7
D	C23 TRICYCLIC TERPANE	36.70	191	6720	10.52	4.8
E	C24 TRICYCLIC TERPANE	37.96	191	4144	6.49	2.9
1	C25 TRICYCLIC TERPANE	40.62	191	5795	9.07	4.1
4	C24 TETRACYCLIC TERPANE	42.55	191	3608	5.65	2.6
5	C26 TRICYCLIC TERPANE (22R)	42.61	191	1502	2.35	1.1
6	C26 TRICYCLIC TERPANE (22S)	42.76	191	1510	2.36	1.1
9	C28 TRICYCLIC TERPANE (22R)	44.32	191	1114	1.74	0.8
10	C28 TRICYCLIC TERPANE (228)	45.10	191	378	0.59	0.3
11	C29 TRICYCLIC TERPANE (22R)	47.22	191	2241	3.51	1.6
12	C29 TRICYCLIC TERPANE (228)	47.49	191	1338	2.09	0.9
13	C27 18a-22,29,30-TRISNORNEOHOPANE (Ts)	49.86	191	5681	8.89	4.0
Ι	C27 PENTACYCLIC TERPANE (Y)	50.52	191	225	0.35	0.2
14	C27 17a-22,29,30-TRISNORHOPANE (Tm)	50.79	191	6713	10.51	4.8
15	C30 TRICYCLIC TERPANE (22R)	51.07	191	1658	2.60	1.2
16	C30 TRICYCLIC TERPANE (228)	51.32	191	877	1.37	0.6
17	C28 17a,21b-28,30-BISNORHOPANE	52.85	191	2609	4.08	1.9
J	C29 17a,21b-25-NORHOPANE	0.00	191	0	0.00	0.0
19	C29 17a,21b-30-NORHOPANE	53.59	191	16261	25.46	11.5
20	C29 18a-NORNEOHOPANE (29Ts)	53.65	191	3814	5.97	2.7
F	C30 DIAHOPANE	54.00	191	1681	2.63	1.2
21	C29 17b,21a-30-NORMORETANE	54.68	191	4025	6.30	2.9
22	C30 18a-OLEANANE	55.01	191	2900	4.54	2.1
23	C30 17a,21b-HOPANE	55.34	191	19967	31.26	14.2
24	C30 17b,21a-MORETANE	56.20	191	5084	7.96	3.6
27	C31 17a,21b-HOMOHOPANE (22S)	57.38	191	6225	9.75	4.4
28	C31 17a,21b-HOMOHOPANE(22R)	57.62	191	5900	9.24	4.2
G	C30 GAMMACERANE	58.01	191	1594	2.50	1.1
30	C32 17a,21b-HOMOHOPANE (22S)	58.92	191	1613	2.53	1.1
31	C32 17a,21b-HOMOHOPANE (22R)	59.33	191	2040	3.19	1.4
34	C33 17a,21b-HOMOHOPANE (22S)	60.92	191	2325	3.64	1.6
35	C33 17a,21b-HOMOHOPANE (22R)	61.31	191	1859	2.91	1.3
36	C34 17a,21b-HOMOHOPANE (22S)	62.60	191	2634	4.12	1.9
37	C34 17a,21b-HOMOHOPANE (22R)	63.33	191	5455	8.54	3.9
38	C35 17a,21b-HOMOHOPANE (22S)	64.93	191	1242	1.94	0.9
39	C35 17a,21b-HOMOHOPANE (22R)	65.65	191	252	0.39	0.2

Lab Sample ID: C45292

Sample Descriptor: SED-PP-02 Analysis Date: 1/8/2005

No.	COMPOUND NAME	RT	ION	AREA	CONC	%
	STERANES	(ng/mg)				
А	C21 DIAPREGNANE	33.06	217	1268	3.01	4.0
1	C21 PREGNANE	34.79	217	1876	4.46	5.9
в	C22 DIAHOMOPREGNANE	34.91	217	1429	3.40	4.5
2	C22 HOMOPREGNANE	37.36	217	1293	3.07	4.1
3	C27 13b,17a DIASTERANE (20S)	44.96	217	1975	4.75	6.3
4	C27 13b,17a DIASTERANE (20R)	45.68	217	1130	2.72	3.6
8	C27 13a,17b DIASTERANE (20S)	46.30	217	621	1.49	2.0
9	C27 13a,17b DIASTERANE (20R)	46.69	217	615	1.48	2.0
10	C28 13b,17a DIASTERANE (20S) (24R/24S ?)	47.57	217	62	0.15	0.2
11	C28 13b,17a DIASTERANE (20S) (24R/24S ?)	47.78	217	1166	2.80	3.7
14+15	C28 13b,17a DIASTERANE (20R) (24R/24S ?)	48.15	217	191	0.46	0.6
16	C28 13a,17b DIASTERANE (20S)	48.32	217	438	1.07	1.4
17	C27 5a,14a,17a STERANE (20S)	48.40	217	1142	2.78	3.7
18	C27 5a,14b,17b ISOSTERANE (20R)	48.58	217	558	1.36	1.8
	+ C29 13b,17a DIASTERANE (20S)					
19	C27 5a,14b,17b ISOSTERANE (20S)	48.81	217	1329	3.23	4.3
20	C28 13a,17b DIASTERANE (20R)	49.00	217	261	0.64	0.8
22	C27 5a,14a,17a STERANE (20R)	49.22	217	734	1.79	2.4
23	C29 13b,17a DIASTERANE (20R)	49.49	217	1935	4.71	6.3
24	C29 13a,17b DIASTERANE (20S)	49.92	217	439	1.07	1.4
26	C28 5a,14a,17a STERANE (20S)	50.48	217	314	0.81	1.1
27	C29 13a,17b DIASTERANE (20R)	50.58	217	1374	3.56	4.7
28	C28 5a,14b,17b ISOSTERANE (20R)	50.77	217	1536	3.98	5.3
29	C28 5a,14b,17b ISOSTERANE (20S)	50.99	217	1129	2.93	3.9
31	C28 5a,14a,17a STERANE (20R)	51.51	217	750	1.95	2.6
33	C29 5a,14a,17a STERANE (20S)	52.33	217	16	0.04	0.1
34	C29 5a,14b,17b ISOSTERANE (20R)	52.56	217	1799	5.00	6.7
35	C29 5a,14b,17b ISOSTERANE (20S)	52.74	217	1340	3.72	5.0
37	C29 5a,14a,17a STERANE (20R)	53.40	217	1150	3.19	4.3
38	C30 5a,14a,17a STERANE (20S)	53.81	217	250	0.69	0.9
39	C30 5a,14b,17b ISOSTERANE (20R)	54.02	217	225	0.62	0.8
40	C30 5a,14b,17b ISOSTERANE (20S)	54.20	217	609	1.69	2.3
41	C30 5a,14a,17a STERANE (20R)	54.95	217	881	2.45	3.3

Project: ATHOS I Oil Spill Lab Sample ID: C45292 Sample Descriptor: SED-PP-02 Analysis Date: 1/8/2005

PARAMETERS A:LEVEL OF MATURITY

<u>Steranes</u>		Terpanes	
% 20S C29 STERANES	1.4	% 22S C31 HOMOHOPANE	51.3
% C29 ISOSTERANES (abb)	72.9	% C30 HOPANE	79.7
% REGULAR STERANES	18.3	% TS/TS+TM (C27)	45.8
% ISOSTERANES	29.1	TS/TM (C27)	0.85
% DIASTERANES	34.1	% C30 MORETANE	20.3
% SHORT-CHAIN STERANES	18.6	% C29 NORMORETANE	19.8
		DIAHOPANE INDEX (%)	7.8
		% TRICYCLIC TERPANES	26.4

B:ORGANIC FACIES AND DEPOSITIONAL ENVIRONMENT

% TOTAL C20+C21	18.6	OLEANANE INDEX (%)	12.7
% TOTAL C27	25.2	GAMMACERANE INDEX (%)	7.4
% TOTAL C28	19.7	BISNORHOPANE INDEX (%)	11.6
% TOTAL C29	29.3	25-NORHOPANE INDEX (%)	0.0
% TOTAL C30	7.3	DIAHOPANE INDEX (%)	7.8
HOPANES/STERANES	2.9	% TRICYCLIC TERPANES	26.4
% DIASTERANES	34.1	% C24 TETRACYCLIC TERPANE	15.3
TOTAL STERANES (ppm)	75	% MORETANES	20.1
		% TOTAL C31 PENTACYCLICS	41.0
Other Biological Markers		% TOTAL C32 PENTACYCLICS	12.4
		% TOTAL C33 PENTACYCLICS	14.2
b-Carotane (ppm)	0.1	% TOTAL C34 PENTACYCLICS	27.4
		% TOTAL C35 PENTACYCLICS	5.1
		C35/C34 HOMOHOPANES	0.18
		29/30 HOPANES	0.81
		TOTAL TRITERPANES (ppm)	220.6

Project: ATHOS I Oil Spill Lab Sample ID: C45292 Sample Descriptor: SED-PP-02 Analysis Date: 1/8/2005

Project: ATHOS I Oil Spill Lab Sample ID: C45293 Sample Descriptor: SED-PP-03 Analysis Date: 1/8/2005

No.	COMPOUND NAME	RT	ION	AREA	CONC	%
	TERPANES				(ng/g)	
н	C19 TRICYCLIC TERPANE	28.94	191	1432	3.48	0.8
А	C20 TRICYCLIC TERPANE	30.69	191	11648	28.34	6.1
в	C21 TRICYCLIC TERPANE	32.57	191	3986	9.70	2.1
С	C22 TRICYCLIC TERPANE	34.42	191	1458	3.55	0.8
D	C23 TRICYCLIC TERPANE	36.72	191	9229	22.46	4.9
E	C24 TRICYCLIC TERPANE	37.96	191	5944	14.46	3.1
1	C25 TRICYCLIC TERPANE	40.64	191	3856	9.38	2.0
4	C24 TETRACYCLIC TERPANE	42.55	191	5752	14.00	3.0
5	C26 TRICYCLIC TERPANE (22R)	42.63	191	1448	3.52	0.8
6	C26 TRICYCLIC TERPANE (228)	42.78	191	2603	6.33	1.4
9	C28 TRICYCLIC TERPANE (22R)	44.32	191	1812	4.41	1.0
10	C28 TRICYCLIC TERPANE (228)	45.12	191	640	1.56	0.3
11	C29 TRICYCLIC TERPANE (22R)	47.25	191	3509	8.54	1.8
12	C29 TRICYCLIC TERPANE (228)	47.51	191	2006	4.88	1.1
13	C27 18a-22,29,30-TRISNORNEOHOPANE (Ts)	49.86	191	8679	21.12	4.6
I	C27 PENTACYCLIC TERPANE (Y)	50.52	191	133	0.32	0.1
14	C27 17a-22,29,30-TRISNORHOPANE (Tm)	50.79	191	10224	24.88	5.4
15	C30 TRICYCLIC TERPANE (22R)	51.07	191	2120	5.16	1.1
16	C30 TRICYCLIC TERPANE (22S)	51.32	191	1124	2.74	0.6
17	C28 17a,21b-28,30-BISNORHOPANE	52.85	191	2907	7.07	1.5
J	C29 17a,21b-25-NORHOPANE	52.97	191	268	0.65	0.1
19	C29 17a,21b-30-NORHOPANE	53.59	191	25148	61.19	13.3
20	C29 18a-NORNEOHOPANE (29Ts)	53.65	191	5754	14.00	3.0
F	C30 DIAHOPANE	54.02	191	2010	4.89	1.1
21	C29 17b,21a-30-NORMORETANE	54.68	191	4860	11.83	2.6
22	C30 18a-OLEANANE	55.01	191	4481	10.90	2.4
23	C30 17a,21b-HOPANE	55.34	191	30889	75.16	16.3
24	C30 17b,21a-MORETANE	56.20	191	6410	15.60	3.4
27	C31 17a,21b-HOMOHOPANE (22S)	57.38	191	8396	20.43	4.4
28	C31 17a,21b-HOMOHOPANE(22R)	57.62	191	6548	15.93	3.5
G	C30 GAMMACERANE	58.01	191	1170	2.85	0.6
30	C32 17a,21b-HOMOHOPANE (22S)	58.92	191	481	1.17	0.3
31	C32 17a,21b-HOMOHOPANE (22R)	59.33	191	3351	8.15	1.8
34	C33 17a,21b-HOMOHOPANE (22S)	60.90	191	2759	6.71	1.5
35	C33 17a,21b-HOMOHOPANE (22R)	61.35	191	1855	4.51	1.0
36	C34 17a,21b-HOMOHOPANE (22S)	62.60	191	694	1.69	0.4
37	C34 17a,21b-HOMOHOPANE (22R)	63.33	191	2605	6.34	1.4
38	C35 17a,21b-HOMOHOPANE (22S)	64.91	191	1022	2.49	0.5
39	C35 17a 21b-HOMOHOPANE (22R)	65.65	191	514	1.25	0.3

- -

Project: ATHOS I Oil Spill Lab Sample ID: C45293 Sample Descriptor: SED-PP-03

Analysis Date: 1/8/2005

No.	COMPOUND NAME	RT	ION	AREA	CONC	%
	STERANES		(ng/mg)			
А	C21 DIAPREGNANE	33.06	217	1638	6.05	3.5
1	C21 PREGNANE	34.79	217	3435	12.69	7.3
в	C22 DIAHOMOPREGNANE	34.91	217	2331	8.61	5.0
2	C22 HOMOPREGNANE	37.36	217	1704	6.29	3.6
3	C27 13b,17a DIASTERANE (20S)	44.98	217	3311	12.37	7.1
4	C27 13b,17a DIASTERANE (20R)	45.68	217	1850	6.91	4.0
8	C27 13a,17b DIASTERANE (20S)	46.32	217	844	3.15	1.8
9	C27 13a,17b DIASTERANE (20R)	46.67	217	1067	3.99	2.3
10	C28 13b,17a DIASTERANE (20S) (24R/24S ?)	47.60	217	179	0.67	0.4
11	C28 13b,17a DIASTERANE (20S) (24R/24S ?)	47.78	217	1462	5.46	3.2
14+15	C28 13b,17a DIASTERANE (20R) (24R/24S ?)	48.15	217	419	1.57	0.9
16	C28 13a,17b DIASTERANE (20S)	48.32	217	754	2.85	1.6
17	C27 5a,14a,17a STERANE (20S)	48.40	217	2561	9.69	5.6
18	C27 5a,14b,17b ISOSTERANE (20R)	48.58	217	1412	5.34	3.1
	+ C29 13b,17a DIASTERANE (20S)					
19	C27 5a,14b,17b ISOSTERANE (20S)	48.81	217	1601	6.05	3.5
20	C28 13a,17b DIASTERANE (20R)	49.00	217	208	0.79	0.5
22	C27 5a,14a,17a STERANE (20R)	49.22	217	1160	4.39	2.5
23	C29 13b,17a DIASTERANE (20R)	49.49	217	2615	9.89	5.7
24	C29 13a,17b DIASTERANE (20S)	49.94	217	613	2.32	1.3
26	C28 5a,14a,17a STERANE (20S)	50.46	217	677	2.73	1.6
27	C29 13a,17b DIASTERANE (20R)	50.60	217	1782	7.18	4.2
28	C28 5a,14b,17b ISOSTERANE (20R)	50.77	217	1905	7.68	4.4
29	C28 5a,14b,17b ISOSTERANE (20S)	50.99	217	1664	6.71	3.9
31	C28 5a,14a,17a STERANE (20R)	51.51	217	1164	4.69	2.7
33	C29 5a,14a,17a STERANE (20S)	52.31	217	105	0.45	0.3
34	C29 5a,14b,17b ISOSTERANE (20R)	52.56	217	2380	10.27	5.9
35	C29 5a,14b,17b ISOSTERANE (20S)	52.74	217	1449	6.25	3.6
37	C29 5a,14a,17a STERANE (20R)	53.40	217	1697	7.32	4.2
38	C30 5a,14a,17a STERANE (20S)	53.61	217	988	4.26	2.5
39	C30 5a,14b,17b ISOSTERANE (20R)	54.02	217	275	1.19	0.7
40	C30 5a,14b,17b ISOSTERANE (20S)	54.20	217	595	2.57	1.5
41	C30 5a,14a,17a STERANE (20R)	54.95	217	621	2.68	1.5
Project: ATHOS I Oil Spill Lab Sample ID: C45293 Sample Descriptor: SED-PP-03 Analysis Date: 1/8/2005

PARAMETERS

A:LEVEL OF MATURITY

Steranes		<u>Terpanes</u>	
% 20S C29 STERANES	5.8	% 228 C31 HOMOHOPANE	56.2
% C29 ISOSTERANES (abb)	68.0	% C30 HOPANE	82.8
% REGULAR STERANES	20.9	% TS/TS+TM (C27)	45.9
% ISOSTERANES	25.1	TS/TM (C27)	0.85
% DIASTERANES	34.6	% C30 MORETANE	17.2
% SHORT-CHAIN STERANES	19.4	% C29 NORMORETANE	16.2
		DIAHOPANE INDEX (%)	6.1
		% TRICYCLIC TERPANES	27.8

B:ORGANIC FACIES AND DEPOSITIONAL ENVIRONMENT

% TOTAL C20+C21	19.4	OLEANANE INDEX (%)	12.7
% TOTAL C27	28.4	GAMMACERANE INDEX (%)	3.6
% TOTAL C28	19.2	BISNORHOPANE INDEX (%)	8.6
% TOTAL C29	26.8	25-NORHOPANE INDEX (%)	0.9
% TOTAL C30	6.2	DIAHOPANE INDEX (%)	6.1
HOPANES/STERANES	2.6	% TRICYCLIC TERPANES	27.8
% DIASTERANES	34.6	% C24 TETRACYCLIC TERPANE	15.7
TOTAL STERANES (ppm)	173	% MORETANES	16.7
		% TOTAL C31 PENTACYCLICS	52.9
Other Biological Markers		% TOTAL C32 PENTACYCLICS	13.6
		% TOTAL C33 PENTACYCLICS	16.3
b-Carotane (ppm)	0.4	% TOTAL C34 PENTACYCLICS	11.7
		% TOTAL C35 PENTACYCLICS	5.4
		C35/C34 HOMOHOPANES	0.47
		29/30 HOPANES	0.81
		TOTAL TRITERPANES (ppm)	461.7

All ratios based on concentrations

APPENDIX F

Oyster Tissue Analytical Results

- F.1. Sample log with summary PAH data
- F.2. PAH analyses results
- F.3. Trace metal data for five samples collected on December 9, 2004.
- F.4. Biomarker reports on 12 samples collected on December 7 and 9, 2004.
- F.5. NOAA Mussel Watch samples collected at Hope Creek (DBHC), Arnolds Point (DBAP), and Ben Davis Point Shoal (DBBD).

F.1. Sample log with summary PAH data.

Sample ID	Latitude	Longitude	Date	Total PAHs (ng/g wet)	Comments
R_12_7_2004	39.20567	-75.36167	7-Dec-04	19.8	Ridge
SB_12_7_2004	39.22012	-75.38298	7-Dec-04	15.7	Silver Bed
LM_12_7_2004	39.23002	-75.35343	7-Dec-04	21.8	Lower Middle
RN_12_7_2004	39.23193	-75.33495	7-Dec-04	24.5	Red Nun
OB_12_7_2004	39.25822	-75.37707	7-Dec-04	22.3	Over the Bar
WB_12_7_2004	39.33165	-75.45527	7-Dec-04	17.1	Woodland Beach
NJMW1_12_7_2004	39.38125	-75.44997	7-Dec-04	24.5	NJ Mussel Watch Site
DBFE-091204	39.2100	-75.19148	9-Dec-04	25.4	DE Bay, False Egg
Newbedsoermo- 091204	39.2468	-75.25307	9-Dec-04	26.1	
DBBD-091204	39.25138	-75.30147	9-Dec-04	28.5	De Bay, Ben Davis
DBAP-091204	39.38332	-75.44895	9-Dec-04	24.1	De Bay, Arnolds Point
DBHC-091204	39.42627	-75.48827	9-Dec-04	17.6	De Bay, Hope Creek
DBFE-032405	39.21000	-75.19150	24-Feb-05	21.5	De Bay, False Egg
DBBD-032405	39.25138	-75.30150	24-Feb-05	13.2	De Bay, Ben Davis
DBAP-032405	39.38332	-75.44900	24-Feb-05	28.9	De Bay, Arnolds Point
DBHC-032405	39.42627	-75.48830	24-Feb-05	25.3	De Bay, Hope Creek
Su	oplemental s	samples from	the NOAA M	ussel Watch p	orogram
Sample ID	Latitude	Longitude	Date	Total NS&T PAHs (ng/g dry)	Comments
DBAP	39.2300	-75.2700	1-Jan-05	951	Arnolds Point
DBHC	39.25604	-75.2560	1-Jan-05	1041	Hope Creek
DBBD	39.1514	-75.1817	1-Jan-05	459	Ben Davis Point Shoal

F.2. PAH analyses results

Client Sample ID	R-12-7-2004	SB-12-7-2004	
Sample Descriptor	10 Ovsters	16 Ovsters	
Original Sample			
GERG ID	C45246	C45247	
Sample Type	SAMP	SAMP	
SDG	EC170	EC170	
Dry Weight	1.14	1.18	
Wet Weight	11.45	13.93	
Sample Size Units	Grams	Grams	
Matrix	Tissue	Tissue	
% solid	10.0	8.5	
% Lipid	6.0	4.5	
Reporting Units	ng/g	ng/g	
Calculation Basis (dry/wet)	Wet	Wet	
QC Batch ID	T1463	T1463	
Method	GCMS	GCMS	
Collection Date	12/07/04	12/07/04	
Extraction Date	12/11/04	12/11/04	
Analysis Date	12/14/04	12/14/04	
	12/14/04	12/14/04	
Surrogate Compounds	%Recovery	%Recovery	
d8-Naphthalene	86.3	85.8	
d10-Acenaphthene	99.2	101.9	
d10-Phenanthrene	108.0	114.1	
d12-Chrysene	88.0	87.9	
d12-Perylene	74.0	77.1	
Total PAHs	Concentration	Concentration	
Total PAHs with Perylene	19.8	15.7	
Total PAHs without Perylene	19.1	15.3	
Total NS&T PAHs	7.1	5.7	

- ND Not Detected J <MDL NA Not Applicable Q Results Outside QC I Interference
- B Blank Contamination >3xMDL

Client Sample ID	R-12-7-2004			SB-12-7-2004		
Sample Descriptor	10 Oysters			16 Oysters		
Original Sample	2			2		
GERG ID	C45246			C45247		
Sample Type	SAMP			SAMP		
SDG	EC170			EC170		
PAH Compounds	Concentration	MDL		Concentration	MDL	
Naphthalene	0.56	0.47		0.48	0.38	
C1-Naphthalenes	0.37	0.80	J	0.33	0.66	J
C2-Naphthalenes	0.28	0.46	J	0.22	0.38	J
C3-Naphthalenes	0.55	0.70	J	0.47	0.58	J
C4-Naphthalenes	0.76	0.70		0.58	0.58	
Biphenyl	0.19	0.38	J	0.16	0.32	J
Acenaphthylene	0.45	0.24		0.29	0.20	
Acenaphthene	0.16	0.24	J	0.11	0.20	J
Fluorene	0.30	0.36	J	0.21	0.30	J
C1-Fluorenes	0.92	0.73		1.31	0.60	
C2-Fluorenes	1.59	0.73		0.90	0.60	
C3-Fluorenes	2.55	0.73		1.97	0.60	
Phenanthrene	0.73	0.34		0.48	0.28	
Anthracene	1.25	0.29		0.78	0.24	
C1-Phenanthrenes/Anthracenes	0.72	0.30		0.44	0.25	
C2-Phenanthrenes/Anthracenes	0.68	0.30		0.47	0.25	
C3-Phenanthrenes/Anthracenes	0.78	0.30		0.41	0.25	
C4-Phenanthrenes/Anthracenes	0.52	0.30		0.61	0.25	
Dibenzothiophene	0.09	0.12	J	0.06	0.10	J
C1-Dibenzothiophenes	0.52	0.25		0.21	0.21	
C2-Dibenzothiophenes	0.60	0.25		0.41	0.21	
C3-Dibenzothiophenes	0.61	0.25		0.41	0.21	
Fluoranthene	0.97	0.31		0.59	0.25	
Pyrene	1.36	0.33		0.79	0.27	
C1-Fluoranthenes/Pyrenes	0.83	0.64		0.56	0.53	
C2-Fluoranthenes/Pyrenes	0.58	0.64	J	0.33	0.53	J
C3-Fluoranthenes/Pyrenes	0.26	0.64	J	0.00	0.53	ND
Benzo(a)anthracene	0.25	0.32	J	0.17	0.26	J
Chrysene	0.89	0.25	-	0.52	0.21	-
C1-Chrysenes	0.30	0.50	I	0.19	0.41	I
C2-Chrysenes	0.29	0.50	J	0.24	0.41	J
C3-Chrysenes	0.00	0.50	ND	0.00	0.41	ND
C4-Chrysenes	0.00	0.50	ND	0.00	0.41	ND
Benzo(b)fluoranthene	0.44	0.58	I	0.00	0.48	I
Benzo(k)fluoranthene	0.09	0.40	I	0.08	0.33	Ţ
Benzo(e)pyrene	0.47	0.10	5	0.00	0.26	5
Benzo(a)pyrene	0.18	0.63	I	0.11	0.51	T
Perylene	0.73	0.05	5	0.43	0.12	5
Indeno(1,2,3-c,d)pyrene	0.10	0.59	I	0.02	0.49	T
Dibenz(a,h)anthracene	0.04	0.31	J	0.02	0.15	Ţ
Benzo(g,h,i)perylene	0.16	0.31	J	0.11	0.20	J
· · · ·	0.10	0.77	5	0.11	0.40	5
2-Methylnaphthalene	0.21	0.36	J	0.19	0.29	J
1-Methylnaphthalene	0.16	0.44	J	0.14	0.36	J
2,6-Dimethylnaphthalene	0.12	0.23	J	0.09	0.19	J
1,6,7-Trimethylnaphthalene	0.14	0.35	J	0.10	0.29	J
1-Methylphenanthrene	0.16	0.15		0.10	0.12	J

ND Not Detected

J <MDL NA Not Applicable Q Results Outside QC I Interference

B Blank Contamination >3xMDL

Client Sample ID	LM-12-7-2004	RN-12-7-2004	
Sample Descriptor	13 Oysters	12 Oysters	
Original Sample	·		
GERG ID	C45248	C45249	
Sample Type	SAMP	SAMP	
SDG	EC170	EC170	
Dry Weight	1.00	1.46	
Wet Weight	10.41	13.29	
Sample Size Units	Grams	Grams	
Matrix	Tissue	Tissue	
% solid	9.6	11.0	
% Lipid	5.2	6.9	
Reporting Units	ng/g	ng/g	
Calculation Basis (dry/wet)	Wet	Wet	
QC Batch ID	T1463	T1463	
Method	GCMS	GCMS	
Collection Date	12/07/04	12/07/04	
Extraction Date	12/11/04	12/11/04	
Analysis Date	12/14/04	12/14/04	
	12/14/04	12/15/04	
Surrogate Compounds	%Recovery	%Recovery	
d8-Naphthalene	69.4	77.8	
d10-Acenaphthene	83.6	92.3	
d10-Phenanthrene	94.5	101.5	
d12-Chrysene	76.7	82.9	
d12-Perylene	67.1	71.0	
Total PAHs	Concentration	Concentration	
Total PAHs with Perylene	21.8	24.5	
Total PAHs without Perylene	21.0	23.9	
Total NS&T PAHs	7.8	9.2	

- ND Not Detected
- J <MDL NA Not Applicable Q Results Outside QC
- I Interference
- B Blank Contamination >3xMDL

Client Sample ID	LM-12-7-2004			RN-12-7-2004		
Sample Descriptor	13 Ovsters			12 Ovsters		
Original Sample	,			- ,		
GERG ID	C45248			C45249		
Sample Type	SAMP			SAMP		
SDG	EC170			EC170		
PAH Compounds	Concentration	MDL		Concentration	MDL	
Naphthalene	0.58	0.51		0.63	0.40	
C1-Naphthalenes	0.42	0.88	J	0.43	0.69	J
C2-Naphthalenes	0.29	0.51	J	0.31	0.40	J
C3-Naphthalenes	0.64	0.77	J	0.55	0.60	J
C4-Naphthalenes	0.86	0.77		0.78	0.60	
Biphenyl	0.21	0.42	J	0.20	0.33	J
Acenaphthylene	0.43	0.27		0.51	0.21	
Acenaphthene	0.16	0.27	J	0.18	0.21	J
Fluorene	0.20	0.40	J	0.29	0.31	J
C1-Fluorenes	1.78	0.80		1.92	0.63	
C2-Fluorenes	1.40	0.80		1.55	0.63	
C3-Fluorenes	2.35	0.80		2.79	0.63	
Phenanthrene	0.56	0.37		0.67	0.29	
Anthracene	1.11	0.32		1.45	0.25	
C1-Phenanthrenes/Anthracenes	0.55	0.33		0.71	0.26	
C2-Phenanthrenes/Anthracenes	0.56	0.33		0.86	0.26	
C3-Phenanthrenes/Anthracenes	0.73	0.33		0.85	0.26	
C4-Phenanthrenes/Anthracenes	0.87	0.33		0.67	0.26	
Dibenzothiophene	0.07	0.14	J	0.11	0.11	
C1-Dibenzothiophenes	0.35	0.27		0.35	0.21	
C2-Dibenzothiophenes	0.59	0.27		0.78	0.21	
C3-Dibenzothiophenes	0.49	0.27		0.68	0.21	
Fluoranthene	0.71	0.34		1.03	0.27	
Pyrene	1.12	0.37		1.35	0.29	
C1-Fluoranthenes/Pyrenes	0.81	0.71		0.93	0.56	
C2-Fluoranthenes/Pyrenes	0.42	0.71	J	0.48	0.56	J
C3-Fluoranthenes/Pyrenes	0.27	0.71	J	0.17	0.56	J
Benzo(a)anthracene	0.25	0.35	J	0.34	0.28	
Chrysene	0.80	0.28		0.94	0.22	
C1-Chrysenes	0.38	0.55	J	0.31	0.43	J
C2-Chrysenes	0.36	0.55	J	0.27	0.43	J
C3-Chrysenes	0.00	0.55	ND	0.00	0.43	ND
C4-Chrysenes	0.00	0.55	ND	0.00	0.43	ND
Benzo(b)fluoranthene	0.43	0.64	J	0.41	0.50	J
Benzo(k)fluoranthene	0.10	0.44	J	0.07	0.34	J
Benzo(e)pyrene	0.42	0.35	U U	0.42	0.27	U
Benzo(a)pyrene	0.16	0.69	T	0.28	0.54	T
Perylene	0.85	0.16	U U	0.56	0.12	U
Indeno(1,2,3-c,d)pyrene	0.09	0.65	T	0.13	0.51	T
Dibenz(a,h)anthracene	0.03	0.34	T	0.04	0.27	I
Benzo(g,h,i)perylene	0.12	0.54	J	0.15	0.42	J
2-Methylnaphthalene	0.23	0.39	J	0.22	0.31	J
1-Methylnaphthalene	0.19	0.49	J	0.21	0.38	J
2,6-Dimethylnaphthalene	0.12	0.25	J	0.13	0.20	J
1,6,7-Trimethylnaphthalene	0.09	0.39	J	0.13	0.30	J
1-Methylphenanthrene	0.14	0.17	J	0.24	0.13	

J <MDL NA Not Applicable Q Results Outside QC I Interference

B Blank Contamination >3xMDL

Client Sample ID	OB-12-7-2004	WB-12-7-2004	
Sample Descriptor	16 Ovsters	13 Ovsters	
Original Sample	10 0 95015	10 0 9 5 6 1 5	
GERG ID	C45250	C45251	
Sample Type	SAMP	SAMP	
SDG	EC170	EC170	
Dry Weight	1.35	0.64	
Wet Weight	13.49	11.67	
Sample Size Units	Grams	Grams	
Matrix	Tissue	Tissue	
% solid	10.0	5.5	
% Lipid	5.0	3.5	
Reporting Units	ng/g	ng/g	
Calculation Basis (dry/wet)	Wet	Wet	
QC Batch ID	T1463	T1463	
Method	GCMS	GCMS	
Collection Date	12/07/04	12/07/04	
Receive Date	12/11/04	12/11/04	
Analysis Date	12/14/04	12/14/04	
1 IIIII 9 515 2 415	12/15/04	12/15/04	
Surrogate Compounds	%Recovery	%Recovery	
d8-Naphthalene	80.4	76.2	
d10-Acenaphthene	96.7	90.9	
d10-Phenanthrene	94.1	104.5	
d12-Chrysene	82.5	78.4	
d12-Perylene	73.0	72.9	
Total PAHs	Concentration	Concentration	
Total PAHs with Perylene	22.3	17.1	
Total PAHs without Perylene	21.4	16.4	
Total NS&T PAHs	9.2	6.7	

- ND Not Detected
- J <MDL NA Not Applicable Q Results Outside QC
- I Interference
- B Blank Contamination >3xMDL

Client Sample ID	OB-12-7-2004			WB-12-7-2004		
Sample Descriptor	16 Oysters			13 Oysters		
Original Sample	2			,		
GERG ID	C45250			C45251		
Sample Type	SAMP			SAMP		
SDG	EC170			EC170		
PAH Compounds	Concentration	MDL		Concentration	MDL	
Naphthalene	0.75	0.39		0.58	0.46	
C1-Naphthalenes	0.54	0.68	J	0.45	0.78	J
C2-Naphthalenes	0.24	0.39	J	0.23	0.45	J
C3-Naphthalenes	0.44	0.59	J	0.53	0.69	J
C4-Naphthalenes	0.45	0.59	J	0.42	0.69	J
Biphenyl	0.17	0.33	J	0.21	0.38	J
Acenaphthylene	0.52	0.21		0.45	0.24	
Acenaphthene	0.14	0.21	J	0.16	0.24	J
Fluorene	0.22	0.31	J	0.26	0.36	J
C1-Fluorenes	0.46	0.62	J	0.51	0.71	J
C2-Fluorenes	1.02	0.62		1.01	0.71	
C3-Fluorenes	1.88	0.62		2.15	0.71	
Phenanthrene	0.59	0.29		0.42	0.33	
Anthracene	1.17	0.24		0.81	0.28	
C1-Phenanthrenes/Anthracenes	0.70	0.26		0.43	0.30	
C2-Phenanthrenes/Anthracenes	0.67	0.26		0.41	0.30	
C3-Phenanthrenes/Anthracenes	0.72	0.26		0.40	0.30	
C4-Phenanthrenes/Anthracenes	1.05	0.26		0.70	0.30	
Dibenzothiophene	0.08	0.11	J	0.05	0.12	J
C1-Dibenzothiophenes	0.29	0.21		0.31	0.24	
C2-Dibenzothiophenes	0.65	0.21		0.38	0.24	
C3-Dibenzothiophenes	0.76	0.21		0.59	0.24	
Fluoranthene	0.81	0.26		0.58	0.30	
Pyrene	1.38	0.28		0.90	0.33	
C1-Fluoranthenes/Pyrenes	1.16	0.55		0.75	0.63	
C2-Fluoranthenes/Pyrenes	0.68	0.55		0.59	0.63	J
C3-Fluoranthenes/Pyrenes	0.30	0.55	J	0.25	0.63	J
Benzo(a)anthracene	0.40	0.27		0.26	0.31	J
Chrysene	1.02	0.21		0.60	0.25	
C1-Chrysenes	0.42	0.43	J	0.37	0.49	J
C2-Chrysenes	0.44	0.43		0.29	0.49	J
C3-Chrysenes	0.11	0.43	J	0.00	0.49	ND
C4-Chrysenes	0.00	0.43	ND	0.00	0.49	ND
Benzo(b)fluoranthene	0.64	0.49	112	0.38	0.57	J
Benzo(k)fluoranthene	0.19	0.34	J	0.07	0.39	J
Benzo(e)pyrene	0.53	0.27	5	0.39	0.31	5
Benzo(a)pyrene	0.32	0.53	I	0.16	0.61	T
Perylene	0.87	0.12	5	0.68	0.14	5
Indeno(1,2,3-c,d)pyrene	0.22	0.50	I	0.08	0.58	T
Dibenz(a,h)anthracene	0.05	0.27	J	0.02	0.30	Ţ
Benzo(g,h,i)perylene	0.03	0.42	J	0.02	0.48	J
	0.22	0.72	3	0.10	0.70	3
2-Methylnaphthalene	0.29	0.30	J	0.25	0.35	J
1-Methylnaphthalene	0.25	0.38	J	0.20	0.43	J
2,6-Dimethylnaphthalene	0.10	0.20	J	0.08	0.23	J
1,6,7-Trimethylnaphthalene	0.11	0.30	J	0.10	0.34	J
1-Methylphenanthrene	0.15	0.13		0.11	0.15	J

- J <MDL NA Not Applicable Q Results Outside QC I Interference

B Blank Contamination >3xMDL

Client Sample ID	NJMW1-12-7-2004	DBFE-091204	
Sample Descriptor	37 Ovsters	10 Ovsters	
Original Sample	- · · · · · · · · ·		
GERG ID	C45252	C45253	
Sample Type	SAMP	SAMP	
SDG	EC170	EC170	
Dry Weight	0.78	2.28	
Wet Weight	13.23	16.63	
Sample Size Units	Grams	Grams	
Matrix	Tissue	Tissue	
% solid	5.9	13.7	
% Lipid	2.8	9.1	
Reporting Units	ng/g	ng/g	
Calculation Basis (dry/wet)	Wet	Wet	
QC Batch ID	T1463	T1463	
Method	GCMS	GCMS	
Collection Date	12/07/04	12/09/04	
Extraction Date	12/11/04	12/11/04	
Analysis Date	12/14/04	12/14/04	
	12/15/04	12/15/04	
Surrogate Compounds	%Recovery	%Recovery	
d8-Naphthalene	74.1	83.5	
d10-Acenaphthene	87.5	98.6	
d10-Phenanthrene	80.8	119.3	
d12-Chrysene	70.7	96.5	
d12-Perylene	60.2	75.5	
Total PAHs	Concentration	Concentration	
Total PAHs with Perylene	24.5	25.4	
Total PAHs without Perylene	23.5	24.6	
Total NS&T PAHs	10.4	10.8	

- ND Not Detected
- J <MDL NA Not Applicable Q Results Outside QC
- I Interference
- B Blank Contamination >3xMDL

Client Sample ID	NJMW1-12-7-2004			DBFE-091204		
Sample Descriptor	37 Oysters			10 Oysters		
Original Sample	-					
GERG ID	C45252			C45253		
Sample Type	SAMP			SAMP		
SDG	EC170			EC170		
PAH Compounds	Concentration	MDI		Concentration	MDI	
Nanhthalana	0.68	0.40		0.56	0.32	
C1-Naphthalenes	0.63	0.40	т	0.50	0.52	
C2-Naphthalenes	0.02	0.09	J T	0.08	0.33	
C3-Naphthalenes	0.56	0.40	J T	0.48	0.32	
C4-Naphthalenes	0.50	0.01	J T	0.09	0.48	
Binhenyl	0.32	0.01	J T	0.04	0.48	
Acenaphthylene	0.19	0.33	J	0.27	0.20	
Acenaphthene	0.30	0.21	т	0.40	0.17	
Fluorene	0.19	0.21	J T	0.23	0.17	
C1-Eluorenes	0.20	0.51	J T	0.40	0.23	
C2-Fluorenes	0.86	0.03	J	0.74	0.50	
C3-Fluorenes	0.80	0.05		1.95	0.50	
Phenanthrene	2.44	0.03		2.76	0.30	
Anthracene	0.55	0.29		0.70	0.23	
C1 Departhranes/Anthracenes	0.62	0.25		1.55	0.20	
C2 Phenanthrenes/Anthracenes	0.65	0.26		0.99	0.21	
C2 Phononthronos/Anthrononos	0.73	0.26		0.92	0.21	
C4 Phenanthrenes/Anthracenes	0.92	0.26		0.87	0.21	
Dibenzothiophene	0.81	0.26	Ţ	0.47	0.21	
C1 Dibenzothiophenes	0.06	0.11	J	0.12	0.09	
C2 Dibenzothiophenes	0.40	0.22		0.30	0.17	
C2-Diberzothiophenes	0.70	0.22		0.60	0.17	
CS-Dibenzounophenes	0.51	0.22		0.54	0.17	
Privorancie	1.11	0.27		1.26	0.21	
C1 Elycronthonos/Duronos	1.87	0.29		1.41	0.23	
C1-Fluoranthenes/Pyrenes	1.21	0.56		0.84	0.44	
C2-Fluoranthenes/Fyrenes	0.91	0.56		0.39	0.44	J
C3-Fluoranthenes/Pyrenes	0.41	0.56	J	0.00	0.44	ND
Chrusono	0.56	0.28		0.31	0.22	
C1 Character	0.97	0.22		1.00	0.17	
C1-Chrysenes	0.81	0.44		0.36	0.35	
C2-Chrysenes	0.40	0.44	J	0.47	0.35	
C4 Chrysenes	0.00	0.44	ND	0.00	0.35	ND
C4-Chrysenes	0.00	0.44	ND	0.00	0.35	ND
Benzo(b)fluoranthene	0.88	0.50	_	0.53	0.40	_
Benzo(k)muorantinene	0.33	0.34	J	0.14	0.27	J
Benzo(e)pyrene	0.64	0.27		0.54	0.22	
Demiona	0.65	0.54		0.32	0.43	J
Indeped 1 2 2 a d) nymene	1.04	0.13		0.80	0.10	_
Dihang(a, k)anthrasana	0.35	0.51	J	0.10	0.41	J
Dibenz(a,n)antinacene	0.07	0.27	J	0.03	0.22	J
Benzo(g,n,r)perylene	0.36	0.43	J	0.18	0.34	J
2-Methylnaphthalene	0.33	0.31		0.39	0.25	
1-Methylnaphthalene	0.29	0.38	J	0.29	0.30	J
2,6-Dimethylnaphthalene	0.12	0.20	J	0.18	0.16	
1,6,7-Trimethylnaphthalene	0.09	0.30	J	0.17	0.24	J
1-Methylphenanthrene	0.28	0.13		0.47	0.10	

- J <MDL NA Not Applicable Q Results Outside QC I Interference

B Blank Contamination >3xMDL

Client Sample ID	Newbedsoermo-091204	DBBD-091204	
Sample Descriptor	18 Oysters	18 Oysters	
GERG ID			
Sample Type	C45254	C45255	
SDG	SAMP	SAMP	
	EC170	EC170	
Dry Weight	1.81	1.51	
Wet Weight	14.53	13.28	
Sample Size Units	Grams	Grams	
Matrix	Tissue	Tissue	
% solid	12.5	11.4	
% Lipid	7.6	7.8	
Reporting Units	ng/g	ng/g	
Calculation Basis (dry/wet)	Wet	Wet	
QC Batch ID	T1463	T1463	
Method	GCMS	GCMS	
Collection Date	12/09/04	12/09/04	
Receive Date	12/11/04	12/11/04	
Analysis Date	12/14/04	12/14/04	
	12/15/04	12/15/04	
Surrogate Compounds	%Recovery	%Recovery	
d8-Naphthalene	91.9	87.4	
d10-Acenaphthene	103.5	103.4	
d10-Phenanthrene	119.3	111.6	
d12-Chrysene	90.2	90.7	
d12-Perylene	77.1	78.5	
Total PAHs	Concentration	Concentration	
Total PAHs with Perylene	26.1	28.5	
Total PAHs without Perylene	25.4	27.5	
Total NS&T PAHs	10.8	11.2	

- ND Not Detected
- J <MDL NA Not Applicable Q Results Outside QC
- I Interference
- B Blank Contamination >3xMDL

Client Sample ID	Newbedsoermo-091204			DBBD-091204		
Sample Descriptor	18 Oysters			18 Oysters		
Original Sample	-					
GERG ID	C45254			C45255		
Sample Type	SAMP			SAMP		
SDG	EC170			EC170		
PAH Compounds	Concontration	MDI		Concentration	MDI	
Nanhthalana	0.58	0.27		0.62	0.40	
C1-Naphthalenes	0.53	0.57	т	0.03	0.40	т
C2-Naphthalenes	0.33	0.03	J	0.43	0.09	J
C3-Naphthalenes	0.55	0.57	J	0.50	0.40	J
C4-Naphthalenes	0.59	0.55		0.03	0.00	
Binhenyl	0.19	0.33	т	0.85	0.00	т
Acenaphthylene	0.18	0.50	J	0.19	0.33	J
Acenaphthene	0.46	0.19		0.58	0.21	т
Fluorene	0.20	0.19		0.20	0.21	J T
C1 Elucrenes	0.50	0.29		0.29	0.51	J
C2 Elucrones	0.67	0.57		1.15	0.63	
C2 Elucrones	1.91	0.57		1.96	0.63	
Phononthropo	3.33	0.57		2.92	0.63	
Anthracana	0.72	0.27		0.68	0.29	
C1 Phononthronos/Anthroponos	1.46	0.23		1.58	0.25	
C2 Phononthronos/Anthroponos	0.91	0.24		0.92	0.26	
C2-Phenanthrenes/Anthracenes	0.89	0.24		1.03	0.26	
C4 Phononthronos/Anthroponos	0.95	0.24		1.07	0.26	
Dihenzothiophone	0.66	0.24		0.92	0.26	-
C1 Dihangathianhanas	0.10	0.10		0.10	0.11	J
C1-Dibenzothiophenes	0.32	0.20		0.44	0.22	
C2-Dibenzothiophenes	0.63	0.20		0.74	0.22	
C3-Dibenzotniophenes	0.42	0.20		0.75	0.22	
Fluorantnene	1.39	0.24		1.19	0.27	
Pyrene	1.78	0.26		2.14	0.29	
C1-Fluoranthenes/Pyrenes	1.00	0.51		1.14	0.56	
C2-Fluoranthenes/Pyrenes	0.61	0.51	_	0.73	0.56	_
C3-Fluoranthenes/Pyrenes	0.25	0.51	J	0.45	0.56	J
Character	0.37	0.25		0.37	0.28	
C1 Chronese	1.12	0.20		1.22	0.22	
C1-Chrysenes	0.44	0.40		0.48	0.43	
C2-Chrysenes	0.32	0.40	J	0.46	0.43	_
C4 Chrysenes	0.00	0.40	ND	0.14	0.43	J
C4-Chrysenes	0.00	0.40	ND	0.00	0.43	ND
Benzo(b)fluorantnene	0.53	0.46		0.57	0.50	
Benzo(k) iluorantnene	0.13	0.31	J	0.13	0.34	J
Benzo(e)pyrene	0.47	0.25		0.59	0.27	
Demiona	0.36	0.49	J	0.31	0.54	J
Ferylene	0.71	0.11	_	1.00	0.12	_
Dihana(1,2,3-c,d)pyrene	0.20	0.47	J	0.15	0.51	J
Dibenz(a,n)anthracene	0.10	0.25	J	0.06	0.27	J
Benzo(g,n,1)perylene	0.23	0.39	J	0.17	0.42	J
2-Methylnaphthalene	0.32	0.28		0.24	0.31	J
1-Methylnaphthalene	0.21	0.35	J	0.19	0.38	J
2.6-Dimethylnaphthalene	0.15	0.18	J	0.15	0.20	J
1,6,7-Trimethylnaphthalene	0.15	0.28	J	0.14	0.30	J
1-Methylphenanthrene	0.33	0.12		0.20	0.13	

J <MDL NA Not Applicable Q Results Outside QC

I Interference

B Blank Contamination >3xMDL

Client Sample ID	DBAP-091204	DBHC-091204	
Sample Descriptor	17 Ovsters	16 Ovsters	
Original Sample			
GERG ID	C45256	C45257	
Sample Type	SAMP	SAMP	
SDG	EC170	EC170	
Dry Weight	0.64	0.64	
Wet Weight	11.20	13.48	
Sample Size Units	Grams	Grams	
Matrix	Tissue	Tissue	
% solid	5.7	4.8	
% Lipid	29.3	5.1	
Reporting Units	ng/g	ng/g	
Calculation Basis (dry/wet)	Wet	Wet	
QC Batch ID	T1463	T1463	
Method	GCMS	GCMS	
Collection Date	12/09/04	12/09/04	
Extraction Date	12/11/04	12/11/04	
Analysis Date	12/14/04	12/14/04	
	12/15/04	12/15/04	
Surrogate Compounds	%Recovery	%Recovery	
d8-Naphthalene	78.1	81.8	
d10-Acenaphthene	88.5	96.6	
d10-Phenanthrene	101.4	105.3	
d12-Chrysene	78.7	81.0	
d12-Perylene	67.8	69.0	
Total PAHs	Concentration	Concentration	
Total PAHs with Perylene	24.1	17.6	
Total PAHs without Perylene	22.9	16.7	
Total NS&T PAHs	10.1	6.7	

ND Not Detected

J <MDL NA Not Applicable Q Results Outside QC

I Interference

B Blank Contamination >3xMDL

Client Sample ID	DBAP-091204			DBHC-091204		
Sample Descriptor	17 Oysters			16 Oysters		
Original Sample	2			,		
GERG ID	C45256			C45257		
Sample Type	SAMP			SAMP		
SDG	EC170			EC170		
PAH Compounds	Concentration	MDL		Concentration	MDL	
Naphthalene	0.63	0.48		0.51	0.39	
C1-Naphthalenes	0.51	0.82	J	0.36	0.68	J
C2-Naphthalenes	0.29	0.47	J	0.22	0.39	J
C3-Naphthalenes	0.49	0.72	J	0.39	0.60	J
C4-Naphthalenes	0.74	0.72		0.73	0.60	
Biphenyl	0.19	0.39	J	0.15	0.33	J
Acenaphthylene	0.37	0.25		0.39	0.21	
Acenaphthene	0.18	0.25	J	0.17	0.21	J
Fluorene	0.18	0.37	J	0.19	0.31	J
C1-Fluorenes	0.65	0.74	J	0.54	0.62	J
C2-Fluorenes	0.97	0.74		0.83	0.62	
C3-Fluorenes	2.42	0.74		2.06	0.62	
Phenanthrene	0.47	0.35		0.31	0.29	
Anthracene	1.28	0.29		0.59	0.24	
C1-Phenanthrenes/Anthracenes	0.55	0.31		0.38	0.26	
C2-Phenanthrenes/Anthracenes	0.71	0.31		0.48	0.26	
C3-Phenanthrenes/Anthracenes	0.82	0.31		0.56	0.26	
C4-Phenanthrenes/Anthracenes	0.85	0.31		0.56	0.26	
Dibenzothiophene	0.06	0.13	J	0.06	0.11	J
C1-Dibenzothiophenes	0.51	0.26		0.36	0.21	
C2-Dibenzothiophenes	0.55	0.26		0.51	0.21	
C3-Dibenzothiophenes	0.78	0.26		0.44	0.21	
Fluoranthene	0.84	0.32		0.48	0.26	
Pyrene	1.70	0.34		1.19	0.28	
C1-Fluoranthenes/Pyrenes	1.06	0.66		0.75	0.55	
C2-Fluoranthenes/Pyrenes	0.84	0.66		0.61	0.55	
C3-Fluoranthenes/Pyrenes	0.37	0.66	J	0.23	0.55	J
Benzo(a)anthracene	0.43	0.33		0.27	0.27	J
Chrysene	1.03	0.26		0.72	0.21	
C1-Chrysenes	0.69	0.52		0.72	0.43	
C2-Chrysenes	0.37	0.52	J	0.26	0.43	J
C3-Chrysenes	0.00	0.52	ND	0.00	0.43	ND
C4-Chrysenes	0.00	0.52	ND	0.00	0.43	ND
Benzo(b)fluoranthene	0.71	0.59		0.45	0.49	J
Benzo(k)fluoranthene	0.21	0.41	J	0.13	0.34	J
Benzo(e)pyrene	0.61	0.32		0.43	0.27	
Benzo(a)pyrene	0.45	0.64	J	0.21	0.53	J
Perylene	1.26	0.15		0.90	0.12	
Indeno(1,2,3-c,d)pyrene	0.24	0.61	J	0.11	0.50	J
Dibenz(a,h)anthracene	0.06	0.32	J	0.04	0.27	J
Benzo(g,h,i)perylene	0.28	0.50	J	0.17	0.42	J
2-Methylnaphthalene	0.31	0.37	J	0.21	0.30	J
1-Methylnaphthalene	0.20	0.45	J	0.15	0.38	J
2,6-Dimethylnaphthalene	0.11	0.24	J	0.07	0.20	J
1,6,7-Trimethylnaphthalene	0.08	0.36	J	0.07	0.30	J
1-Methylphenanthrene	0.17	0.16		0.11	0.13	J
• •						

J <MDL NA Not Applicable Q Results Outside QC

I Interference

B Blank Contamination >3xMDL

Client Sample ID Sample Descriptor Original Sample	OS0002 DBFE	OS0003 DBBD	
GERG ID	C45770	C45771	
Sample Type	SAMP	SAMP	
SDG	F2193	F2193	
Dry Weight	0.36	0.45	
Wet Weight	10.51	10.37	
Sample Size Units	Grams	Grams	
Matrix	Tissue	Tissue	
% solid	3.4	4.4	
% Lipid	4.2	2.1	
Reporting Units	ng/g	ng/g	
Calculation Basis (dry/wet)	Wet	Wet	
QC Batch ID	T1477	T1477	
Method	GCMS	GCMS	
Collection Date	02/25/05	02/25/05	
Receive Date	02/25/05	02/25/05	
Extraction Date	03/03/05	03/03/05	
Analysis Date	03/24/05	03/24/05	
Surrogate Compounds	%Recovery	%Recovery	
d8-Naphthalene	62.5	71.0	
d10-Acenaphthene	66.5	75.8	
d10-Phenanthrene	70.9	84.6	
d12-Chrysene	68.1	81.7	
d12-Perylene	55.8	63.8	
Total PAHs	Concentration	Concentration	
Total PAHs with Perylene	21.5	13.2	
Total PAHs without Perylene	20.5	12.7	
Total NS&T PAHs	7.6	5.0	

ND Not Detected J <MDL

NA Not Applicable

Q Results Outside QC

Interference Ι

B Blank Contamination >3xMDL

Client Sample ID Sample Descriptor GERC ID	OS0002 DBFE			OS0003 DBBD		
Sample Type SDG	C45770 SAMP			C45771 SAMP		
PAH Compounds	Concentration	MDL		Concentration	MDL	
Naphthalene	0.74	0.51		0.46	0.51	J
C1-Naphthalenes	0.46	0.87	J	0.69	0.88	J
C2-Naphthalenes	0.75	0.51	-	0.45	0.51	J
C3-Naphthalenes	0.44	0.76	J	0.16	0.77	J
C4-Naphthalenes	0.36	0.76	J	0.27	0.77	J
Biphenyl	0.23	0.42	J	0.14	0.42	J
Acenaphthylene	0.37	0.27		0.27	0.27	J
Acenaphthene	0.30	0.27	J	0.20	0.27	J
Fluorene	0.17	0.40	J	0.10	0.40	J
C1-Fluorenes	0.56	0.79	J	0.35	0.80	J
C2-Fluorenes	0.81	0.79		0.33	0.80	J
C3-Fluorenes	1.24	0.79		1.01	0.80	
Phenanthrene	0.30	0.37	J	0.19	0.38	J
Anthracene	0.64	0.31		0.37	0.32	
C1-Phenanthrenes/Anthracenes	0.59	0.33		0.26	0.34	J
C2-Phenanthrenes/Anthracenes	0.74	0.33		0.45	0.34	
C3-Phenanthrenes/Anthracenes	0.97	0.33		0.46	0.34	
C4-Phenanthrenes/Anthracenes	0.73	0.33		0.34	0.34	
Dibenzothiophene	0.11	0.14	J	0.07	0.14	J
C1-Dibenzothiophenes	0.42	0.27		0.21	0.28	J
C2-Dibenzothiophenes	1.23	0.27		0.43	0.28	
C3-Dibenzothiophenes	1.16	0.27		0.50	0.28	
Fluoranthene	0.42	0.34		0.29	0.34	J
Pyrene	1.32	0.36		0.79	0.37	
C1-Fluoranthenes/Pyrenes	0.77	0.70		0.59	0.71	J
C2-Fluoranthenes/Pyrenes	0.67	0.70	J	0.39	0.71	J
C3-Fluoranthenes/Pyrenes	0.27	0.70	J	0.46	0.71	J
Benzo(a)anthracene	0.22	0.35	J	0.16	0.35	J
Chrysene	0.81	0.27		0.52	0.28	
C1-Chrysenes	0.62	0.55		0.36	0.56	J
C2-Chrysenes	0.17	0.55	J	0.24	0.56	J
C3-Chrysenes	0.19	0.55	J	0.19	0.56	J
C4-Chrysenes	0.27	0.55	J	0.00	0.56	ND
Benzo(h)fluoranthene	0.57	0.63	J	0.29	0.64	J
Benzo(k)fluoranthene	0.14	0.43	J	0.14	0.44	J
Benzo(e)pyrene	0.48	0.34		0.30	0.35	J
Benzo(a)pyrene	0.20	0.68	J	0.10	0.69	J
Pervlene	0.97	0.16		0.56	0.16	
Indeno(1.2.3-c.d)pyrene	0.02	0.65	J	0.03	0.65	J
Dibenz(a h)anthracene	0.02	0.34	J	0.01	0.35	J
Benzo(g,h,i)perylene	0.01	0.54	J	0.11	0.54	J
2-Methylnaphthalene	0.33	0.39	J	0.34	0.40	J
1-Methylnaphthalene	0.13	0.48	J	0.36	0.49	J
2.6-Dimethylnaphthalene	0.09	0.25	J	0.08	0.26	J
1,6,7-Trimethylnaphthalene	0.03	0.38	J	0.07	0.39	J
1-Methylphenanthrene Not Detected	0.18	0.17		0.07	0.17	J

ND

J <MDL NA Not Applicable Q Results Outside QC

I Interference

B Blank Contamination >3xMDLD Dilution

Client Sample ID	OS0005	OS0007	
Sample Descriptor	DBAP	DBHC	
Original Sample			
GERG ID	C45773	C45775	
Sample Type	SAMP	SAMP	
SDG	F2193	F2193	
Dry Weight	1.32	1.49	
Wet Weight	9.84	9.89	
Sample Size Units	Grams	Grams	
Matrix	Tissue	Tissue	
% solid	13.4	15.1	
% Lipid	6.6	8.8	
Reporting Units	ng/g	ng/g	
Calculation Basis (dry/wet)	Wet	Wet	
QC Batch ID	T1477	T1477	
Method	GCMS	GCMS	
Collection Date	02/25/05	02/25/05	
Receive Date	02/25/05	02/25/05	
Extraction Date	03/03/05	03/03/05	
Analysis Date	03/24/05	03/24/05	
Surrogate Compounds	%Recovery	%Recovery	
d8-Naphthalene	69.8	81.7	
d10-Acenaphthene	74.3	81.9	
d10-Phenanthrene	80.4	83.1	
d12-Chrysene	70.8	77.3	
d12-Perylene	62.0	67.0	
Total PAHs	Concentration	Concentration	
Total PAHs with Perylene	28.9	25.3	
Total PAHs without Perylene	28.2	24.6	
Total NS&T PAHs	11.4	10.6	

ND Not Detected

J <MDL

NA Not Applicable

Q Results Outside QC

I Interference

B Blank Contamination >3xMDL

Client Sample ID	DBFE-091204			Newbedsoermo-091204			-	
Sample Descriptor	10 Oysters	18 Oysters						
GERG Sample ID	C45253	C45254						
Sample Type	SAMP	SAMP						
GERG SDG	EC170	EC170						
Collection Date	12/9/2004			12/9/2004				
Receipt Date	12/11/2004			12/11/2004				
Matrix	Tissue			Tissue				
Acid Digest QC Batch	TS-306			TS-306				
Acid Digestion Wt	0.1084			0.1086				
Acid Digestion Date	12/14/2004			12/14/2004				
Hg Digest QC Batch	HG-1155			HG-1155				
Hg Digestion Wt	0.159			0.146				
Hg Digestion Date	12/15/2004			12/15/2004				
Wt Units	Grams			Grams				
Unit Qual	Dry			Dry				
% Moisture	86.3			87.5				
% Solid	13.7			12.5				
Conc Units	ug/g			ug/g				
	Conc	DL	QUAL	Conc	DL	QUAL		
GFAA/ICP							_	
Antimony	0.00	0.92	J	0.00	0.92	J		
Aluminum	169.79	6.46		105.90	6.45			
Arsenic	9.44	0.18		8.09	0.18			
Cadmium	3.34	0.09		4.31	0.09			
Chromium	0.09	0.09	J	0.16	0.09			
Copper	90.58	0.46		276.95	0.46			
Iron	370.78	4.61		536.55	4.60			
Manganese	14.13	4.61		10.73	4.60			
Nickel	3.27	0.46		4.49	0.46			
Lead	0.41	0.09		0.63	0.09			
Selenium	2.16	0.92		2.91	0.92			
Silver	3.02	0.01		1.17	0.01			
Tin	0.10	0.04	4	-0.02		0.04		
Thallium	0.00	0.02	2 J	0.00		0.02		
Zinc	4029.01	36.90		4413.85	36.83			
CVAA								
Mercury	0.096	0.01		0.111	0.01			

ND Not Detected

- NA Not Applicable
- Q Results Outside QC
- I Interference
- B Blank Contamination >3*DL
- D Dilution
- EL Exceeds Linear Range

J <DL

Client Sample ID	DBBD-091204			DBAP-091204				
Sample Descriptor	18 Oysters			17 Oysters				
GERG Sample ID	C45255	C45256						
Sample Type	SAMP	SAMP						
GERG SDG	EC170			EC170				
Collection Date	12/9/2004			12/9/2004				
Receipt Date	12/11/2004			12/11/2004				
Matrix	Tissue			Tissue				
Acid Digest QC Batch	TS-306			TS-306				
Acid Digestion Wt	0.1028			0.1092				
Acid Digestion Date	12/14/2004			12/14/2004				
Hg Digest QC Batch	HG-1155			HG_1155				
Hg Digestion Wt	0 165			0.126				
Hg Digestion Date	12/15/2004			12/15/2004				
Wt Units	12/13/2004 Croms			12/13/2004				
Unit Qual	Granis			Drains				
% Moisture	Dfy			Dry				
% Solid	88.6			94.3				
Conc Units	11.4			5.7				
	ug/g			ug/g				
GFAA/ICP	Conc	DL	QUAL	Conc	DL	QUAL		
GFAA/ICP Antimony	Conc	DL	QUAL	Conc	DL	QUAL		
GFAA/ICP Antimony Aluminum	0.00	0.97	<u>QUAL</u> J	0.01	0.92	<u>QUAL</u> J		
GFAA/ICP Antimony Aluminum Arsenic	0.00 138.93	0.97 6.81	<u>QUAL</u> J	0.01 895.21	0.92 6.41	<u>QUAL</u> J		
GFAA/ICP Antimony Aluminum Arsenic Cadmium	0.00 138.93 7.78	0.97 6.81 0.19	<u>QUAL</u> J	0.01 895.21 7.58	0.92 6.41 0.18	<u>QUAL</u> J		
GFAA/ICP Antimony Aluminum Arsenic Cadmium Chromium	0.00 138.93 7.78 4.99	0.97 6.81 0.19 0.10	J	0.01 895.21 7.58 9.88	0.92 6.41 0.18 0.09	<u>QUAL</u> J		
GFAA/ICP Antimony Aluminum Arsenic Cadmium Chromium Copper	0.00 138.93 7.78 4.99 0.53	0.97 6.81 0.19 0.10 0.10	J	0.01 895.21 7.58 9.88 1.33	DL 0.92 6.41 0.18 0.09 0.09	<u>QUAL</u> J		
GFAA/ICP Antimony Aluminum Arsenic Cadmium Chromium Copper Iron	0.00 138.93 7.78 4.99 0.53 348.67	0.97 6.81 0.19 0.10 0.10 0.49	J	0.01 895.21 7.58 9.88 1.33 1646.09	DL 0.92 6.41 0.18 0.09 0.09 0.09 0.46	<u>QUAL</u> J		
GFAA/ICP Antimony Aluminum Arsenic Cadmium Chromium Copper Iron Manganese	0.00 138.93 7.78 4.99 0.53 348.67 216.26	0.97 6.81 0.19 0.10 0.10 0.49 4.86	J	0.01 895.21 7.58 9.88 1.33 1646.09 2325.71	DL 0.92 6.41 0.18 0.09 0.09 0.09 0.46 4.58	<u>QUAL</u> J		
GFAA/ICP Antimony Aluminum Arsenic Cadmium Chromium Copper Iron Manganese Nickel	0.00 138.93 7.78 4.99 0.53 348.67 216.26 11.83	0.97 6.81 0.19 0.10 0.10 0.49 4.86 4.86	J	0.01 895.21 7.58 9.88 1.33 1646.09 2325.71 53.97	DL 0.92 6.41 0.18 0.09 0.09 0.46 4.58 4.58	<u>QUAL</u> J		
GFAA/ICP Antimony Aluminum Arsenic Cadmium Chromium Copper Iron Manganese Nickel Lead	0.00 138.93 7.78 4.99 0.53 348.67 216.26 11.83 4.26	0.97 6.81 0.19 0.10 0.10 0.49 4.86 4.86 0.49	J	0.01 895.21 7.58 9.88 1.33 1646.09 2325.71 53.97 8.07	DL 0.92 6.41 0.18 0.09 0.09 0.46 4.58 4.58 4.58 0.46	<u>QUAL</u> J		
GFAA/ICP Antimony Aluminum Arsenic Cadmium Chromium Copper Iron Manganese Nickel Lead Selenium	0.00 138.93 7.78 4.99 0.53 348.67 216.26 11.83 4.26 0.90	DL 0.97 6.81 0.19 0.10 0.10 0.49 4.86 4.86 0.49 0.10	J	Conc 0.01 895.21 7.58 9.88 1.33 1646.09 2325.71 53.97 8.07 1.35	DL 0.92 6.41 0.18 0.09 0.09 0.46 4.58 4.58 4.58 0.46 0.09	J		
GFAA/ICP Antimony Aluminum Arsenic Cadmium Chromium Copper Iron Manganese Nickel Lead Selenium Silver	0.00 138.93 7.78 4.99 0.53 348.67 216.26 11.83 4.26 0.90 2.94	DL 0.97 6.81 0.19 0.10 0.10 0.49 4.86 4.86 0.49 0.10 0.97	J	Conc 0.01 895.21 7.58 9.88 1.33 1646.09 2325.71 53.97 8.07 1.35 6.47	DL 0.92 6.41 0.18 0.09 0.09 0.46 4.58 4.58 4.58 0.46 0.09 0.92	J		
GFAA/ICP Antimony Aluminum Arsenic Cadmium Chromium Copper Iron Manganese Nickel Lead Selenium Silver Tin	0.00 138.93 7.78 4.99 0.53 348.67 216.26 11.83 4.26 0.90 2.94 0.86	DL 0.97 6.81 0.19 0.10 0.49 4.86 4.86 0.49 0.10 0.10	J	Conc 0.01 895.21 7.58 9.88 1.33 1646.09 2325.71 53.97 8.07 1.35 6.47 4.25	DL 0.92 6.41 0.18 0.09 0.09 0.46 4.58 4.58 4.58 0.46 0.09 0.92 0.01	J		
GFAA/ICP Antimony Aluminum Arsenic Cadmium Chromium Copper Iron Manganese Nickel Lead Selenium Silver Tin Thallium	0.00 138.93 7.78 4.99 0.53 348.67 216.26 11.83 4.26 0.90 2.94 0.86 0.62	DL 0.97 6.81 0.19 0.10 0.10 0.49 4.86 4.86 0.49 0.10 0.97 0.10	J	Conc 0.01 895.21 7.58 9.88 1.33 1646.09 2325.71 53.97 8.07 1.35 6.47 4.25 0.23	DL 0.92 6.41 0.18 0.09 0.09 0.46 4.58 4.58 0.46 0.09 0.92 0.01 0.04	J		
GFAA/ICP Antimony Aluminum Arsenic Cadmium Chromium Copper Iron Manganese Nickel Lead Selenium Silver Tin Thallium Zinc	0.00 138.93 7.78 4.99 0.53 348.67 216.26 11.83 4.26 0.90 2.94 0.86 0.62 0.00	DL 0.97 6.81 0.19 0.10 0.49 4.86 4.86 0.49 0.10 0.97 0.10 0.97 0.010	J	Conc 0.01 895.21 7.58 9.88 1.33 1646.09 2325.71 53.97 8.07 1.35 6.47 4.25 0.23 0.01	DL 0.92 6.41 0.18 0.09 0.09 0.46 4.58 4.58 0.46 0.09 0.92 0.01 0.04 0.02	J		
GFAA/ICP Antimony Aluminum Arsenic Cadmium Chromium Copper Iron Manganese Nickel Lead Selenium Silver Tin Thallium Zinc	0.00 138.93 7.78 4.99 0.53 348.67 216.26 11.83 4.26 0.90 2.94 0.86 0.62 0.00 8899.47	DL 0.97 6.81 0.19 0.10 0.10 0.49 4.86 4.86 0.49 0.10 0.97 0.01 0.97 0.01 0.97 0.01 0.02 38.91	J	Conc 0.01 895.21 7.58 9.88 1.33 1646.09 2325.71 53.97 8.07 1.35 6.47 4.25 0.23 0.01 28262.30	DL 0.92 6.41 0.18 0.09 0.09 0.46 4.58 4.58 0.46 0.09 0.92 0.01 0.04 0.02 36.63	J		
GFAA/ICP Antimony Aluminum Arsenic Cadmium Chromium Copper Iron Manganese Nickel Lead Selenium Silver Tin Thallium Zinc	0.00 138.93 7.78 4.99 0.53 348.67 216.26 11.83 4.26 0.90 2.94 0.86 0.62 0.00 8899.47	DL 0.97 6.81 0.19 0.10 0.10 0.49 4.86 4.86 0.49 0.10 0.97 0.01 0.97 0.01 0.97 38.91	J	Conc 0.01 895.21 7.58 9.88 1.33 1646.09 2325.71 53.97 8.07 1.35 6.47 4.25 0.23 0.01 28262.30	DL 0.92 6.41 0.18 0.09 0.09 0.46 4.58 4.58 0.46 0.09 0.92 0.01 0.04 0.02 36.63	J		
GFAA/ICP Antimony Aluminum Arsenic Cadmium Chromium Copper Iron Manganese Nickel Lead Selenium Silver Tin Thallium Zinc CVAA Mercury	0.00 138.93 7.78 4.99 0.53 348.67 216.26 11.83 4.26 0.90 2.94 0.86 0.62 0.00 8899.47 0.117	DL 0.97 6.81 0.19 0.10 0.10 0.49 4.86 4.86 0.49 0.10 0.97 0.01 0.97 0.01 0.02 38.91 0.01	J	Conc 0.01 895.21 7.58 9.88 1.33 1646.09 2325.71 53.97 8.07 1.35 6.47 4.25 0.23 0.01 28262.30 0.210	DL 0.92 6.41 0.18 0.09 0.09 0.46 4.58 4.58 0.46 0.09 0.92 0.01 0.04 0.02 36.63 0.01	J		

ND Not Detected J <DL

- NA Not Applicable Q Results Outside QC
- Ι
- Interference Blank Contamination >3*DL В
- D Dilution
- EL Exceeds Linear Range

Client Sample ID	DBHC-091204		
Sample Descriptor	16 Oysters		
GERG Sample ID	C45257		
Sample Type	SAMP		
GERG SDG	EC170		
Collection Date	12/9/2004		
Receipt Date	12/11/2004		
Matrix	Tissue		
Acid Digest QC Batch	TS-306		
Acid Digestion Wt	0.0946		
Acid Digestion Date	12/14/2004		
Hg Digest QC Batch	HG-1155		
Hg Digestion Wt	0.093		
Hg Digestion Date	12/15/2004		
Wt Units	Grams		
Unit Qual	Dry		
% Moisture	95.2		
% Solid	4.8		
Conc Units	σ μα/σ		
	Conc	DL	OUAL
-GFAA/ICP	Conc	DL	Quill
-GFAA/ICP Antimony	0.01	1.06	I
-GFAA/ICP Antimony Aluminum	0.01	1.06 7.40	J
GFAA/ICP Antimony Aluminum Arsenic	0.01 827.62 6.61	1.06 7.40 0.21	J
GFAA/ICP Antimony Aluminum Arsenic Cadmium	0.01 827.62 6.61 16.35	1.06 7.40 0.21 0.11	J
GFAA/ICP Antimony Aluminum Arsenic Cadmium Chromium	0.01 827.62 6.61 16.35 0.88	1.06 7.40 0.21 0.11	J
GFAA/ICP Antimony Aluminum Arsenic Cadmium Chromium Copper	0.01 827.62 6.61 16.35 0.88 1753.11	1.06 7.40 0.21 0.11 0.11	J
GFAA/ICP Antimony Aluminum Arsenic Cadmium Chromium Copper Iron	0.01 827.62 6.61 16.35 0.88 1753.11 1808.62	1.06 7.40 0.21 0.11 0.53 5.29	J
GFAA/ICP Antimony Aluminum Arsenic Cadmium Chromium Copper Iron Manganese	0.01 827.62 6.61 16.35 0.88 1753.11 1808.62 35.63	1.06 7.40 0.21 0.11 0.53 5.29	J
GFAA/ICP Antimony Aluminum Arsenic Cadmium Chromium Copper Iron Manganese Nickel	0.01 827.62 6.61 16.35 0.88 1753.11 1808.62 35.63 7.44	1.06 7.40 0.21 0.11 0.53 5.29 5.29 0.53	J
GFAA/ICP Antimony Aluminum Arsenic Cadmium Chromium Chromium Copper Iron Manganese Nickel Lead	0.01 827.62 6.61 16.35 0.88 1753.11 1808.62 35.63 7.44 1.28	1.06 7.40 0.21 0.11 0.53 5.29 5.29 0.53 0.11	J
GFAA/ICP Antimony Aluminum Arsenic Cadmium Chromium Copper Iron Manganese Nickel Lead Selenium	0.01 827.62 6.61 16.35 0.88 1753.11 1808.62 35.63 7.44 1.38 6.23	1.06 7.40 0.21 0.11 0.53 5.29 5.29 0.53 0.11	J
GFAA/ICP Antimony Aluminum Arsenic Cadmium Chromium Copper Iron Manganese Nickel Lead Selenium Silver	0.01 827.62 6.61 16.35 0.88 1753.11 1808.62 35.63 7.44 1.38 6.33 1.77	$\begin{array}{c} 1.06\\ 7.40\\ 0.21\\ 0.11\\ 0.11\\ 0.53\\ 5.29\\ 5.29\\ 0.53\\ 0.11\\ 1.06\\ 0.01\\ \end{array}$	J
GFAA/ICP Antimony Aluminum Arsenic Cadmium Chromium Copper Iron Manganese Nickel Lead Selenium Silver Tin	0.01 827.62 6.61 16.35 0.88 1753.11 1808.62 35.63 7.44 1.38 6.33 1.77 0.16	$\begin{array}{c} 1.06\\ 7.40\\ 0.21\\ 0.11\\ 0.11\\ 0.53\\ 5.29\\ 5.29\\ 0.53\\ 0.11\\ 1.06\\ 0.01\\ 0.04\end{array}$	J
GFAA/ICP Antimony Aluminum Arsenic Cadmium Chromium Copper Iron Manganese Nickel Lead Selenium Silver Tin Thallium	0.01 827.62 6.61 16.35 0.88 1753.11 1808.62 35.63 7.44 1.38 6.33 1.77 0.16 0.95	$\begin{array}{c} 1.06\\ 7.40\\ 0.21\\ 0.11\\ 0.11\\ 0.53\\ 5.29\\ 5.29\\ 0.53\\ 0.11\\ 1.06\\ 0.01\\ 0.04\\ 0.02\end{array}$	J
GFAA/ICP Antimony Aluminum Arsenic Cadmium Chromium Copper Iron Manganese Nickel Lead Selenium Silver Tin Thallium Zinc	0.01 827.62 6.61 16.35 0.88 1753.11 1808.62 35.63 7.44 1.38 6.33 1.77 0.16 0.05	$\begin{array}{c} 1.06\\ 7.40\\ 0.21\\ 0.11\\ 0.11\\ 0.53\\ 5.29\\ 5.29\\ 0.53\\ 0.11\\ 1.06\\ 0.01\\ 0.04\\ 0.02\\ 42.22\end{array}$	J
GFAA/ICP Antimony Aluminum Arsenic Cadmium Chromium Copper Iron Manganese Nickel Lead Selenium Silver Tin Thallium Zinc	0.01 827.62 6.61 16.35 0.88 1753.11 1808.62 35.63 7.44 1.38 6.33 1.77 0.16 0.05 33700.35	$\begin{array}{c} 1.06\\ 7.40\\ 0.21\\ 0.11\\ 0.11\\ 0.53\\ 5.29\\ 5.29\\ 0.53\\ 0.11\\ 1.06\\ 0.01\\ 0.04\\ 0.02\\ 42.28\end{array}$	J
GFAA/ICP Antimony Aluminum Arsenic Cadmium Chromium Copper Iron Manganese Nickel Lead Selenium Silver Tin Thallium Zinc CVAA	0.01 827.62 6.61 16.35 0.88 1753.11 1808.62 35.63 7.44 1.38 6.33 1.77 0.16 0.05 33700.35	$\begin{array}{c} 1.06\\ 7.40\\ 0.21\\ 0.11\\ 0.11\\ 0.53\\ 5.29\\ 5.29\\ 0.53\\ 0.11\\ 1.06\\ 0.01\\ 0.04\\ 0.02\\ 42.28\\ 0.01\\ \end{array}$	J
GFAA/ICP Antimony Aluminum Arsenic Cadmium Chromium Copper Iron Manganese Nickel Lead Selenium Silver Tin Thallium Zinc CVAA Mercury	0.01 827.62 6.61 16.35 0.88 1753.11 1808.62 35.63 7.44 1.38 6.33 1.77 0.16 0.05 33700.35 0.048	$\begin{array}{c} 1.06\\ 7.40\\ 0.21\\ 0.11\\ 0.11\\ 0.53\\ 5.29\\ 5.29\\ 0.53\\ 0.11\\ 1.06\\ 0.01\\ 0.04\\ 0.02\\ 42.28\\ 0.01\\ \end{array}$	J

ND Not Detected J <DL

- J
 <DL</td>

 NA
 Not Applicable

 Q
 Results Outside QC

 I
 Interference

 B
 Blank Contamination >3*DL

 T
 Transmission
- D Dilution
- EL Exceeds Linear Range

F.4. Biomarker reports on 12 samples collected on December 7 and 9, 2004.

STERANE AND TRITERPANE BIOMARKERS Project: ATHOS I Oil Spill

Lab Sample ID: C45246

Sample Descriptor: R-12-7-2004 Analysis Date: 12/17/2004

No.	COMPOUND NAME	RT	ION	AREA	CONC	%
	TERPANES				(ng/g)	
н	C19 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
Α	C20 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
В	C21 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
С	C22 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
D	C23 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
Е	C24 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
1	C25 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
4	C24 TETRACYCLIC TERPANE	0.00	191	0	0.00	0.0
5	C26 TRICYCLIC TERPANE (22R)	0.00	191	0	0.00	0.0
б	C26 TRICYCLIC TERPANE (22S)	0.00	191	0	0.00	0.0
9	C28 TRICYCLIC TERPANE (22R)	0.00	191	0	0.00	0.0
10	C28 TRICYCLIC TERPANE (228)	0.00	191	0	0.00	0.0
11	C29 TRICYCLIC TERPANE (22R)	0.00	191	0	0.00	0.0
12	C29 TRICYCLIC TERPANE (228)	0.00	191	0	0.00	0.0
13	C27 18a-22,29,30-TRISNORNEOHOPANE (Ts)	50.15	191	666	0.68	36.5
Ι	C27 PENTACYCLIC TERPANE (Y)	0.00	191	0	0.00	0.0
14	C27 17a-22,29,30-TRISNORHOPANE (Tm)	51.03	191	531	0.54	29.1
15	C30 TRICYCLIC TERPANE (22R)	0.00	191	0	0.00	0.0
16	C30 TRICYCLIC TERPANE (22S)	0.00	191	0	0.00	0.0
17	C28 17a,21b-28,30-BISNORHOPANE	0.00	191	0	0.00	0.0
J	C29 17a,21b-25-NORHOPANE	0.00	191	0	0.00	0.0
19	C29 17a,21b-30-NORHOPANE	0.00	191	0	0.00	0.0
20	C29 18a-NORNEOHOPANE (29Ts)	0.00	191	0	0.00	0.0
F	C30 DIAHOPANE	0.00	191	0	0.00	0.0
21	C29 17b,21a-30-NORMORETANE	0.00	191	0	0.00	0.0
22	C30 18a-OLEANANE	0.00	191	0	0.00	0.0
23	C30 17a,21b-HOPANE	0.00	191	0	0.00	0.0
24	C30 17b,21a-MORETANE	0.00	191	0	0.00	0.0
27	C31 17a,21b-HOMOHOPANE (22S)	57.64	191	630	0.64	34.5
28	C31 17a,21b-HOMOHOPANE(22R)	0.00	191	0	0.00	0.0
G	C30 GAMMACERANE	0.00	191	0	0.00	0.0
30	C32 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
31	C32 17a,21b-HOMOHOPANE (22R)	0.00	191	0	0.00	0.0
34	C33 17a,21b-HOMOHOPANE (228)	0.00	191	0	0.00	0.0
35	C33 17a,21b-HOMOHOPANE (22R)	0.00	191	0	0.00	0.0
36	C34 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
37	C34 17a,21b-HOMOHOPANE (22R)	0.00	191	0	0.00	0.0
38	C35 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
39	C35 17a,21b-HOMOHOPANE (22R)	0.00	191	0	0.00	0.0

Project: ATHOS I Oil Spill Lab Sample ID: C45246 Sample Descriptor: R-12-7-2004 Analysis Date: 12/17/2004

STERANE AND TRITERPANE BIOMARKERS Project: ATHOS I Oil Spill

Lab Sample ID: C45247 Sample Descriptor: SB-12-7-2004 Analysis Data: 12(17)2004

Analysis Date: 12/1	7/2004
---------------------	--------

No.	COMPOUND NAME	RT	ION	AREA	CONC	%
	TERPANES				(ng/g)	
Н	C19 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
Α	C20 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
в	C21 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
С	C22 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
D	C23 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
Е	C24 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
1	C25 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
4	C24 TETRACYCLIC TERPANE	0.00	191	0	0.00	0.0
5	C26 TRICYCLIC TERPANE (22R)	0.00	191	0	0.00	0.0
6	C26 TRICYCLIC TERPANE (22S)	0.00	191	0	0.00	0.0
9	C28 TRICYCLIC TERPANE (22R)	0.00	191	0	0.00	0.0
10	C28 TRICYCLIC TERPANE (22S)	0.00	191	0	0.00	0.0
11	C29 TRICYCLIC TERPANE (22R)	0.00	191	0	0.00	0.0
12	C29 TRICYCLIC TERPANE (22S)	0.00	191	0	0.00	0.0
13	C27 18a-22,29,30-TRISNORNEOHOPANE (Ts)	50.15	191	744	0.77	38.2
Ι	C27 PENTACYCLIC TERPANE (Y)	50.58	191	322	0.33	16.5
14	C27 17a-22,29,30-TRISNORHOPANE (Tm)	51.03	191	309	0.32	15.9
15	C30 TRICYCLIC TERPANE (22R)	0.00	191	0	0.00	0.0
16	C30 TRICYCLIC TERPANE (22S)	0.00	191	0	0.00	0.0
17	C28 17a,21b-28,30-BISNORHOPANE	0.00	191	0	0.00	0.0
J	C29 17a,21b-25-NORHOPANE	0.00	191	0	0.00	0.0
19	C29 17a,21b-30-NORHOPANE	0.00	191	0	0.00	0.0
20	C29 18a-NORNEOHOPANE (29Ts)	0.00	191	0	0.00	0.0
F	C30 DIAHOPANE	0.00	191	0	0.00	0.0
21	C29 17b,21a-30-NORMORETANE	0.00	191	0	0.00	0.0
22	C30 18a-OLEANANE	0.00	191	0	0.00	0.0
23	C30 17a,21b-HOPANE	0.00	191	0	0.00	0.0
24	C30 17b,21a-MORETANE	0.00	191	0	0.00	0.0
27	C31 17a,21b-HOMOHOPANE (22S)	57.62	191	572	0.59	29.4
28	C31 17a,21b-HOMOHOPANE(22R)	0.00	191	0	0.00	0.0
G	C30 GAMMACERANE	0.00	191	0	0.00	0.0
30	C32 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
31	C32 17a,21b-HOMOHOPANE (22R)	0.00	191	0	0.00	0.0
34	C33 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
35	C33 17a,21b-HOMOHOPANE (22R)	0.00	191	0	0.00	0.0
36	C34 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
37	C34 17a,21b-HOMOHOPANE (22R)	0.00	191	0	0.00	0.0
38	C35 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
39	C35 17a,21b-HOMOHOPANE (22R)	0.00	191	0	0.00	0.0

Project: ATHOS I Oil Spill Lab Sample ID: C45247 Sample Descriptor: SB-12-7-2004 Analysis Date: 12/17/2004

No.	COMPOUND NAME	RT	ION	AREA	CONC	%
	STERANES				(ng/g)	
Α	C21 DIAPREGNANE	0.00	217	0	0.00	n.d.
1	C21 PREGNANE	0.00	217	0	0.00	n.d.
в	C22 DIAHOMOPREGNANE	0.00	217	0	0.00	n.d.
2	C22 HOMOPREGNANE	0.00	217	0	0.00	n.d.
3	C27 13b,17a DIASTERANE (20S)	0.00	217	0	0.00	n.d.
4	C27 13b,17a DIASTERANE (20R)	0.00	217	0	0.00	n.d.
8	C27 13a,17b DIASTERANE (20S)	0.00	217	0	0.00	n.d.
9	C27 13a,17b DIASTERANE (20R)	0.00	217	0	0.00	n.d.
10	C28 13b,17a DIASTERANE (20S) (24R/24S ?)	0.00	217	0	0.00	n.d.
11	C28 13b,17a DIASTERANE (20S) (24R/24S ?)	0.00	217	0	0.00	n.d.
14+15	C28 13b,17a DIASTERANE (20R) (24R/24S ?)	0.00	217	0	0.00	n.d.
16	C28 13a,17b DIASTERANE (20S)	0.00	217	0	0.00	n.d.
17	C27 5a,14a,17a STERANE (20S)	0.00	217	0	0.00	n.d.
18	C27 5a,14b,17b ISOSTERANE (20R)	0.00	217	0	0.00	n.d.
	+ C29 13b,17a DIASTERANE (20S)					
19	C27 5a,14b,17b ISOSTERANE (20S)	0.00	217	0	0.00	n.d.
20	C28 13a,17b DIASTERANE (20R)	0.00	217	0	0.00	n.d.
22	C27 5a,14a,17a STERANE (20R)	0.00	217	0	0.00	n.d.
23	C29 13b,17a DIASTERANE (20R)	0.00	217	0	0.00	n.d.
24	C29 13a,17b DIASTERANE (20S)	0.00	217	0	0.00	n.d.
26	C28 5a,14a,17a STERANE (20S)	0.00	217	0	0.00	n.d.
27	C29 13a,17b DIASTERANE (20R)	0.00	217	0	0.00	n.d.
28	C28 5a,14b,17b ISOSTERANE (20R)	0.00	217	0	0.00	n.d.
29	C28 5a,14b,17b ISOSTERANE (20S)	0.00	217	0	0.00	n.d.
31	C28 5a,14a,17a STERANE (20R)	0.00	217	0	0.00	n.d.
33	C29 5a,14a,17a STERANE (20S)	0.00	217	0	0.00	n.d.
34	C29 5a,14b,17b ISOSTERANE (20R)	0.00	217	0	0.00	n.d.
35	C29 5a,14b,17b ISOSTERANE (20S)	0.00	217	0	0.00	n.d.
37	C29 5a,14a,17a STERANE (20R)	0.00	217	0	0.00	n.d.
38	C30 5a,14a,17a STERANE (20S)	0.00	217	0	0.00	n.d.
39	C30 5a,14b,17b ISOSTERANE (20R)	0.00	217	0	0.00	n.d.
40	C30 5a,14b,17b ISOSTERANE (20S)	0.00	217	0	0.00	n.d.
41	C30 5a,14a,17a STERANE (20R)	0.00	217	0	0.00	n.d.

Project: ATHOS I Oil Spill Lab Sample ID: C45247 Sample Descriptor: SB-12-7-2004 Analysis Date: 12/17/2004

Project: ATHOS I Oil Spill Lab Sample ID: C45248 Sample Descriptor: LM-12-7-2004 Analysis Date: 12/17/2004

No.	COMPOUND NAME	RT	ION	AREA	CONC	%
	TERPANES				(ng/g)	
н	C19 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
Α	C20 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
в	C21 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
С	C22 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
D	C23 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
Е	C24 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
1	C25 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
4	C24 TETRACYCLIC TERPANE	0.00	191	0	0.00	0.0
5	C26 TRICYCLIC TERPANE (22R)	0.00	191	0	0.00	0.0
6	C26 TRICYCLIC TERPANE (228)	0.00	191	0	0.00	0.0
9	C28 TRICYCLIC TERPANE (22R)	0.00	191	0	0.00	0.0
10	C28 TRICYCLIC TERPANE (228)	0.00	191	0	0.00	0.0
11	C29 TRICYCLIC TERPANE (22R)	0.00	191	0	0.00	0.0
12	C29 TRICYCLIC TERPANE (22S)	0.00	191	0	0.00	0.0
13	C27 18a-22,29,30-TRISNORNEOHOPANE (Ts)	50.15	191	582	0.75	63.4
Ι	C27 PENTACYCLIC TERPANE (Y)	0.00	191	0	0.00	0.0
14	C27 17a-22,29,30-TRISNORHOPANE (Tm)	51.06	191	336	0.43	36.6
15	C30 TRICYCLIC TERPANE (22R)	0.00	191	0	0.00	0.0
16	C30 TRICYCLIC TERPANE (228)	0.00	191	0	0.00	0.0
17	C28 17a,21b-28,30-BISNORHOPANE	0.00	191	0	0.00	0.0
J	C29 17a,21b-25-NORHOPANE	0.00	191	0	0.00	0.0
19	C29 17a,21b-30-NORHOPANE	0.00	191	0	0.00	0.0
20	C29 18a-NORNEOHOPANE (29Ts)	0.00	191	0	0.00	0.0
F	C30 DIAHOPANE	0.00	191	0	0.00	0.0
21	C29 17b,21a-30-NORMORETANE	0.00	191	0	0.00	0.0
22	C30 18a-OLEANANE	0.00	191	0	0.00	0.0
23	C30 17a,21b-HOPANE	0.00	191	0	0.00	0.0
24	C30 17b,21a-MORETANE	0.00	191	0	0.00	0.0
27	C31 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
28	C31 17a,21b-HOMOHOPANE(22R)	0.00	191	0	0.00	0.0
G	C30 GAMMACERANE	0.00	191	0	0.00	0.0
30	C32 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
31	C32 17a,21b-HOMOHOPANE (22R)	0.00	191	0	0.00	0.0
34	C33 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
35	C33 17a,21b-HOMOHOPANE (22R)	0.00	191	0	0.00	0.0
36	C34 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
37	C34 17a,21b-HOMOHOPANE (22R)	0.00	191	0	0.00	0.0
38	C35 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
39	C35 17a,21b-HOMOHOPANE (22R)	0.00	191	0	0.00	0.0

STERANE AND TRITERPANE BIOMARKERS Project: ATHOS I Oil Spill

Lab Sample ID: C45248 Sample Descriptor: LM-12-7-2004 Analysis Date: 12/17/2004

No.	COMPOUND NAME	RT	ION	AREA	CONC	%
	STERANES				(ng/g)	
А	C21 DIAPREGNANE	0.00	217	0	0.00	n.d.
1	C21 PREGNANE	0.00	217	0	0.00	n.d.
в	C22 DIAHOMOPREGNANE	0.00	217	0	0.00	n.d.
2	C22 HOMOPREGNANE	0.00	217	0	0.00	n.d.
3	C27 13b,17a DIASTERANE (20S)	0.00	217	0	0.00	n.d.
4	C27 13b,17a DIASTERANE (20R)	0.00	217	0	0.00	n.d.
8	C27 13a,17b DIASTERANE (20S)	0.00	217	0	0.00	n.d.
9	C27 13a,17b DIASTERANE (20R)	0.00	217	0	0.00	n.d.
10	C28 13b,17a DIASTERANE (20S) (24R/24S ?)	0.00	217	0	0.00	n.d.
11	C28 13b,17a DIASTERANE (20S) (24R/24S ?)	0.00	217	0	0.00	n.d.
14+15	C28 13b,17a DIASTERANE (20R) (24R/24S ?)	0.00	217	0	0.00	n.d.
16	C28 13a,17b DIASTERANE (20S)	0.00	217	0	0.00	n.d.
17	C27 5a,14a,17a STERANE (20S)	0.00	217	0	0.00	n.d.
18	C27 5a,14b,17b ISOSTERANE (20R)	0.00	217	0	0.00	n.d.
	+ C29 13b,17a DIASTERANE (20S)					
19	C27 5a,14b,17b ISOSTERANE (20S)	0.00	217	0	0.00	n.d.
20	C28 13a,17b DIASTERANE (20R)	0.00	217	0	0.00	n.d.
22	C27 5a,14a,17a STERANE (20R)	0.00	217	0	0.00	n.d.
23	C29 13b,17a DIASTERANE (20R)	0.00	217	0	0.00	n.d.
24	C29 13a,17b DIASTERANE (20S)	0.00	217	0	0.00	n.d.
26	C28 5a,14a,17a STERANE (20S)	0.00	217	0	0.00	n.d.
27	C29 13a,17b DIASTERANE (20R)	0.00	217	0	0.00	n.d.
28	C28 5a,14b,17b ISOSTERANE (20R)	0.00	217	0	0.00	n.d.
29	C28 5a,14b,17b ISOSTERANE (20S)	0.00	217	0	0.00	n.d.
31	C28 5a,14a,17a STERANE (20R)	0.00	217	0	0.00	n.d.
33	C29 5a,14a,17a STERANE (20S)	0.00	217	0	0.00	n.d.
34	C29 5a,14b,17b ISOSTERANE (20R)	0.00	217	0	0.00	n.d.
35	C29 5a,14b,17b ISOSTERANE (20S)	0.00	217	0	0.00	n.d.
37	C29 5a,14a,17a STERANE (20R)	0.00	217	0	0.00	n.d.
38	C30 5a,14a,17a STERANE (20S)	0.00	217	0	0.00	n.d.
39	C30 5a,14b,17b ISOSTERANE (20R)	0.00	217	0	0.00	n.d.
40	C30 5a,14b,17b ISOSTERANE (20S)	0.00	217	0	0.00	n.d.
41	C30 5a,14a,17a STERANE (20R)	0.00	217	0	0.00	n.d.

Project: ATHOS I Oil Spill Lab Sample ID: C45248 Sample Descriptor: LM-12-7-2004 Analysis Date: 12/17/2004

Project: ATHOS I Oil Spill Lab Sample ID: C45249 Sample Descriptor: RN-12-7-2004 Analysis Date: 12/17/2004

No.	COMPOUND NAME	RT	ION	AREA	CONC	%
	TERPANES				(ng/g)	
Н	C19 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
А	C20 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
в	C21 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
С	C22 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
D	C23 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
Е	C24 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
1	C25 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
4	C24 TETRACYCLIC TERPANE	0.00	191	0	0.00	0.0
5	C26 TRICYCLIC TERPANE (22R)	0.00	191	0	0.00	0.0
6	C26 TRICYCLIC TERPANE (228)	0.00	191	0	0.00	0.0
9	C28 TRICYCLIC TERPANE (22R)	0.00	191	0	0.00	0.0
10	C28 TRICYCLIC TERPANE (22S)	0.00	191	0	0.00	0.0
11	C29 TRICYCLIC TERPANE (22R)	0.00	191	0	0.00	0.0
12	C29 TRICYCLIC TERPANE (228)	0.00	191	0	0.00	0.0
13	C27 18a-22,29,30-TRISNORNEOHOPANE (Ts)	50.15	191	658	0.47	46.9
Ι	C27 PENTACYCLIC TERPANE (Y)	0.00	191	0	0.00	0.0
14	C27 17a-22,29,30-TRISNORHOPANE (Tm)	51.03	191	746	0.54	53.1
15	C30 TRICYCLIC TERPANE (22R)	0.00	191	0	0.00	0.0
16	C30 TRICYCLIC TERPANE (228)	0.00	191	0	0.00	0.0
17	C28 17a,21b-28,30-BISNORHOPANE	0.00	191	0	0.00	0.0
J	C29 17a,21b-25-NORHOPANE	0.00	191	0	0.00	0.0
19	C29 17a,21b-30-NORHOPANE	0.00	191	0	0.00	0.0
20	C29 18a-NORNEOHOPANE (29Ts)	0.00	191	0	0.00	0.0
F	C30 DIAHOPANE	0.00	191	0	0.00	0.0
21	C29 17b,21a-30-NORMORETANE	0.00	191	0	0.00	0.0
22	C30 18a-OLEANANE	0.00	191	0	0.00	0.0
23	C30 17a,21b-HOPANE	0.00	191	0	0.00	0.0
24	C30 17b,21a-MORETANE	0.00	191	0	0.00	0.0
27	C31 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
28	C31 17a,21b-HOMOHOPANE(22R)	0.00	191	0	0.00	0.0
G	C30 GAMMACERANE	0.00	191	0	0.00	0.0
30	C32 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
31	C32 17a,21b-HOMOHOPANE (22R)	0.00	191	0	0.00	0.0
34	C33 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
35	C33 17a,21b-HOMOHOPANE (22R)	0.00	191	0	0.00	0.0
36	C34 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
37	C34 17a,21b-HOMOHOPANE (22R)	0.00	191	0	0.00	0.0
38	C35 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
39	C35 17a,21b-HOMOHOPANE (22R)	0.00	191	0	0.00	0.0

STERANE AND TRITERPANE BIOMARKERS Project: ATHOS I Oil Spill

Lab Sample ID: C45249 Sample Descriptor: RN-12-7-2004 Analysis Date: 12/17/2004

No.	COMPOUND NAME	RT	ION	AREA	CONC	%
	STERANES				(ng/g)	
А	C21 DIAPREGNANE	0.00	217	0	0.00	n.d.
1	C21 PREGNANE	0.00	217	0	0.00	n.d.
В	C22 DIAHOMOPREGNANE	0.00	217	0	0.00	n.d.
2	C22 HOMOPREGNANE	0.00	217	0	0.00	n.d.
3	C27 13b,17a DIASTERANE (20S)	0.00	217	0	0.00	n.d.
4	C27 13b,17a DIASTERANE (20R)	0.00	217	0	0.00	n.d.
8	C27 13a,17b DIASTERANE (20S)	0.00	217	0	0.00	n.d.
9	C27 13a,17b DIASTERANE (20R)	0.00	217	0	0.00	n.d.
10	C28 13b,17a DIASTERANE (20S) (24R/24S ?)	0.00	217	0	0.00	n.d.
11	C28 13b,17a DIASTERANE (20S) (24R/24S ?)	0.00	217	0	0.00	n.d.
14+15	5 C28 13b,17a DIASTERANE (20R) (24R/24S ?)	0.00	217	0	0.00	n.d.
16	C28 13a,17b DIASTERANE (20S)	0.00	217	0	0.00	n.d.
17	C27 5a,14a,17a STERANE (20S)	0.00	217	0	0.00	n.d.
18	C27 5a,14b,17b ISOSTERANE (20R)	0.00	217	0	0.00	n.d.
	+ C29 13b,17a DIASTERANE (20S)					
19	C27 5a,14b,17b ISOSTERANE (20S)	0.00	217	0	0.00	n.d.
20	C28 13a,17b DIASTERANE (20R)	0.00	217	0	0.00	n.d.
22	C27 5a,14a,17a STERANE (20R)	0.00	217	0	0.00	n.d.
23	C29 13b,17a DIASTERANE (20R)	0.00	217	0	0.00	n.d.
24	C29 13a,17b DIASTERANE (20S)	0.00	217	0	0.00	n.d.
26	C28 5a,14a,17a STERANE (20S)	0.00	217	0	0.00	n.d.
27	C29 13a,17b DIASTERANE (20R)	0.00	217	0	0.00	n.d.
28	C28 5a,14b,17b ISOSTERANE (20R)	0.00	217	0	0.00	n.d.
29	C28 5a,14b,17b ISOSTERANE (20S)	0.00	217	0	0.00	n.d.
31	C28 5a,14a,17a STERANE (20R)	0.00	217	0	0.00	n.d.
33	C29 5a,14a,17a STERANE (20S)	0.00	217	0	0.00	n.d.
34	C29 5a,14b,17b ISOSTERANE (20R)	0.00	217	0	0.00	n.d.
35	C29 5a,14b,17b ISOSTERANE (20S)	0.00	217	0	0.00	n.d.
37	C29 5a,14a,17a STERANE (20R)	0.00	217	0	0.00	n.d.
38	C30 5a,14a,17a STERANE (20S)	0.00	217	0	0.00	n.d.
39	C30 5a,14b,17b ISOSTERANE (20R)	0.00	217	0	0.00	n.d.
40	C30 5a,14b,17b ISOSTERANE (208)	0.00	217	0	0.00	n.d.
41	C30 5a,14a,17a STERANE (20R)	0.00	217	0	0.00	n.d.

STERANE AND TRITERPANE BIOMARKERS Project: ATHOS I Oil Spill

Project: ATHOS I Oil Spill Lab Sample ID: C45249 Sample Descriptor: RN-12-7-2004 Analysis Date: 12/17/2004

Project: ATHOS I Oil Spill Lab Sample ID: C45250 Sample Descriptor: OB-12-7-2004 Analysis Date: 12/17/2004

No.	COMPOUND NAME	RT	ION	AREA	CONC	%
	TERPANES				(ng/g)	
Н	C19 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
А	C20 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
в	C21 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
C	C22 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
D	C23 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
E	C24 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
1	C25 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
4	C24 TETRACYCLIC TERPANE	0.00	191	0	0.00	0.0
5	C26 TRICYCLIC TERPANE (22R)	0.00	191	0	0.00	0.0
6	C26 TRICYCLIC TERPANE (22S)	0.00	191	0	0.00	0.0
9	C28 TRICYCLIC TERPANE (22R)	0.00	191	0	0.00	0.0
10	C28 TRICYCLIC TERPANE (22S)	0.00	191	0	0.00	0.0
11	C29 TRICYCLIC TERPANE (22R)	0.00	191	0	0.00	0.0
12	C29 TRICYCLIC TERPANE (22S)	0.00	191	0	0.00	0.0
13	C27 18a-22,29,30-TRISNORNEOHOPANE (Ts)	50.15	191	721	0.60	24.4
Ι	C27 PENTACYCLIC TERPANE (Y)	0.00	191	0	0.00	0.0
14	C27 17a-22,29,30-TRISNORHOPANE (Tm)	51.05	191	519	0.43	17.5
15	C30 TRICYCLIC TERPANE (22R)	0.00	191	0	0.00	0.0
16	C30 TRICYCLIC TERPANE (22S)	0.00	191	0	0.00	0.0
17	C28 17a,21b-28,30-BISNORHOPANE	0.00	191	0	0.00	0.0
J	C29 17a,21b-25-NORHOPANE	0.00	191	0	0.00	0.0
19	C29 17a,21b-30-NORHOPANE	0.00	191	0	0.00	0.0
20	C29 18a-NORNEOHOPANE (29Ts)	0.00	191	0	0.00	0.0
F	C30 DIAHOPANE	0.00	191	0	0.00	0.0
21	C29 17b,21a-30-NORMORETANE	0.00	191	0	0.00	0.0
22	C30 18a-OLEANANE	0.00	191	0	0.00	0.0
23	C30 17a,21b-HOPANE	0.00	191	0	0.00	0.0
24	C30 17b,21a-MORETANE	0.00	191	0	0.00	0.0
27	C31 17a,21b-HOMOHOPANE (22S)	57.64	191	1403	1.16	47.4
28	C31 17a,21b-HOMOHOPANE(22R)	57.87	191	316	0.26	10.7
G	C30 GAMMACERANE	0.00	191	0	0.00	0.0
30	C32 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
31	C32 17a,21b-HOMOHOPANE (22R)	0.00	191	0	0.00	0.0
34	C33 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
35	C33 17a,21b-HOMOHOPANE (22R)	0.00	191	0	0.00	0.0
36	C34 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
37	C34 17a,21b-HOMOHOPANE (22R)	0.00	191	0	0.00	0.0
38	C35 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
39	C35 17a,21b-HOMOHOPANE (22R)	0.00	191	0	0.00	0.0

Project: ATHOS I Oil Spill Lab Sample ID: C45250 Sample Descriptor: OB-12-7-2004 Analysis Date: 12/17/2004

No.	COMPOUND NAME	RT	ION	AREA	CONC	%
	STERANES				(ng/g)	
А	C21 DIAPREGNANE	0.00	217	0	0.00	n.d.
1	C21 PREGNANE	0.00	217	0	0.00	n.d.
в	C22 DIAHOMOPREGNANE	0.00	217	0	0.00	n.d.
2	C22 HOMOPREGNANE	0.00	217	0	0.00	n.d.
3	C27 13b,17a DIASTERANE (20S)	0.00	217	0	0.00	n.d.
4	C27 13b,17a DIASTERANE (20R)	0.00	217	0	0.00	n.d.
8	C27 13a,17b DIASTERANE (20S)	0.00	217	0	0.00	n.d.
9	C27 13a,17b DIASTERANE (20R)	0.00	217	0	0.00	n.d.
10	C28 13b,17a DIASTERANE (20S) (24R/24S ?)	0.00	217	0	0.00	n.d.
11	C28 13b,17a DIASTERANE (20S) (24R/24S ?)	0.00	217	0	0.00	n.d.
14+15	C28 13b,17a DIASTERANE (20R) (24R/24S ?)	0.00	217	0	0.00	n.d.
16	C28 13a,17b DIASTERANE (20S)	0.00	217	0	0.00	n.d.
17	C27 5a,14a,17a STERANE (20S)	0.00	217	0	0.00	n.d.
18	C27 5a,14b,17b ISOSTERANE (20R)	0.00	217	0	0.00	n.d.
	+ C29 13b,17a DIASTERANE (20S)					
19	C27 5a,14b,17b ISOSTERANE (20S)	0.00	217	0	0.00	n.d.
20	C28 13a,17b DIASTERANE (20R)	0.00	217	0	0.00	n.d.
22	C27 5a,14a,17a STERANE (20R)	0.00	217	0	0.00	n.d.
23	C29 13b,17a DIASTERANE (20R)	0.00	217	0	0.00	n.d.
24	C29 13a,17b DIASTERANE (20S)	0.00	217	0	0.00	n.d.
26	C28 5a,14a,17a STERANE (20S)	0.00	217	0	0.00	n.d.
27	C29 13a,17b DIASTERANE (20R)	0.00	217	0	0.00	n.d.
28	C28 5a,14b,17b ISOSTERANE (20R)	0.00	217	0	0.00	n.d.
29	C28 5a,14b,17b ISOSTERANE (20S)	0.00	217	0	0.00	n.d.
31	C28 5a,14a,17a STERANE (20R)	0.00	217	0	0.00	n.d.
33	C29 5a,14a,17a STERANE (20S)	0.00	217	0	0.00	n.d.
34	C29 5a,14b,17b ISOSTERANE (20R)	0.00	217	0	0.00	n.d.
35	C29 5a,14b,17b ISOSTERANE (20S)	0.00	217	0	0.00	n.d.
37	C29 5a,14a,17a STERANE (20R)	0.00	217	0	0.00	n.d.
38	C30 5a,14a,17a STERANE (20S)	0.00	217	0	0.00	n.d.
39	C30 5a,14b,17b ISOSTERANE (20R)	0.00	217	0	0.00	n.d.
40	C30 5a,14b,17b ISOSTERANE (20S)	0.00	217	0	0.00	n.d.
41	C30 5a,14a,17a STERANE (20R)	0.00	217	0	0.00	n.d.

STERANE AND TRITERPANE BIOMARKERS Project: ATHOS I Oil Spill Lab Sample ID: C45250 Sample Descriptor: OB-12-7-2004 Analysis Date: 12/17/2004

Project: ATHOS I Oil Spill Lab Sample ID: C45251 Sample Descriptor: WB-12-7-2004 Analysis Date: 12/17/2004

No.	COMPOUND NAME	RT	ION	AREA	CONC	%
	TERPANES				(ng/g)	
н	C19 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
А	C20 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
в	C21 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
С	C22 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
D	C23 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
Е	C24 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
1	C25 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
4	C24 TETRACYCLIC TERPANE	0.00	191	0	0.00	0.0
5	C26 TRICYCLIC TERPANE (22R)	0.00	191	0	0.00	0.0
6	C26 TRICYCLIC TERPANE (22S)	0.00	191	0	0.00	0.0
9	C28 TRICYCLIC TERPANE (22R)	0.00	191	0	0.00	0.0
10	C28 TRICYCLIC TERPANE (22S)	0.00	191	0	0.00	0.0
11	C29 TRICYCLIC TERPANE (22R)	0.00	191	0	0.00	0.0
12	C29 TRICYCLIC TERPANE (22S)	0.00	191	0	0.00	0.0
13	C27 18a-22,29,30-TRISNORNEOHOPANE (Ts)	50.15	191	951	1.24	74.1
Ι	C27 PENTACYCLIC TERPANE (Y)	0.00	191	0	0.00	0.0
14	C27 17a-22,29,30-TRISNORHOPANE (Tm)	51.05	191	332	0.43	25.9
15	C30 TRICYCLIC TERPANE (22R)	0.00	191	0	0.00	0.0
16	C30 TRICYCLIC TERPANE (22S)	0.00	191	0	0.00	0.0
17	C28 17a,21b-28,30-BISNORHOPANE	0.00	191	0	0.00	0.0
J	C29 17a,21b-25-NORHOPANE	0.00	191	0	0.00	0.0
19	C29 17a,21b-30-NORHOPANE	0.00	191	0	0.00	0.0
20	C29 18a-NORNEOHOPANE (29Ts)	0.00	191	0	0.00	0.0
F	C30 DIAHOPANE	0.00	191	0	0.00	0.0
21	C29 17b,21a-30-NORMORETANE	0.00	191	0	0.00	0.0
22	C30 18a-OLEANANE	0.00	191	0	0.00	0.0
23	C30 17a,21b-HOPANE	0.00	191	0	0.00	0.0
24	C30 17b,21a-MORETANE	0.00	191	0	0.00	0.0
27	C31 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
28	C31 17a,21b-HOMOHOPANE(22R)	0.00	191	0	0.00	0.0
G	C30 GAMMACERANE	0.00	191	0	0.00	0.0
30	C32 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
31	C32 17a,21b-HOMOHOPANE (22R)	0.00	191	0	0.00	0.0
34	C33 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
35	C33 17a,21b-HOMOHOPANE (22R)	0.00	191	0	0.00	0.0
36	C34 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
37	C34 17a,21b-HOMOHOPANE (22R)	0.00	191	0	0.00	0.0
38	C35 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
39	C35 17a,21b-HOMOHOPANE (22R)	0.00	191	0	0.00	0.0

Project: ATHOS I Oil Spill Lab Sample ID: C45251 Sample Descriptor: WB-12-7-2004

Analysis Date: 12/17/2004

No.	COMPOUND NAME	RT	ION	AREA	CONC	%
	STERANES				(ng/g)	
А	C21 DIAPREGNANE	0.00	217	0	0.00	n.d.
1	C21 PREGNANE	0.00	217	0	0.00	n.d.
в	C22 DIAHOMOPREGNANE	0.00	217	0	0.00	n.d.
2	C22 HOMOPREGNANE	0.00	217	0	0.00	n.d.
3	C27 13b,17a DIASTERANE (20S)	0.00	217	0	0.00	n.d.
4	C27 13b,17a DIASTERANE (20R)	0.00	217	0	0.00	n.d.
8	C27 13a,17b DIASTERANE (20S)	0.00	217	0	0.00	n.d.
9	C27 13a,17b DIASTERANE (20R)	0.00	217	0	0.00	n.d.
10	C28 13b,17a DIASTERANE (20S) (24R/24S ?)	0.00	217	0	0.00	n.d.
11	C28 13b,17a DIASTERANE (20S) (24R/24S ?)	0.00	217	0	0.00	n.d.
14+15	C28 13b,17a DIASTERANE (20R) (24R/24S ?)	0.00	217	0	0.00	n.d.
16	C28 13a,17b DIASTERANE (20S)	0.00	217	0	0.00	n.d.
17	C27 5a,14a,17a STERANE (20S)	0.00	217	0	0.00	n.d.
18	C27 5a,14b,17b ISOSTERANE (20R)	0.00	217	0	0.00	n.d.
	+ C29 13b,17a DIASTERANE (20S)					
19	C27 5a,14b,17b ISOSTERANE (20S)	0.00	217	0	0.00	n.d.
20	C28 13a,17b DIASTERANE (20R)	0.00	217	0	0.00	n.d.
22	C27 5a,14a,17a STERANE (20R)	0.00	217	0	0.00	n.d.
23	C29 13b,17a DIASTERANE (20R)	0.00	217	0	0.00	n.d.
24	C29 13a,17b DIASTERANE (20S)	0.00	217	0	0.00	n.d.
26	C28 5a,14a,17a STERANE (20S)	0.00	217	0	0.00	n.d.
27	C29 13a,17b DIASTERANE (20R)	0.00	217	0	0.00	n.d.
28	C28 5a,14b,17b ISOSTERANE (20R)	0.00	217	0	0.00	n.d.
29	C28 5a,14b,17b ISOSTERANE (20S)	0.00	217	0	0.00	n.d.
31	C28 5a,14a,17a STERANE (20R)	0.00	217	0	0.00	n.d.
33	C29 5a,14a,17a STERANE (20S)	0.00	217	0	0.00	n.d.
34	C29 5a,14b,17b ISOSTERANE (20R)	0.00	217	0	0.00	n.d.
35	C29 5a,14b,17b ISOSTERANE (20S)	0.00	217	0	0.00	n.d.
37	C29 5a,14a,17a STERANE (20R)	0.00	217	0	0.00	n.d.
38	C30 5a,14a,17a STERANE (20S)	0.00	217	0	0.00	n.d.
39	C30 5a,14b,17b ISOSTERANE (20R)	0.00	217	0	0.00	n.d.
40	C30 5a,14b,17b ISOSTERANE (20S)	0.00	217	0	0.00	n.d.
41	C30 5a,14a,17a STERANE (20R)	0.00	217	0	0.00	n.d.

Project: ATHOS I Oil Spill Lab Sample ID: C45251 Sample Descriptor: WB-12-7-2004 Analysis Date: 12/17/2004

Project: ATHOS I Oil Spill Lab Sample ID: C45252 Sample Descriptor: NJMW1-12-7-2004 Analysis Date: 12/17/2004

No.	COMPOUND NAME	RT	ION	AREA	CONC	%
	TERPANES				(ng/g)	
н	C19 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
Α	C20 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
в	C21 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
С	C22 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
D	C23 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
Е	C24 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
1	C25 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
4	C24 TETRACYCLIC TERPANE	0.00	191	0	0.00	0.0
5	C26 TRICYCLIC TERPANE (22R)	0.00	191	0	0.00	0.0
6	C26 TRICYCLIC TERPANE (22S)	0.00	191	0	0.00	0.0
9	C28 TRICYCLIC TERPANE (22R)	0.00	191	0	0.00	0.0
10	C28 TRICYCLIC TERPANE (22S)	0.00	191	0	0.00	0.0
11	C29 TRICYCLIC TERPANE (22R)	0.00	191	0	0.00	0.0
12	C29 TRICYCLIC TERPANE (22S)	0.00	191	0	0.00	0.0
13	C27 18a-22,29,30-TRISNORNEOHOPANE (Ts)	50.15	191	615	0.73	62.6
Ι	C27 PENTACYCLIC TERPANE (Y)	0.00	191	0	0.00	0.0
14	C27 17a-22,29,30-TRISNORHOPANE (Tm)	51.06	191	367	0.43	37.4
15	C30 TRICYCLIC TERPANE (22R)	0.00	191	0	0.00	0.0
16	C30 TRICYCLIC TERPANE (22S)	0.00	191	0	0.00	0.0
17	C28 17a,21b-28,30-BISNORHOPANE	0.00	191	0	0.00	0.0
J	C29 17a,21b-25-NORHOPANE	0.00	191	0	0.00	0.0
19	C29 17a,21b-30-NORHOPANE	0.00	191	0	0.00	0.0
20	C29 18a-NORNEOHOPANE (29Ts)	0.00	191	0	0.00	0.0
F	C30 DIAHOPANE	0.00	191	0	0.00	0.0
21	C29 17b,21a-30-NORMORETANE	0.00	191	0	0.00	0.0
22	C30 18a-OLEANANE	0.00	191	0	0.00	0.0
23	C30 17a,21b-HOPANE	0.00	191	0	0.00	0.0
24	C30 17b,21a-MORETANE	0.00	191	0	0.00	0.0
27	C31 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
28	C31 17a,21b-HOMOHOPANE(22R)	0.00	191	0	0.00	0.0
G	C30 GAMMACERANE	0.00	191	0	0.00	0.0
30	C32 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
31	C32 17a,21b-HOMOHOPANE (22R)	0.00	191	0	0.00	0.0
34	C33 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
35	C33 17a,21b-HOMOHOPANE (22R)	0.00	191	0	0.00	0.0
36	C34 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
37	C34 17a,21b-HOMOHOPANE (22R)	0.00	191	0	0.00	0.0
38	C35 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
39	C35 17a,21b-HOMOHOPANE (22R)	0.00	191	0	0.00	0.0

Project: ATHOS I Oil Spill Lab Sample ID: C45252 Sample Descriptor: NJMW1-12-7-2004 Analysis Date: 12/17/2004

STERANES (ng/g) A C21 DIAPREGNANE 0.00 217 0 0.00 n.d. 1 C21 PREGNANE 0.00 217 0 0.00 n.d. B C22 DIAHOMOPREGNANE 0.00 217 0 0.00 n.d. 2 C22 HOMOPREGNANE 0.00 217 0 0.00 n.d. 3 C27 13b.17a DIASTERANE (20S) 0.00 217 0 0.00 n.d. 4 C27 13a.17b DIASTERANE (20R) 0.00 217 0 0.00 n.d. 9 C27 13a.17b DIASTERANE (20R) 0.00 217 0 0.00 n.d. 10 C28 13b.17a DIASTERANE (20S) 0.00 217 0 0.00 n.d. 14-15 C28 13b.17a DIASTERANE (20S) 0.00 217 0 0.00 n.d. 14 C28 13b.17a DIASTERANE (20S) 0.00 217 0 0.00 n.d. 14 C28 13b.17a DIASTERANE (20S) 0.00 217	No.	COMPOUND NAME	RT	ION	AREA	CONC	%
A C21 DIAPREGNANE 0.00 217 0 0.00 n.d. 1 C21 PREGNANE 0.00 217 0 0.00 n.d. B C22 DIAHOMOPREGNANE 0.00 217 0 0.00 n.d. 3 C27 13b.17a DIASTERANE (20S) 0.00 217 0 0.00 n.d. 4 C27 13b.17a DIASTERANE (20S) 0.00 217 0 0.00 n.d. 6 C27 13a.17b DIASTERANE (20S) 0.00 217 0 0.00 n.d. 10 C28 13b.17a DIASTERANE (20S) 0.00 217 0 0.00 n.d. 11 C28 13b.17a DIASTERANE (20S) 0.00 217 0 0.00 n.d. 14-15 C28 13b.17a DIASTERANE (20S) 0.00 217 0 0.00 n.d. 16 C28 13b.17a DIASTERANE (20S) 0.00 217 0 0.00 n.d. 17 C27 5a.14b.17a STERANE (20S) 0.00 217 0 0.00 n.d.		STERANES				(ng/g)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	А	C21 DIAPREGNANE	0.00	217	0	0.00	n.d.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	C21 PREGNANE	0.00	217	0	0.00	n.d.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	в	C22 DIAHOMOPREGNANE	0.00	217	0	0.00	n.d.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	C22 HOMOPREGNANE	0.00	217	0	0.00	n.d.
4 C27 13b, 17a DIASTERANE (20R) 0.00 217 0 0.00 n.d. 8 C27 13a, 17b DIASTERANE (20S) 0.00 217 0 0.00 n.d. 9 C27 13a, 17b DIASTERANE (20S) 0.00 217 0 0.00 n.d. 10 C28 13b, 17a DIASTERANE (20S) (24R/24S ?) 0.00 217 0 0.00 n.d. 11 C28 13b, 17a DIASTERANE (20S) (24R/24S ?) 0.00 217 0 0.00 n.d. 14-15 C28 13a, 17b DIASTERANE (20S) 0.00 217 0 0.00 n.d. 16 C28 13a, 17b DIASTERANE (20S) 0.00 217 0 0.00 n.d. 17 C27 5a, 14b, 17b ISOSTERANE (20S) 0.00 217 0 0.00 n.d. 18 C27 5a, 14b, 17b ISOSTERANE (20R) 0.00 217 0 0.00 n.d. 20 C28 13a, 17b DIASTERANE (20R) 0.00 217 0 0.00 n.d. 21 C27 5a, 14b, 17a STERANE (20R) 0.00 217 0 0.00 n.d. 22 C29 13	3	C27 13b,17a DIASTERANE (20S)	0.00	217	0	0.00	n.d.
8 C27 13a,17b DIASTERANE (20S) 0.00 217 0 0.00 n.d. 9 C27 13a,17b DIASTERANE (20R) 0.00 217 0 0.00 n.d. 10 C28 13b,17a DIASTERANE (20S) (24R/24S ?) 0.00 217 0 0.00 n.d. 11 C28 13b,17a DIASTERANE (20S) (24R/24S ?) 0.00 217 0 0.00 n.d. 14+15 C28 13b,17a DIASTERANE (20S) 0.00 217 0 0.00 n.d. 16 C28 13a,17b DIASTERANE (20S) 0.00 217 0 0.00 n.d. 17 C27 5a,14a,17a STERANE (20S) 0.00 217 0 0.00 n.d. 18 C27 5a,14b,17b ISOSTERANE (20R) 0.00 217 0 0.00 n.d. 20 C28 13a,17b DIASTERANE (20R) 0.00 217 0 0.00 n.d. 21 C27 5a,14b,17b ISOSTERANE (20R) 0.00 217 0 0.00 n.d. 22 C27 5a,14b,17a STERANE (20R) 0.00	4	C27 13b,17a DIASTERANE (20R)	0.00	217	0	0.00	n.d.
9 C27 13a,17b DIASTERANE (20R) 0.00 217 0 0.00 n.d. 10 C28 13b,17a DIASTERANE (20S) (24R/24S ?) 0.00 217 0 0.00 n.d. 14 C28 13b,17a DIASTERANE (20S) (24R/24S ?) 0.00 217 0 0.00 n.d. 14+15 C28 13a,17a DIASTERANE (20R) (24R/24S ?) 0.00 217 0 0.00 n.d. 16 C28 13a,17b DIASTERANE (20R) 0.00 217 0 0.00 n.d. 17 C27 5a,14a,17a STERANE (20S) 0.00 217 0 0.00 n.d. 18 C27 5a,14b,17b ISOSTERANE (20R) 0.00 217 0 0.00 n.d. 20 C28 13a,17b DIASTERANE (20R) 0.00 217 0 0.00 n.d. 21 C27 5a,14a,17a STERANE (20R) 0.00 217 0 0.00 n.d. 22 C27 5a,14a,17a STERANE (20R) 0.00 217 0 0.00 n.d. 23 C29 13a,17b DIASTERANE (20R) 0.00 </td <td>8</td> <td>C27 13a,17b DIASTERANE (20S)</td> <td>0.00</td> <td>217</td> <td>0</td> <td>0.00</td> <td>n.d.</td>	8	C27 13a,17b DIASTERANE (20S)	0.00	217	0	0.00	n.d.
10 C28 13b,17a DIASTERANE (20S) (24R/24S ?) 0.00 217 0 0.00 n.d. 11 C28 13b,17a DIASTERANE (20S) (24R/24S ?) 0.00 217 0 0.00 n.d. 14+15 C28 13a,17b DIASTERANE (20R) (24R/24S ?) 0.00 217 0 0.00 n.d. 16 C28 13a,17b DIASTERANE (20S) 0.00 217 0 0.00 n.d. 17 C27 5a,14a,17a STERANE (20S) 0.00 217 0 0.00 n.d. 18 C27 5a,14b,17b ISOSTERANE (20R) 0.00 217 0 0.00 n.d. 10 C28 13a,17b DIASTERANE (20R) 0.00 217 0 0.00 n.d. 11 C28 13a,17b DIASTERANE (20R) 0.00 217 0 0.00 n.d. 12 C27 5a,14a,17a STERANE (20R) 0.00 217 0 0.00 n.d. 12 C29 13a,17b DIASTERANE (20R) 0.00 217 0 0.00 n.d. 12 C29 13a,17b DIASTERANE (20R) 0.00<	9	C27 13a,17b DIASTERANE (20R)	0.00	217	0	0.00	n.d.
11 C28 13b,17a DIASTERANE (20S) (24R/24S ?) 0.00 217 0 0.00 n.d. 14+15 C28 13b,17a DIASTERANE (20R) (24R/24S ?) 0.00 217 0 0.00 n.d. 16 C28 13a,17b DIASTERANE (20S) 0.00 217 0 0.00 n.d. 17 C27 5a,14a,17a STERANE (20S) 0.00 217 0 0.00 n.d. 18 C27 5a,14b,17b ISOSTERANE (20R) 0.00 217 0 0.00 n.d. 19 C27 5a,14b,17b ISOSTERANE (20S) 0.00 217 0 0.00 n.d. 20 C28 13a,17b DIASTERANE (20R) 0.00 217 0 0.00 n.d. 21 C27 5a,14a,17a STERANE (20R) 0.00 217 0 0.00 n.d. 22 C27 5a,14a,17a STERANE (20R) 0.00 217 0 0.00 n.d. 23 C29 13b,17a DIASTERANE (20R) 0.00 217 0 0.00 n.d. 24 C29 13a,17b DIASTERANE (20R) 0.00 217 0 0.00 n.d. 26 C28 5a,14b,17b IS	10	C28 13b,17a DIASTERANE (20S) (24R/24S ?)	0.00	217	0	0.00	n.d.
14+15 C28 13b,17a DIASTERANE (20R) (24R/24S?) 0.00 217 0 0.00 n.d. 16 C28 13a,17b DIASTERANE (20S) 0.00 217 0 0.00 n.d. 17 C27 5a,14a,17a STERANE (20S) 0.00 217 0 0.00 n.d. 18 C27 5a,14b,17b ISOSTERANE (20R) 0.00 217 0 0.00 n.d. + C29 13b,17a DIASTERANE (20S) 0.00 217 0 0.00 n.d. 19 C27 5a,14b,17b ISOSTERANE (20S) 0.00 217 0 0.00 n.d. 20 C28 13a,17b DIASTERANE (20R) 0.00 217 0 0.00 n.d. 21 C27 5a,14a,17a STERANE (20R) 0.00 217 0 0.00 n.d. 22 C27 5a,14a,17a STERANE (20S) 0.00 217 0 0.00 n.d. <t< td=""><td>11</td><td>C28 13b,17a DIASTERANE (20S) (24R/24S ?)</td><td>0.00</td><td>217</td><td>0</td><td>0.00</td><td>n.d.</td></t<>	11	C28 13b,17a DIASTERANE (20S) (24R/24S ?)	0.00	217	0	0.00	n.d.
16 C28 13a,17b DIASTERANE (20S) 0.00 217 0 0.00 a.d. 17 C27 5a,14a,17a STERANE (20S) 0.00 217 0 0.00 a.d. 18 C27 5a,14b,17b ISOSTERANE (20R) 0.00 217 0 0.00 a.d. + C29 13b,17a DIASTERANE (20S) 0.00 217 0 0.00 a.d. 20 C28 13a,17b DIASTERANE (20S) 0.00 217 0 0.00 a.d. 21 C27 5a,14a,17a STERANE (20R) 0.00 217 0 0.00 a.d. 22 C27 5a,14a,17a STERANE (20R) 0.00 217 0 0.00 a.d. 22 C27 5a,14a,17a STERANE (20R) 0.00 217 0 0.00 a.d. 23 C29 13a,17b DIASTERANE (20R) 0.00 217 0 0.00 a.d. 24 C29 13a,17b DIASTERANE (20S) 0.00 217 0 0.00 a.d. 26 C28 5a,14a,17a STERANE (20S) 0.00 217 0 0.00 a.d. 27 C29 13a,17b DIASTERANE (20R) 0.00 <td< td=""><td>14+15</td><td>C28 13b,17a DIASTERANE (20R) (24R/24S ?)</td><td>0.00</td><td>217</td><td>0</td><td>0.00</td><td>n.d.</td></td<>	14+15	C28 13b,17a DIASTERANE (20R) (24R/24S ?)	0.00	217	0	0.00	n.d.
17C27 $5a, 14a, 17a$ STERANE (20S)0.0021700.00a.d.18C27 $5a, 14b, 17b$ ISOSTERANE (20R)0.0021700.00a.d.+ C29 13b, 17a DIASTERANE (20S)0.0021700.00a.d.19C27 $5a, 14b, 17b$ ISOSTERANE (20R)0.0021700.00a.d.20C28 13a, 17b DIASTERANE (20R)0.0021700.00a.d.21C27 $5a, 14a, 17a$ STERANE (20R)0.0021700.00a.d.22C27 $5a, 14a, 17a$ STERANE (20R)0.0021700.00a.d.23C29 13b, 17a DIASTERANE (20R)0.0021700.00a.d.24C29 13a, 17b DIASTERANE (20S)0.0021700.00a.d.26C28 $5a, 14a, 17a$ STERANE (20S)0.0021700.00a.d.27C29 13a, 17b DIASTERANE (20R)0.0021700.00a.d.28C28 $5a, 14b, 17b$ ISOSTERANE (20R)0.0021700.00a.d.29C28 $5a, 14a, 17a$ STERANE (20R)0.0021700.00a.d.31C28 $5a, 14a, 17a$ STERANE (20R)0.0021700.00a.d.32C29 $5a, 14a, 17a$ STERANE (20R)0.0021700.00a.d.33C29 $5a, 14a, 17a$ STERANE (20R)0.0021700.00a.d.34C29 $5a, 14a, 17a$ STERANE (20R)0.0021700.00<	16	C28 13a,17b DIASTERANE (20S)	0.00	217	0	0.00	n.d.
18 C27 5a,14b,17b ISOSTERANE (20R) 0.00 217 0 0.00 n.d. + C29 13b,17a DIASTERANE (20S) 0.00 217 0 0.00 n.d. 19 C27 5a,14b,17b ISOSTERANE (20S) 0.00 217 0 0.00 n.d. 20 C28 13a,17b DIASTERANE (20R) 0.00 217 0 0.00 n.d. 21 C27 5a,14a,17a STERANE (20R) 0.00 217 0 0.00 n.d. 22 C27 5a,14a,17a STERANE (20R) 0.00 217 0 0.00 n.d. 23 C29 13a,17b DIASTERANE (20R) 0.00 217 0 0.00 n.d. 24 C29 13a,17b DIASTERANE (20S) 0.00 217 0 0.00 n.d. 26 C28 5a,14a,17a STERANE (20S) 0.00 217 0 0.00 n.d. 27 C29 13a,17b DIASTERANE (20R) 0.00 217 0 0.00 n.d. 28 C28 5a,14b,17b ISOSTERANE (20R) 0.00 217 0 0.00 n.d. 31 C28 5a,14b,17b ISOSTERANE (20R) 0.00	17	C27 5a,14a,17a STERANE (20S)	0.00	217	0	0.00	n.d.
+ C29 13b,17a DIASTERANE (20S) 19 C27 5a,14b,17b ISOSTERANE (20R) 0.00 217 0 0.00 n.d. 20 C28 13a,17b DIASTERANE (20R) 0.00 217 0 0.00 n.d. 22 C27 5a,14a,17a STERANE (20R) 0.00 217 0 0.00 n.d. 23 C29 13b,17a DIASTERANE (20R) 0.00 217 0 0.00 n.d. 24 C29 13a,17b DIASTERANE (20R) 0.00 217 0 0.00 n.d. 26 C28 5a,14a,17a STERANE (20S) 0.00 217 0 0.00 n.d. 26 C28 5a,14b,17b DIASTERANE (20S) 0.00 217 0 0.00 n.d. 27 C29 13a,17b DIASTERANE (20R) 0.00 217 0 0.00 n.d. 28 C28 5a,14b,17b ISOSTERANE (20R) 0.00 217 0 0.00 n.d. 29 C28 5a,14a,17a STERANE (20R) 0.00 217 0 0.00 n.d. 31 C28 5a,14b,17b ISOSTERANE (20R) 0.00 217 0 0.00 n.d.	18	C27 5a,14b,17b ISOSTERANE (20R)	0.00	217	0	0.00	n.d.
19 C27 5a,14b,17b ISOSTERANE (20S) 0.00 217 0 0.00 n.d. 20 C28 13a,17b DIASTERANE (20R) 0.00 217 0 0.00 n.d. 22 C27 5a,14a,17a STERANE (20R) 0.00 217 0 0.00 n.d. 23 C29 13b,17a DIASTERANE (20R) 0.00 217 0 0.00 n.d. 24 C29 13a,17b DIASTERANE (20R) 0.00 217 0 0.00 n.d. 26 C28 5a,14a,17a STERANE (20S) 0.00 217 0 0.00 n.d. 26 C28 5a,14a,17a STERANE (20S) 0.00 217 0 0.00 n.d. 27 C29 13a,17b DIASTERANE (20S) 0.00 217 0 0.00 n.d. 28 C28 5a,14b,17b ISOSTERANE (20R) 0.00 217 0 0.00 n.d. 29 C28 5a,14b,17b ISOSTERANE (20R) 0.00 217 0 0.00 n.d. 31 C28 5a,14b,17b ISOSTERANE (20R) 0.00 217 0 0.00 n.d. 33 C29 5a,14b,17b ISOSTERANE (20R)		+ C29 13b,17a DIASTERANE (20S)					
20 C28 13a,17b DIASTERANE (20R) 0.00 217 0 0.00 n.d. 22 C27 5a,14a,17a STERANE (20R) 0.00 217 0 0.00 n.d. 23 C29 13b,17a DIASTERANE (20R) 0.00 217 0 0.00 n.d. 24 C29 13a,17b DIASTERANE (20S) 0.00 217 0 0.00 n.d. 26 C28 5a,14a,17a STERANE (20S) 0.00 217 0 0.00 n.d. 26 C28 5a,14a,17a STERANE (20S) 0.00 217 0 0.00 n.d. 27 C29 13a,17b DIASTERANE (20S) 0.00 217 0 0.00 n.d. 28 C28 5a,14b,17b ISOSTERANE (20R) 0.00 217 0 0.00 n.d. 29 C28 5a,14b,17b ISOSTERANE (20S) 0.00 217 0 0.00 n.d. 31 C28 5a,14b,17b ISOSTERANE (20S) 0.00 217 0 0.00 n.d. 34 C29 5a,14b,17b ISOSTERANE (20S) 0.00 217	19	C27 5a,14b,17b ISOSTERANE (20S)	0.00	217	0	0.00	n.d.
22 C27 5a,14a,17a STERANE (20R) 0.00 217 0 0.00 n.d. 23 C29 13b,17a DIASTERANE (20R) 0.00 217 0 0.00 n.d. 24 C29 13a,17b DIASTERANE (20S) 0.00 217 0 0.00 n.d. 26 C28 5a,14a,17a STERANE (20S) 0.00 217 0 0.00 n.d. 26 C28 5a,14a,17a STERANE (20S) 0.00 217 0 0.00 n.d. 27 C29 13a,17b DIASTERANE (20R) 0.00 217 0 0.00 n.d. 28 C28 5a,14b,17b ISOSTERANE (20R) 0.00 217 0 0.00 n.d. 29 C28 5a,14b,17b ISOSTERANE (20R) 0.00 217 0 0.00 n.d. 31 C28 5a,14a,17a STERANE (20R) 0.00 217 0 0.00 n.d. 33 C29 5a,14b,17b ISOSTERANE (20R) 0.00 217 0 0.00 n.d. 34 C29 5a,14b,17b ISOSTERANE (20R) 0.00 217 0 0.00 n.d. 35 C29 5a,14a,17a STERANE (20R)	20	C28 13a,17b DIASTERANE (20R)	0.00	217	0	0.00	n.d.
23 C29 13b,17a DIASTERANE (20R) 0.00 217 0 0.00 n.d. 24 C29 13a,17b DIASTERANE (20S) 0.00 217 0 0.00 n.d. 26 C28 5a,14a,17a STERANE (20S) 0.00 217 0 0.00 n.d. 27 C29 13a,17b DIASTERANE (20S) 0.00 217 0 0.00 n.d. 28 C28 5a,14a,17a STERANE (20R) 0.00 217 0 0.00 n.d. 29 C28 5a,14b,17b ISOSTERANE (20R) 0.00 217 0 0.00 n.d. 31 C28 5a,14a,17a STERANE (20R) 0.00 217 0 0.00 n.d. 33 C29 5a,14a,17a STERANE (20R) 0.00 217 0 0.00 n.d. 34 C29 5a,14b,17b ISOSTERANE (20R) 0.00 217 0 0.00 n.d. 35 C29 5a,14a,17a STERANE (20R) 0.00 217 0 0.00 n.d. 36 C30 5a,14a,17a STERANE (20R) 0.00 217 <t< td=""><td>22</td><td>C27 5a,14a,17a STERANE (20R)</td><td>0.00</td><td>217</td><td>0</td><td>0.00</td><td>n.d.</td></t<>	22	C27 5a,14a,17a STERANE (20R)	0.00	217	0	0.00	n.d.
24 C29 13a,17b DIASTERANE (20S) 0.00 217 0 0.00 n.d. 26 C28 5a,14a,17a STERANE (20S) 0.00 217 0 0.00 n.d. 27 C29 13a,17b DIASTERANE (20R) 0.00 217 0 0.00 n.d. 28 C28 5a,14b,17b DIASTERANE (20R) 0.00 217 0 0.00 n.d. 29 C28 5a,14b,17b ISOSTERANE (20R) 0.00 217 0 0.00 n.d. 29 C28 5a,14b,17b ISOSTERANE (20R) 0.00 217 0 0.00 n.d. 31 C28 5a,14a,17a STERANE (20R) 0.00 217 0 0.00 n.d. 33 C29 5a,14b,17b ISOSTERANE (20S) 0.00 217 0 0.00 n.d. 34 C29 5a,14b,17b ISOSTERANE (20R) 0.00 217 0 0.00 n.d. 35 C29 5a,14a,17a STERANE (20R) 0.00 217 0 0.00 n.d. 36 C30 5a,14b,17b ISOSTERANE (20R) 0.00 217 <td>23</td> <td>C29 13b,17a DIASTERANE (20R)</td> <td>0.00</td> <td>217</td> <td>0</td> <td>0.00</td> <td>n.d.</td>	23	C29 13b,17a DIASTERANE (20R)	0.00	217	0	0.00	n.d.
26 C28 5a,14a,17a STERANE (20S) 0.00 217 0 0.00 n.d. 27 C29 13a,17b DIASTERANE (20R) 0.00 217 0 0.00 n.d. 28 C28 5a,14b,17b ISOSTERANE (20R) 0.00 217 0 0.00 n.d. 29 C28 5a,14b,17b ISOSTERANE (20R) 0.00 217 0 0.00 n.d. 29 C28 5a,14b,17b ISOSTERANE (20S) 0.00 217 0 0.00 n.d. 31 C28 5a,14a,17a STERANE (20S) 0.00 217 0 0.00 n.d. 33 C29 5a,14a,17a STERANE (20S) 0.00 217 0 0.00 n.d. 34 C29 5a,14b,17b ISOSTERANE (20S) 0.00 217 0 0.00 n.d. 35 C29 5a,14b,17b ISOSTERANE (20R) 0.00 217 0 0.00 n.d. 36 C30 5a,14b,17b ISOSTERANE (20R) 0.00 217 0 0.00 n.d. 38 C30 5a,14b,17b ISOSTERANE (20R) 0.00 217<	24	C29 13a,17b DIASTERANE (20S)	0.00	217	0	0.00	n.d.
27 C29 13a,17b DIASTERANE (20R) 0.00 217 0 0.00 n.d. 28 C28 5a,14b,17b ISOSTERANE (20R) 0.00 217 0 0.00 n.d. 29 C28 5a,14b,17b ISOSTERANE (20S) 0.00 217 0 0.00 n.d. 31 C28 5a,14b,17b ISOSTERANE (20S) 0.00 217 0 0.00 n.d. 33 C29 5a,14a,17a STERANE (20R) 0.00 217 0 0.00 n.d. 34 C29 5a,14b,17b ISOSTERANE (20S) 0.00 217 0 0.00 n.d. 35 C29 5a,14b,17b ISOSTERANE (20R) 0.00 217 0 0.00 n.d. 35 C29 5a,14b,17b ISOSTERANE (20R) 0.00 217 0 0.00 n.d. 36 C30 5a,14a,17a STERANE (20R) 0.00 217 0 0.00 n.d. 38 C30 5a,14a,17a STERANE (20R) 0.00 217 0 0.00 n.d. 39 C30 5a,14b,17b ISOSTERANE (20R) 0.00 217 0 0.00 n.d. 40 C30 5a,14b,17b ISOSTERANE (20	26	C28 5a,14a,17a STERANE (20S)	0.00	217	0	0.00	n.d.
28 C28 5a,14b,17b ISOSTERANE (20R) 0.00 217 0 0.00 n.d. 29 C28 5a,14b,17b ISOSTERANE (20S) 0.00 217 0 0.00 n.d. 31 C28 5a,14a,17a STERANE (20R) 0.00 217 0 0.00 n.d. 33 C29 5a,14a,17a STERANE (20S) 0.00 217 0 0.00 n.d. 34 C29 5a,14b,17b ISOSTERANE (20S) 0.00 217 0 0.00 n.d. 35 C29 5a,14b,17b ISOSTERANE (20R) 0.00 217 0 0.00 n.d. 35 C29 5a,14a,17a STERANE (20S) 0.00 217 0 0.00 n.d. 37 C29 5a,14a,17a STERANE (20R) 0.00 217 0 0.00 n.d. 38 C30 5a,14a,17a STERANE (20S) 0.00 217 0 0.00 n.d. 39 C30 5a,14b,17b ISOSTERANE (20R) 0.00 217 0	27	C29 13a,17b DIASTERANE (20R)	0.00	217	0	0.00	n.d.
29 C28 5a,14b,17b ISOSTERANE (20S) 0.00 217 0 0.00 n.d. 31 C28 5a,14a,17a STERANE (20R) 0.00 217 0 0.00 n.d. 33 C29 5a,14a,17a STERANE (20S) 0.00 217 0 0.00 n.d. 34 C29 5a,14a,17a STERANE (20S) 0.00 217 0 0.00 n.d. 34 C29 5a,14b,17b ISOSTERANE (20R) 0.00 217 0 0.00 n.d. 35 C29 5a,14b,17b ISOSTERANE (20S) 0.00 217 0 0.00 n.d. 37 C29 5a,14a,17a STERANE (20R) 0.00 217 0 0.00 n.d. 38 C30 5a,14a,17a STERANE (20S) 0.00 217 0 0.00 n.d. 39 C30 5a,14b,17b ISOSTERANE (20R) 0.00 217 0 0.00 n.d. 40 C30 5a,14b,17b ISOSTERANE (20S) 0.00 217 0	28	C28 5a,14b,17b ISOSTERANE (20R)	0.00	217	0	0.00	n.d.
31 C28 5a,14a,17a STERANE (20R) 0.00 217 0 0.00 n.d. 33 C29 5a,14a,17a STERANE (20S) 0.00 217 0 0.00 n.d. 34 C29 5a,14a,17a STERANE (20S) 0.00 217 0 0.00 n.d. 34 C29 5a,14b,17b ISOSTERANE (20R) 0.00 217 0 0.00 n.d. 35 C29 5a,14b,17b ISOSTERANE (20S) 0.00 217 0 0.00 n.d. 37 C29 5a,14a,17a STERANE (20R) 0.00 217 0 0.00 n.d. 38 C30 5a,14a,17a STERANE (20S) 0.00 217 0 0.00 n.d. 39 C30 5a,14b,17b ISOSTERANE (20R) 0.00 217 0 0.00 n.d. 40 C30 5a,14b,17b ISOSTERANE (20S) 0.00 217 0 0.00 n.d. 41 C30 5a,14a,17a STERANE (20S) 0.00 217 0 0.00 n.d.	29	C28 5a,14b,17b ISOSTERANE (20S)	0.00	217	0	0.00	n.d.
33 C29 5a,14a,17a STERANE (20S) 0.00 217 0 0.00 n.d. 34 C29 5a,14b,17b ISOSTERANE (20R) 0.00 217 0 0.00 n.d. 35 C29 5a,14b,17b ISOSTERANE (20R) 0.00 217 0 0.00 n.d. 37 C29 5a,14b,17b ISOSTERANE (20R) 0.00 217 0 0.00 n.d. 38 C30 5a,14a,17a STERANE (20R) 0.00 217 0 0.00 n.d. 39 C30 5a,14b,17b ISOSTERANE (20R) 0.00 217 0 0.00 n.d. 40 C30 5a,14b,17b ISOSTERANE (20R) 0.00 217 0 0.00 n.d. 41 C30 5a,14a,17a STERANE (20R) 0.00 217 0 0.00 n.d.	31	C28 5a,14a,17a STERANE (20R)	0.00	217	0	0.00	n.d.
34 C29 5a,14b,17b ISOSTERANE (20R) 0.00 217 0 0.00 n.d. 35 C29 5a,14b,17b ISOSTERANE (20S) 0.00 217 0 0.00 n.d. 37 C29 5a,14b,17a STERANE (20R) 0.00 217 0 0.00 n.d. 38 C30 5a,14a,17a STERANE (20S) 0.00 217 0 0.00 n.d. 39 C30 5a,14a,17a STERANE (20S) 0.00 217 0 0.00 n.d. 40 C30 5a,14b,17b ISOSTERANE (20S) 0.00 217 0 0.00 n.d. 41 C30 5a,14a,17a STERANE (20R) 0.00 217 0 0.00 n.d.	33	C29 5a,14a,17a STERANE (20S)	0.00	217	0	0.00	n.d.
35 C29 5a,14b,17b ISOSTERANE (20S) 0.00 217 0 0.00 n.d. 37 C29 5a,14a,17a STERANE (20R) 0.00 217 0 0.00 n.d. 38 C30 5a,14a,17a STERANE (20S) 0.00 217 0 0.00 n.d. 39 C30 5a,14b,17b ISOSTERANE (20R) 0.00 217 0 0.00 n.d. 40 C30 5a,14b,17b ISOSTERANE (20S) 0.00 217 0 0.00 n.d. 41 C30 5a,14a,17a STERANE (20R) 0.00 217 0 0.00 n.d.	34	C29 5a,14b,17b ISOSTERANE (20R)	0.00	217	0	0.00	n.d.
37 C29 5a,14a,17a STERANE (20R) 0.00 217 0 0.00 n.d. 38 C30 5a,14a,17a STERANE (20S) 0.00 217 0 0.00 n.d. 39 C30 5a,14b,17b ISOSTERANE (20R) 0.00 217 0 0.00 n.d. 40 C30 5a,14b,17b ISOSTERANE (20S) 0.00 217 0 0.00 n.d. 41 C30 5a,14a,17a STERANE (20R) 0.00 217 0 0.00 n.d.	35	C29 5a,14b,17b ISOSTERANE (20S)	0.00	217	0	0.00	n.d.
38 C30 5a,14a,17a STERANE (20S) 0.00 217 0 0.00 n.d. 39 C30 5a,14b,17b ISOSTERANE (20R) 0.00 217 0 0.00 n.d. 40 C30 5a,14b,17b ISOSTERANE (20S) 0.00 217 0 0.00 n.d. 41 C30 5a,14a,17a STERANE (20R) 0.00 217 0 0.00 n.d.	37	C29 5a,14a,17a STERANE (20R)	0.00	217	0	0.00	n.d.
39 C30 5a,14b,17b ISOSTERANE (20R) 0.00 217 0 0.00 n.d. 40 C30 5a,14b,17b ISOSTERANE (20S) 0.00 217 0 0.00 n.d. 41 C30 5a,14a,17a STERANE (20R) 0.00 217 0 0.00 n.d.	38	C30 5a,14a,17a STERANE (20S)	0.00	217	0	0.00	n.d.
40 C30 5a,14b,17b ISOSTERANE (20S) 0.00 217 0 0.00 n.d. 41 C30 5a,14a,17a STERANE (20R) 0.00 217 0 0.00 n.d.	39	C30 5a,14b,17b ISOSTERANE (20R)	0.00	217	0	0.00	n.d.
41 C30 5a,14a,17a STERANE (20R) 0.00 217 0 0.00 n.d.	40	C30 5a,14b,17b ISOSTERANE (20S)	0.00	217	0	0.00	n.d.
	41	C30 5a,14a,17a STERANE (20R)	0.00	217	0	0.00	n.d.

Project: ATHOS I Oil Spill Lab Sample ID: C45252 Sample Descriptor: NJMW1-12-7-2004 Analysis Date: 12/17/2004

Project: ATHOS I Oil Spill Lab Sample ID: C45253 Sample Descriptor: DBFE-091204 Analysis Date: 12/17/2004

No.	COMPOUND NAME	RT	ION	AREA	CONC	%
	TERPANES				(ng/g)	
Н	C19 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
Α	C20 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
в	C21 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
C	C22 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
D	C23 TRICYCLIC TERPANE	36.93	191	1228	0.35	25.3
Е	C24 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
1	C25 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
4	C24 TETRACYCLIC TERPANE	42.76	191	450	0.13	9.3
5	C26 TRICYCLIC TERPANE (22R)	42.86	191	74	0.02	1.5
6	C26 TRICYCLIC TERPANE (228)	42.98	191	84	0.02	1.7
9	C28 TRICYCLIC TERPANE (22R)	0.00	191	0	0.00	0.0
10	C28 TRICYCLIC TERPANE (22S)	0.00	191	0	0.00	0.0
11	C29 TRICYCLIC TERPANE (22R)	0.00	191	0	0.00	0.0
12	C29 TRICYCLIC TERPANE (22S)	0.00	191	0	0.00	0.0
13	C27 18a-22,29,30-TRISNORNEOHOPANE (Ts)	50.15	191	1783	0.51	36.7
Ι	C27 PENTACYCLIC TERPANE (Y)	0.00	191	0	0.00	0.0
14	C27 17a-22,29,30-TRISNORHOPANE (Tm)	51.03	191	1004	0.29	20.7
15	C30 TRICYCLIC TERPANE (22R)	0.00	191	0	0.00	0.0
16	C30 TRICYCLIC TERPANE (22S)	0.00	191	0	0.00	0.0
17	C28 17a,21b-28,30-BISNORHOPANE	0.00	191	0	0.00	0.0
J	C29 17a,21b-25-NORHOPANE	0.00	191	0	0.00	0.0
19	C29 17a,21b-30-NORHOPANE	0.00	191	0	0.00	0.0
20	C29 18a-NORNEOHOPANE (29Ts)	0.00	191	0	0.00	0.0
F	C30 DIAHOPANE	0.00	191	0	0.00	0.0
21	C29 17b,21a-30-NORMORETANE	0.00	191	0	0.00	0.0
22	C30 18a-OLEANANE	0.00	191	0	0.00	0.0
23	C30 17a,21b-HOPANE	55.62	191	233	0.07	4.8
24	C30 17b,21a-MORETANE	0.00	191	0	0.00	0.0
27	C31 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
28	C31 17a,21b-HOMOHOPANE(22R)	0.00	191	0	0.00	0.0
G	C30 GAMMACERANE	0.00	191	0	0.00	0.0
30	C32 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
31	C32 17a,21b-HOMOHOPANE (22R)	0.00	191	0	0.00	0.0
34	C33 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
35	C33 17a,21b-HOMOHOPANE (22R)	0.00	191	0	0.00	0.0
36	C34 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
37	C34 17a,21b-HOMOHOPANE (22R)	0.00	191	0	0.00	0.0
38	C35 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
39	C35 17a,21b-HOMOHOPANE (22R)	0.00	191	0	0.00	0.0

Project: ATHOS I Oil Spill Lab Sample ID: C45253 Sample Descriptor: DBFE-091204 Analysis Date: 12/17/2004

No.	COMPOUND NAME	RT	ION	AREA	CONC	%
	STERANES				(ng/g)	
А	C21 DIAPREGNANE	33.08	217	194	0.31	29.0
1	C21 PREGNANE	35.04	217	94	0.15	14.0
в	C22 DIAHOMOPREGNANE	0.00	217	0	0.00	0.0
2	C22 HOMOPREGNANE	37.67	217	152	0.24	22.7
3	C27 13b,17a DIASTERANE (20S)	0.00	217	0	0.00	0.0
4	C27 13b,17a DIASTERANE (20R)	45.93	217	38	0.03	2.9
8	C27 13a,17b DIASTERANE (20S)	46.54	217	21	0.02	1.6
9	C27 13a,17b DIASTERANE (20R)	47.12	217	11	0.01	0.8
10	C28 13b,17a DIASTERANE (20S) (24R/24S ?)	47.16	217	17	0.01	1.3
11	C28 13b,17a DIASTERANE (20S) (24R/24S ?)	47.35	217	49	0.04	3.7
14+15	C28 13b,17a DIASTERANE (20R) (24R/24S ?)	0.00	217	0	0.00	0.0
16	C28 13a,17b DIASTERANE (20S)	48.40	217	94	0.05	4.8
17	C27 5a,14a,17a STERANE (20S)	0.00	217	0	0.00	0.0
18	C27 5a,14b,17b ISOSTERANE (20R)	0.00	217	0	0.00	0.0
	+ C29 13b,17a DIASTERANE (20S)					
19	C27 5a,14b,17b ISOSTERANE (20S)	49.12	217	209	0.11	10.7
20	C28 13a,17b DIASTERANE (20R)	49.12	217	142	0.08	7.2
22	C27 5a,14a,17a STERANE (20R)	0.00	217	0	0.00	0.0
23	C29 13b,17a DIASTERANE (20R)	0.00	217	0	0.00	0.0
24	C29 13a,17b DIASTERANE (20S)	0.00	217	0	0.00	0.0
26	C28 5a,14a,17a STERANE (20S)	0.00	217	0	0.00	0.0
27	C29 13a,17b DIASTERANE (20R)	0.00	217	0	0.00	0.0
28	C28 5a,14b,17b ISOSTERANE (20R)	0.00	217	0	0.00	0.0
29	C28 5a,14b,17b ISOSTERANE (20S)	0.00	217	0	0.00	0.0
31	C28 5a,14a,17a STERANE (20R)	0.00	217	0	0.00	0.0
33	C29 5a,14a,17a STERANE (20S)	0.00	217	0	0.00	0.0
34	C29 5a,14b,17b ISOSTERANE (20R)	0.00	217	0	0.00	0.0
35	C29 5a,14b,17b ISOSTERANE (20S)	53.03	217	28	0.01	1.3
37	C29 5a,14a,17a STERANE (20R)	0.00	217	0	0.00	0.0
38	C30 5a,14a,17a STERANE (20S)	0.00	217	0	0.00	0.0
39	C30 5a,14b,17b ISOSTERANE (20R)	0.00	217	0	0.00	0.0
40	C30 5a,14b,17b ISOSTERANE (20S)	0.00	217	0	0.00	0.0
41	C30 5a,14a,17a STERANE (20R)	0.00	217	0	0.00	0.0

Project: ATHOS I Oil Spill Lab Sample ID: C45253 Sample Descriptor: DBFE-091204 Analysis Date: 12/17/2004

Project: ATHOS I Oil Spill Lab Sample ID: C45254 Sample Descriptor: Newbedsoermo-091204 Analysis Date: 12/17/2004

No.	COMPOUND NAME	RT	ION	AREA	CONC	%
	TERPANES				(ng/g)	
Н	C19 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
Α	C20 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
в	C21 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
С	C22 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
D	C23 TRICYCLIC TERPANE	36.93	191	183	0.07	8.0
Е	C24 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
1	C25 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
4	C24 TETRACYCLIC TERPANE	42.80	191	99	0.04	4.3
5	C26 TRICYCLIC TERPANE (22R)	0.00	191	0	0.00	0.0
6	C26 TRICYCLIC TERPANE (228)	0.00	191	0	0.00	0.0
9	C28 TRICYCLIC TERPANE (22R)	0.00	191	0	0.00	0.0
10	C28 TRICYCLIC TERPANE (228)	0.00	191	0	0.00	0.0
11	C29 TRICYCLIC TERPANE (22R)	0.00	191	0	0.00	0.0
12	C29 TRICYCLIC TERPANE (228)	0.00	191	0	0.00	0.0
13	C27 18a-22,29,30-TRISNORNEOHOPANE (Ts)	50.15	191	1348	0.50	58.8
Ι	C27 PENTACYCLIC TERPANE (Y)	0.00	191	0	0.00	0.0
14	C27 17a-22,29,30-TRISNORHOPANE (Tm)	51.05	191	662	0.25	28.9
15	C30 TRICYCLIC TERPANE (22R)	0.00	191	0	0.00	0.0
16	C30 TRICYCLIC TERPANE (228)	0.00	191	0	0.00	0.0
17	C28 17a,21b-28,30-BISNORHOPANE	0.00	191	0	0.00	0.0
J	C29 17a,21b-25-NORHOPANE	0.00	191	0	0.00	0.0
19	C29 17a,21b-30-NORHOPANE	0.00	191	0	0.00	0.0
20	C29 18a-NORNEOHOPANE (29Ts)	0.00	191	0	0.00	0.0
F	C30 DIAHOPANE	0.00	191	0	0.00	0.0
21	C29 17b,21a-30-NORMORETANE	0.00	191	0	0.00	0.0
22	C30 18a-OLEANANE	0.00	191	0	0.00	0.0
23	C30 17a,21b-HOPANE	0.00	191	0	0.00	0.0
24	C30 17b,21a-MORETANE	0.00	191	0	0.00	0.0
27	C31 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
28	C31 17a,21b-HOMOHOPANE(22R)	0.00	191	0	0.00	0.0
G	C30 GAMMACERANE	0.00	191	0	0.00	0.0
30	C32 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
31	C32 17a,21b-HOMOHOPANE (22R)	0.00	191	0	0.00	0.0
34	C33 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
35	C33 17a,21b-HOMOHOPANE (22R)	0.00	191	0	0.00	0.0
36	C34 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
37	C34 17a,21b-HOMOHOPANE (22R)	0.00	191	0	0.00	0.0
38	C35 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
39	C35 17a,21b-HOMOHOPANE (22R)	0.00	191	0	0.00	0.0

Project: ATHOS I Oil Spill

Lab Sample ID: C45254

Sample Descriptor: Newbedsoermo-091204

Analysis Date: 12/17/2004

No.	COMPOUND NAME	RT	ION	AREA	CONC	%
	STERANES				(ng/g)	
Α	C21 DIAPREGNANE	0.00	217	0	0.00	0.0
1	C21 PREGNANE	0.00	217	0	0.00	0.0
в	C22 DIAHOMOPREGNANE	35.16	217	37	0.08	100.0
2	C22 HOMOPREGNANE	0.00	217	0	0.00	0.0
3	C27 13b,17a DIASTERANE (20S)	0.00	217	0	0.00	0.0
4	C27 13b,17a DIASTERANE (20R)	0.00	217	0	0.00	0.0
8	C27 13a,17b DIASTERANE (20S)	0.00	217	0	0.00	0.0
9	C27 13a,17b DIASTERANE (20R)	0.00	217	0	0.00	0.0
10	C28 13b,17a DIASTERANE (20S) (24R/24S ?)	0.00	217	0	0.00	0.0
11	C28 13b,17a DIASTERANE (20S) (24R/24S ?)	0.00	217	0	0.00	0.0
14+15	5 C28 13b,17a DIASTERANE (20R) (24R/24S ?)	0.00	217	0	0.00	0.0
16	C28 13a,17b DIASTERANE (20S)	0.00	217	0	0.00	0.0
17	C27 5a,14a,17a STERANE (20S)	0.00	217	0	0.00	0.0
18	C27 5a,14b,17b ISOSTERANE (20R)	0.00	217	0	0.00	0.0
	+ C29 13b,17a DIASTERANE (20S)					
19	C27 5a,14b,17b ISOSTERANE (20S)	0.00	217	0	0.00	0.0
20	C28 13a,17b DIASTERANE (20R)	0.00	217	0	0.00	0.0
22	C27 5a,14a,17a STERANE (20R)	0.00	217	0	0.00	0.0
23	C29 13b,17a DIASTERANE (20R)	0.00	217	0	0.00	0.0
24	C29 13a,17b DIASTERANE (20S)	0.00	217	0	0.00	0.0
26	C28 5a,14a,17a STERANE (20S)	0.00	217	0	0.00	0.0
27	C29 13a,17b DIASTERANE (20R)	0.00	217	0	0.00	0.0
28	C28 5a,14b,17b ISOSTERANE (20R)	0.00	217	0	0.00	0.0
29	C28 5a,14b,17b ISOSTERANE (20S)	0.00	217	0	0.00	0.0
31	C28 5a,14a,17a STERANE (20R)	0.00	217	0	0.00	0.0
33	C29 5a,14a,17a STERANE (20S)	0.00	217	0	0.00	0.0
34	C29 5a,14b,17b ISOSTERANE (20R)	0.00	217	0	0.00	0.0
35	C29 5a,14b,17b ISOSTERANE (20S)	0.00	217	0	0.00	0.0
37	C29 5a,14a,17a STERANE (20R)	0.00	217	0	0.00	0.0
38	C30 5a,14a,17a STERANE (20S)	0.00	217	0	0.00	0.0
39	C30 5a,14b,17b ISOSTERANE (20R)	0.00	217	0	0.00	0.0
40	C30 5a,14b,17b ISOSTERANE (20S)	0.00	217	0	0.00	0.0
41	C30 5a,14a,17a STERANE (20R)	0.00	217	0	0.00	0.0

Project: ATHOS I Oil Spill Lab Sample ID: C45254 Sample Descriptor: Newbedsoermo-091204 Analysis Date: 12/17/2004

Project: ATHOS I Oil Spill Lab Sample ID: C45255 Sample Descriptor: DBBD-091204 Analysis Date: 12/17/2004

No.	COMPOUND NAME	RT	ION	AREA	CONC	%
	TERPANES				(ng/g)	
Н	C19 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
А	C20 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
в	C21 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
С	C22 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
D	C23 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
Ε	C24 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
1	C25 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
4	C24 TETRACYCLIC TERPANE	0.00	191	0	0.00	0.0
5	C26 TRICYCLIC TERPANE (22R)	0.00	191	0	0.00	0.0
б	C26 TRICYCLIC TERPANE (22S)	0.00	191	0	0.00	0.0
9	C28 TRICYCLIC TERPANE (22R)	0.00	191	0	0.00	0.0
10	C28 TRICYCLIC TERPANE (228)	0.00	191	0	0.00	0.0
11	C29 TRICYCLIC TERPANE (22R)	0.00	191	0	0.00	0.0
12	C29 TRICYCLIC TERPANE (22S)	0.00	191	0	0.00	0.0
13	C27 18a-22,29,30-TRISNORNEOHOPANE (Ts)	50.17	191	1223	0.55	38.9
I	C27 PENTACYCLIC TERPANE (Y)	50.62	191	347	0.16	11.0
14	C27 17a-22,29,30-TRISNORHOPANE (Tm)	51.03	191	592	0.27	18.8
15	C30 TRICYCLIC TERPANE (22R)	0.00	191	0	0.00	0.0
16	C30 TRICYCLIC TERPANE (22S)	0.00	191	0	0.00	0.0
17	C28 17a,21b-28,30-BISNORHOPANE	0.00	191	0	0.00	0.0
J	C29 17a,21b-25-NORHOPANE	0.00	191	0	0.00	0.0
19	C29 17a,21b-30-NORHOPANE	0.00	191	0	0.00	0.0
20	C29 18a-NORNEOHOPANE (29Ts)	0.00	191	0	0.00	0.0
F	C30 DIAHOPANE	0.00	191	0	0.00	0.0
21	C29 17b,21a-30-NORMORETANE	0.00	191	0	0.00	0.0
22	C30 18a-OLEANANE	0.00	191	0	0.00	0.0
23	C30 17a,21b-HOPANE	0.00	191	0	0.00	0.0
24	C30 17b,21a-MORETANE	0.00	191	0	0.00	0.0
27	C31 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
28	C31 17a,21b-HOMOHOPANE(22R)	0.00	191	0	0.00	0.0
G	C30 GAMMACERANE	0.00	191	0	0.00	0.0
30	C32 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
31	C32 17a,21b-HOMOHOPANE (22R)	59.58	191	980	0.44	31.2
34	C33 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
35	C33 17a,21b-HOMOHOPANE (22R)	0.00	191	0	0.00	0.0
36	C34 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
37	C34 17a,21b-HOMOHOPANE (22R)	0.00	191	0	0.00	0.0
38	C35 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
39	C35 17a,21b-HOMOHOPANE (22R)	0.00	191	0	0.00	0.0

Project: ATHOS I Oil Spill Lab Sample ID: C45255 Sample Descriptor: DBBD-091204 Analysis Date: 12/17/2004

No.	COMPOUND NAME	RT	ION	AREA	CONC	%
	STERANES				(ng/g)	
А	C21 DIAPREGNANE	0.00	217	0	0.00	n.d.
1	C21 PREGNANE	0.00	217	0	0.00	n.d.
в	C22 DIAHOMOPREGNANE	0.00	217	0	0.00	n.d.
2	C22 HOMOPREGNANE	0.00	217	0	0.00	n.d.
3	C27 13b,17a DIASTERANE (20S)	0.00	217	0	0.00	n.d.
4	C27 13b,17a DIASTERANE (20R)	0.00	217	0	0.00	n.d.
8	C27 13a,17b DIASTERANE (20S)	0.00	217	0	0.00	n.d.
9	C27 13a,17b DIASTERANE (20R)	0.00	217	0	0.00	n.d.
10	C28 13b,17a DIASTERANE (20S) (24R/24S ?)	0.00	217	0	0.00	n.d.
11	C28 13b,17a DIASTERANE (20S) (24R/24S ?)	0.00	217	0	0.00	n.d.
14+15	5 C28 13b,17a DIASTERANE (20R) (24R/24S ?)	0.00	217	0	0.00	n.d.
16	C28 13a,17b DIASTERANE (20S)	0.00	217	0	0.00	n.d.
17	C27 5a,14a,17a STERANE (20S)	0.00	217	0	0.00	n.d.
18	C27 5a,14b,17b ISOSTERANE (20R)	0.00	217	0	0.00	n.d.
	+ C29 13b,17a DIASTERANE (20S)					
19	C27 5a,14b,17b ISOSTERANE (20S)	0.00	217	0	0.00	n.d.
20	C28 13a,17b DIASTERANE (20R)	0.00	217	0	0.00	n.d.
22	C27 5a,14a,17a STERANE (20R)	0.00	217	0	0.00	n.d.
23	C29 13b,17a DIASTERANE (20R)	0.00	217	0	0.00	n.d.
24	C29 13a,17b DIASTERANE (20S)	0.00	217	0	0.00	n.d.
26	C28 5a,14a,17a STERANE (20S)	0.00	217	0	0.00	n.d.
27	C29 13a,17b DIASTERANE (20R)	0.00	217	0	0.00	n.d.
28	C28 5a,14b,17b ISOSTERANE (20R)	0.00	217	0	0.00	n.d.
29	C28 5a,14b,17b ISOSTERANE (20S)	0.00	217	0	0.00	n.d.
31	C28 5a,14a,17a STERANE (20R)	0.00	217	0	0.00	n.d.
33	C29 5a,14a,17a STERANE (20S)	0.00	217	0	0.00	n.d.
34	C29 5a,14b,17b ISOSTERANE (20R)	0.00	217	0	0.00	n.d.
35	C29 5a,14b,17b ISOSTERANE (20S)	0.00	217	0	0.00	n.d.
37	C29 5a,14a,17a STERANE (20R)	0.00	217	0	0.00	n.d.
38	C30 5a,14a,17a STERANE (20S)	0.00	217	0	0.00	n.d.
39	C30 5a,14b,17b ISOSTERANE (20R)	0.00	217	0	0.00	n.d.
40	C30 5a,14b,17b ISOSTERANE (20S)	0.00	217	0	0.00	n.d.
41	C30 5a,14a,17a STERANE (20R)	0.00	217	0	0.00	n.d.

Project: ATHOS I Oil Spill Lab Sample ID: C45255 Sample Descriptor: DBBD-091204 Analysis Date: 12/17/2004

Project: ATHOS I Oil Spill Lab Sample ID: C45256 Sample Descriptor: DBAP-091204 Analysis Date: 12/17/2004

No.	COMPOUND NAME	RT	ION	AREA	CONC	%
	TERPANES				(ng/g)	
Н	C19 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
Α	C20 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
в	C21 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
С	C22 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
D	C23 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
Е	C24 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
1	C25 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
4	C24 TETRACYCLIC TERPANE	0.00	191	0	0.00	0.0
5	C26 TRICYCLIC TERPANE (22R)	0.00	191	0	0.00	0.0
б	C26 TRICYCLIC TERPANE (22S)	0.00	191	0	0.00	0.0
9	C28 TRICYCLIC TERPANE (22R)	0.00	191	0	0.00	0.0
10	C28 TRICYCLIC TERPANE (22S)	0.00	191	0	0.00	0.0
11	C29 TRICYCLIC TERPANE (22R)	0.00	191	0	0.00	0.0
12	C29 TRICYCLIC TERPANE (22S)	0.00	191	0	0.00	0.0
13	C27 18a-22,29,30-TRISNORNEOHOPANE (Ts)	50.17	191	668	0.47	14.0
Ι	C27 PENTACYCLIC TERPANE (Y)	0.00	191	0	0.00	0.0
14	C27 17a-22,29,30-TRISNORHOPANE (Tm)	51.08	191	573	0.41	12.0
15	C30 TRICYCLIC TERPANE (22R)	0.00	191	0	0.00	0.0
16	C30 TRICYCLIC TERPANE (22S)	0.00	191	0	0.00	0.0
17	C28 17a,21b-28,30-BISNORHOPANE	0.00	191	0	0.00	0.0
J	C29 17a,21b-25-NORHOPANE	0.00	191	0	0.00	0.0
19	C29 17a,21b-30-NORHOPANE	0.00	191	0	0.00	0.0
20	C29 18a-NORNEOHOPANE (29Ts)	0.00	191	0	0.00	0.0
F	C30 DIAHOPANE	0.00	191	0	0.00	0.0
21	C29 17b,21a-30-NORMORETANE	0.00	191	0	0.00	0.0
22	C30 18a-OLEANANE	55.36	191	2688	1.91	56.5
23	C30 17a,21b-HOPANE	55.63	191	96	0.07	2.0
24	C30 17b,21a-MORETANE	56.45	191	75	0.05	1.6
27	C31 17a,21b-HOMOHOPANE (22S)	57.64	191	658	0.47	13.8
28	C31 17a,21b-HOMOHOPANE(22R)	0.00	191	0	0.00	0.0
G	C30 GAMMACERANE	0.00	191	0	0.00	0.0
30	C32 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
31	C32 17a,21b-HOMOHOPANE (22R)	0.00	191	0	0.00	0.0
34	C33 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
35	C33 17a,21b-HOMOHOPANE (22R)	0.00	191	0	0.00	0.0
36	C34 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
37	C34 17a,21b-HOMOHOPANE (22R)	0.00	191	0	0.00	0.0
38	C35 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
39	C35 17a,21b-HOMOHOPANE (22R)	0.00	191	0	0.00	0.0

STERANE AND TRITERPANE BIOMARKERS Project: ATHOS I Oil Spill Lab Sample ID: C45256 Sample Descriptor: DBAP-091204 Analysis Date: 12/17/2004

No.	COMPOUND NAME	RT	ION	AREA	CONC	%
	STERANES				(ng/g)	
Α	C21 DIAPREGNANE	0.00	217	0	0.00	0.0
1	C21 PREGNANE	0.00	217	0	0.00	0.0
В	C22 DIAHOMOPREGNANE	0.00	217	0	0.00	0.0
2	C22 HOMOPREGNANE	0.00	217	0	0.00	0.0
3	C27 13b,17a DIASTERANE (20S)	0.00	217	0	0.00	0.0
4	C27 13b,17a DIASTERANE (20R)	0.00	217	0	0.00	0.0
8	C27 13a,17b DIASTERANE (20S)	0.00	217	0	0.00	0.0
9	C27 13a,17b DIASTERANE (20R)	0.00	217	0	0.00	0.0
10	C28 13b,17a DIASTERANE (20S) (24R/24S ?)	0.00	217	0	0.00	0.0
11	C28 13b,17a DIASTERANE (20S) (24R/24S ?)	0.00	217	0	0.00	0.0
14+15	C28 13b,17a DIASTERANE (20R) (24R/24S ?)	0.00	217	0	0.00	0.0
16	C28 13a,17b DIASTERANE (20S)	0.00	217	0	0.00	0.0
17	C27 5a,14a,17a STERANE (20S)	0.00	217	0	0.00	0.0
18	C27 5a,14b,17b ISOSTERANE (20R)	0.00	217	0	0.00	0.0
	+ C29 13b,17a DIASTERANE (20S)					
19	C27 5a,14b,17b ISOSTERANE (20S)	0.00	217	0	0.00	0.0
20	C28 13a,17b DIASTERANE (20R)	0.00	217	0	0.00	0.0
22	C27 5a,14a,17a STERANE (20R)	0.00	217	0	0.00	0.0
23	C29 13b,17a DIASTERANE (20R)	0.00	217	0	0.00	0.0
24	C29 13a,17b DIASTERANE (20S)	0.00	217	0	0.00	0.0
26	C28 5a,14a,17a STERANE (20S)	0.00	217	0	0.00	0.0
27	C29 13a,17b DIASTERANE (20R)	0.00	217	0	0.00	0.0
28	C28 5a,14b,17b ISOSTERANE (20R)	0.00	217	0	0.00	0.0
29	C28 5a,14b,17b ISOSTERANE (20S)	0.00	217	0	0.00	0.0
31	C28 5a,14a,17a STERANE (20R)	0.00	217	0	0.00	0.0
33	C29 5a,14a,17a STERANE (20S)	0.00	217	0	0.00	0.0
34	C29 5a,14b,17b ISOSTERANE (20R)	0.00	217	0	0.00	0.0
35	C29 5a,14b,17b ISOSTERANE (20S)	53.03	217	37	0.05	8.7
37	C29 5a,14a,17a STERANE (20R)	53.69	217	231	0.28	54.4
38	C30 5a,14a,17a STERANE (20S)	53.88	217	72	0.09	16.9
39	C30 5a,14b,17b ISOSTERANE (20R)	54.33	217	85	0.10	20.0
40	C30 5a,14b,17b ISOSTERANE (20S)	0.00	217	0	0.00	0.0
41	C30 5a,14a,17a STERANE (20R)	0.00	217	0	0.00	0.0

Project: ATHOS I Oil Spill Lab Sample ID: C45257 Sample Descriptor: DBHC-091204 Analysis Date: 12/17/2004

No.	COMPOUND NAME	RT	ION	AREA	CONC	%
	TERPANES				(ng/g)	
н	C19 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
А	C20 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
в	C21 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
С	C22 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
D	C23 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
E	C24 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
1	C25 TRICYCLIC TERPANE	0.00	191	0	0.00	0.0
4	C24 TETRACYCLIC TERPANE	0.00	191	0	0.00	0.0
5	C26 TRICYCLIC TERPANE (22R)	0.00	191	0	0.00	0.0
б	C26 TRICYCLIC TERPANE (22S)	0.00	191	0	0.00	0.0
9	C28 TRICYCLIC TERPANE (22R)	0.00	191	0	0.00	0.0
10	C28 TRICYCLIC TERPANE (228)	0.00	191	0	0.00	0.0
11	C29 TRICYCLIC TERPANE (22R)	0.00	191	0	0.00	0.0
12	C29 TRICYCLIC TERPANE (228)	0.00	191	0	0.00	0.0
13	C27 18a-22,29,30-TRISNORNEOHOPANE (Ts)	50.15	191	840	0.55	32.8
I	C27 PENTACYCLIC TERPANE (Y)	0.00	191	0	0.00	0.0
14	C27 17a-22,29,30-TRISNORHOPANE (Tm)	51.04	191	815	0.53	31.8
15	C30 TRICYCLIC TERPANE (22R)	0.00	191	0	0.00	0.0
16	C30 TRICYCLIC TERPANE (228)	0.00	191	0	0.00	0.0
17	C28 17a,21b-28,30-BISNORHOPANE	0.00	191	0	0.00	0.0
J	C29 17a,21b-25-NORHOPANE	0.00	191	0	0.00	0.0
19	C29 17a,21b-30-NORHOPANE	0.00	191	0	0.00	0.0
20	C29 18a-NORNEOHOPANE (29Ts)	0.00	191	0	0.00	0.0
F	C30 DIAHOPANE	0.00	191	0	0.00	0.0
21	C29 17b,21a-30-NORMORETANE	0.00	191	0	0.00	0.0
22	C30 18a-OLEANANE	55.36	191	904	0.59	35.3
23	C30 17a,21b-HOPANE	0.00	191	0	0.00	0.0
24	C30 17b,21a-MORETANE	0.00	191	0	0.00	0.0
27	C31 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
28	C31 17a,21b-HOMOHOPANE(22R)	0.00	191	0	0.00	0.0
G	C30 GAMMACERANE	0.00	191	0	0.00	0.0
30	C32 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
31	C32 1/a,21b-HOMOHOPANE (22R)	0.00	191	0	0.00	0.0
34	C33 1/a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
35	C33 1/a,21b-HOMOHOPANE (22R)	0.00	191	0	0.00	0.0
36	C34 1/a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
37	C34 17a,21b-HOMOHOPANE (22R)	0.00	191	0	0.00	0.0
38	C35 17a,21b-HOMOHOPANE (22S)	0.00	191	0	0.00	0.0
- 29	C55 17a,210-HOMOHOPANE (22K)	0.00	191	v	0.00	0.0

STERANE AND TRITERPANE BIOMARKERS Project: ATHOS I Oil Spill

Analysis Date: 12/17/2004

No.	COMPOUND NAME	RT	ION	AREA	CONC	%
	STERANES				(ng/g)	
А	C21 DIAPREGNANE	0.00	217	0	0.00	n.d.
1	C21 PREGNANE	0.00	217	0	0.00	n.d.
в	C22 DIAHOMOPREGNANE	0.00	217	0	0.00	n.d.
2	C22 HOMOPREGNANE	0.00	217	0	0.00	n.d.
3	C27 13b,17a DIASTERANE (20S)	0.00	217	0	0.00	n.d.
4	C27 13b,17a DIASTERANE (20R)	0.00	217	0	0.00	n.d.
8	C27 13a,17b DIASTERANE (20S)	0.00	217	0	0.00	n.d.
9	C27 13a,17b DIASTERANE (20R)	0.00	217	0	0.00	n.d.
10	C28 13b,17a DIASTERANE (20S) (24R/24S ?)	0.00	217	0	0.00	n.d.
11	C28 13b,17a DIASTERANE (20S) (24R/24S ?)	0.00	217	0	0.00	n.d.
14+15	C28 13b,17a DIASTERANE (20R) (24R/24S ?)	0.00	217	0	0.00	n.d.
16	C28 13a,17b DIASTERANE (20S)	0.00	217	0	0.00	n.d.
17	C27 5a,14a,17a STERANE (20S)	0.00	217	0	0.00	n.d.
18	C27 5a,14b,17b ISOSTERANE (20R)	0.00	217	0	0.00	n.d.
	+ C29 13b,17a DIASTERANE (20S)					
19	C27 5a,14b,17b ISOSTERANE (20S)	0.00	217	0	0.00	n.d.
20	C28 13a,17b DIASTERANE (20R)	0.00	217	0	0.00	n.d.
22	C27 5a,14a,17a STERANE (20R)	0.00	217	0	0.00	n.d.
23	C29 13b,17a DIASTERANE (20R)	0.00	217	0	0.00	n.d.
24	C29 13a,17b DIASTERANE (20S)	0.00	217	0	0.00	n.d.
26	C28 5a,14a,17a STERANE (20S)	0.00	217	0	0.00	n.d.
27	C29 13a,17b DIASTERANE (20R)	0.00	217	0	0.00	n.d.
28	C28 5a,14b,17b ISOSTERANE (20R)	0.00	217	0	0.00	n.d.
29	C28 5a,14b,17b ISOSTERANE (20S)	0.00	217	0	0.00	n.d.
31	C28 5a,14a,17a STERANE (20R)	0.00	217	0	0.00	n.d.
33	C29 5a,14a,17a STERANE (20S)	0.00	217	0	0.00	n.d.
34	C29 5a,14b,17b ISOSTERANE (20R)	0.00	217	0	0.00	n.d.
35	C29 5a,14b,17b ISOSTERANE (20S)	0.00	217	0	0.00	n.d.
37	C29 5a,14a,17a STERANE (20R)	0.00	217	0	0.00	n.d.
38	C30 5a,14a,17a STERANE (20S)	0.00	217	0	0.00	n.d.
39	C30 5a,14b,17b ISOSTERANE (20R)	0.00	217	0	0.00	n.d.
40	C30 5a,14b,17b ISOSTERANE (20S)	0.00	217	0	0.00	n.d.
41	C30 5a,14a,17a STERANE (20R)	0.00	217	0	0.00	n.d.

Project: ATHOS I Oil Spill Lab Sample ID: C45257 Sample Descriptor: DBHC-091204 Analysis Date: 12/17/2004

F.5. NOAA Mussel Watch samples collected at Hope Creek (DBHC), Arnolds Point (DBAP), and Ben Davis Point Shoal (DBBD).

Sample Name Client Name Matrix Species Collection Date Received Date Extraction Date Extraction Batch Date Acquired Method Sample Wet Weight (g) Sample Dry Weight (g) % Moisture % Dry % Lipid (wet) % Lipid (dry)	NST1363.D DBAP Tissue Bivalves 01/02/05 01/05/05 ENV 1189 07/14/05 PAH-2002 12.2 0.7 94 6 0.6 10.6				NST1365.D DBBD Tissue Bivalves 01/02/05 01/05/05 06/15/05 ENV 1189 07/14/05 PAH-2002 12.2 1.6 87 13 1.4 11.6				NST1366.D DBHC Tissue Bivalves 01/02/05 01/05/05 06/15/05 ENV 1189 07/14/05 PAH-2002 12.6 0.6 95 5 0.6 13.0			
Target Compounds	Su Corrected Conc. (ng/dry g)	Q1	Q2	Q3	Su Corrected Conc. (ng/dry g)	Q1	Q2	Q3	Su Corrected Conc. (ng/dry g)	Q1	Q2	Q3
Decalin	0.0	U			0.0	U			0.0	U		
C1-Decalin	0.0	Ŭ			0.0	Ŭ			0.0	Ŭ		
C2-Decalin	0.0	U			0.0	U			0.0	U		
C3-Decalin	0.0	U			0.0	U			0.0	U		
C4-Decalin	0.0	U			0.0	U			0.0	U		
Naphthalene	31.3				44.7				37.5			
C1-Naphthalenes	52.3				60.1				56.7			
C2-Naphthalenes	42.6				36.6				41.8			
C3-Naphthalenes	37.8				28.2				38.9			
C4-Naphthalenes	19.9	J			14.7				23.3	J		
Benzothiophene	0.0	U			0.0	U			0.0	U		
C1-Benzothiophene	0.0	U			0.0	U			0.0	U		
C2-Benzothiophene	0.0	U			0.0	U			0.0	U		
C3-Benzothiophene	0.0	U			0.0	U			0.0	U		
Biphenyl	30.2				18.8				40.6			
Acenaphthylene	13.8				8.1				14.4			
Acenaphthene	6.7				5.9				7.5			
Dibenzoturan	17.9				10.3				22.6			
	9.6				6.9				11.9			
C1-Fluorenes	11.9				0.7 12.4				15.0			
	20.2				13.4				23.9			
Anthracene	0.0 10.6	0			0.0	0			17.6	0		
Phenanthrene	10.0				7.0 12 A				26.0			
C1-Phenanthrenes/Anthracenes	26.3				12.4				30.7			
C2-Phenanthrenes/Anthracenes	36.2				17.0				42.7			
C3-Phenanthrenes/Anthracenes	54.4				20.8				53.5			
C4-Phenanthrenes/Anthracenes	35.9				13.0				45.6			
Dibenzothiophene	2.4	J			1.4	J			4.0	J		
C1-Dibenzothiophenes	14.8				5.4				17.2			
C2-Dibenzothiophenes	26.3				11.5				37.9			
C3-Dibenzothiophenes	42.6				14.0				47.4			
Fluoranthene	17.9	J			10.4	J			23.7	J		
Pyrene	50.2				17.8				60.6			
C1-Fluoranthenes/Pyrenes	28.5				8.5	J			31.1			
C2-Fluoranthenes/Pyrenes	18.9	J			5.8	J			20.7	J		
C3-Fluoranthenes/Pyrenes	0.0	U			0.0	U			15.1	J		
Naphthobenzothiophene	6.9	J			0.0	U			5.9	J		
C1-Naphthobenzothiophene	9.8				0.0	U			10.2			

C2-Naphthobenzothiophene	8.7		0.0	U	12.7		
C3-Naphthobenzothiophene	0.0	U	0.0	U	6.5	J	
Benz(a)anthracene	13.3		3.4	J	10.0	J	
Chrysene	29		10.5		29		
C1-Chrysenes	21.8		4.7	J	15.9	J	
C2-Chrysenes	13.2	J	4.6	J	12.5	J	
C3-Chrysenes	8.0	J	0.0	U	10.3	J	
C4-Chrysenes	0.0	U	0.0	U	0.0	U	
Benzo(b)fluoranthene	34.3		6.2		29.4		
Benzo(k)fluoranthene	8.4		1.2	J	6.5	J	
Benzo(e)pyrene	34.9		7.0		28.1		
Benzo(a)pyrene	8.0		0.6	J	5.2	J	
Perylene	48.1		5.5	J	39.4		
Indeno(1,2,3-c,d)pyrene	7.0	J	0.8	J	4.3	J	
Dibenzo(a,h)anthracene	2.0	J	0.0	U	0.0	U	
C1-Dibenzo(a,h)anthracene	0.0	U	0.0	U	0.0	U	
C2-Dibenzo(a,h)anthracene	0.0	U	0.0	U	0.0	U	
C3-Dibenzo(a,h)anthracene	0.0	U	0.0	U	0.0	U	
Benzo(g,h,i)perylene	11.2		1.4	J	7.0	J	
Total PAHs	951		459		1041		
Total PAHs Individual Isomers	951		459		1041		
Total PAHs Individual Isomers 2-Methylnaphthalene	951 50.8		459 59.8		1041 55.8		
Total PAHs Individual Isomers 2-Methylnaphthalene 1-Methylnaphthalene	951 50.8 32.7		459 59.8 36.0		1041 55.8 34.7		
Total PAHs Individual Isomers 2-Methylnaphthalene 1-Methylnaphthalene 2,6-Dimethylnaphthalene	951 50.8 32.7 21.0		459 59.8 36.0 18.1		1041 55.8 34.7 21.8		
Total PAHs Individual Isomers 2-Methylnaphthalene 1-Methylnaphthalene 2,6-Dimethylnaphthalene 1,6,7-Trimethylnaphthalene	951 50.8 32.7 21.0 3.8		459 59.8 36.0 18.1 2.4		1041 55.8 34.7 21.8 4.4		
Total PAHs Individual Isomers 2-Methylnaphthalene 1-Methylnaphthalene 2,6-Dimethylnaphthalene 1,6,7-Trimethylnaphthalene 1-Methylphenanthrene	951 50.8 32.7 21.0 3.8 3.4	J	459 59.8 36.0 18.1 2.4 2.6		1041 55.8 34.7 21.8 4.4 7.4		
Total PAHs Individual Isomers 2-Methylnaphthalene 1-Methylnaphthalene 2,6-Dimethylnaphthalene 1,6,7-Trimethylnaphthalene 1-Methylphenanthrene	951 50.8 32.7 21.0 3.8 3.4 Su Recovery	J	459 59.8 36.0 18.1 2.4 2.6 Su Recovery		1041 55.8 34.7 21.8 4.4 7.4 Su Recovery		
Total PAHs Individual Isomers 2-Methylnaphthalene 1-Methylnaphthalene 2,6-Dimethylnaphthalene 1,6,7-Trimethylnaphthalene 1-Methylphenanthrene Surrogate (Su)	951 50.8 32.7 21.0 3.8 3.4 Su Recovery (%)	J	459 59.8 36.0 18.1 2.4 2.6 Su Recovery (%)		1041 55.8 34.7 21.8 4.4 7.4 Su Recovery (%)		
Total PAHs Individual Isomers 2-Methylnaphthalene 1-Methylnaphthalene 2,6-Dimethylnaphthalene 1,6,7-Trimethylnaphthalene 1-Methylphenanthrene Surrogate (Su) Naphthalene-d8	951 50.8 32.7 21.0 3.8 3.4 Su Recovery (%) 55	J	459 59.8 36.0 18.1 2.4 2.6 Su Recovery (%) 62		1041 55.8 34.7 21.8 4.4 7.4 Su Recovery (%) 53		
Total PAHs Individual Isomers 2-Methylnaphthalene 1-Methylnaphthalene 2,6-Dimethylnaphthalene 1,6,7-Trimethylnaphthalene 1-Methylphenanthrene Surrogate (Su) Naphthalene-d8 Acenaphthene-d10	951 50.8 32.7 21.0 3.8 3.4 Su Recovery (%) 55 74	J	459 59.8 36.0 18.1 2.4 2.6 Su Recovery (%) 62 77		1041 55.8 34.7 21.8 4.4 7.4 Su Recovery (%) 53 75		
Total PAHs Individual Isomers 2-Methylnaphthalene 1-Methylnaphthalene 2,6-Dimethylnaphthalene 1,6,7-Trimethylnaphthalene 1-Methylphenanthrene Surrogate (Su) Naphthalene-d8 Acenaphthene-d10 Phenanthrene-d10	951 50.8 32.7 21.0 3.8 3.4 Su Recovery (%) 55 74 82	J	459 59.8 36.0 18.1 2.4 2.6 Su Recovery (%) 62 77 86		1041 55.8 34.7 21.8 4.4 7.4 Su Recovery (%) 53 75 78		
Total PAHs Individual Isomers 2-Methylnaphthalene 1-Methylnaphthalene 2,6-Dimethylnaphthalene 1,6,7-Trimethylnaphthalene 1-Methylphenanthrene Surrogate (Su) Naphthalene-d8 Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12	951 50.8 32.7 21.0 3.8 3.4 Su Recovery (%) 55 74 82 59	J	459 59.8 36.0 18.1 2.4 2.6 Su Recovery (%) 62 77 86 66		1041 55.8 34.7 21.8 4.4 7.4 Su Recovery (%) 53 75 78 70		

Qualifiers (Q): J=Below the MDL, U=Not detected, B=In procedural blank > 3x MDL, I=Interference, D=Diluted value, NA=Not Applicable,*=Outside QA limits, refer to narrative

-

APPENDIX G

Fish Tissue Analytical Results

- G.1. Fish tissue sample log and summary PAH results.
- G.2. Fish tissue PAH data.
- G.3. Striped Bass tissue data.

G.1. Fish tissue sample log and summary PAH results.

Sample ID	Species	Date	Latitude	Longitude	Whole Body Wt. (g)	Fillet Wt (g)	Carcass Wt (g)	Tissue	Total PAHs (ng/g wet)	Comments
MHC-	noroh		20 4227	75 4595	00.06	16 55	72 51	Fillet	23.5	
PERCH1	perch	9-Dec-04	39.4227	-75.4565	90.00	10.55	73.51	Carcass	45.7	
MHC-	norch		20 4227	75 4595	110 59	22.45	97 12	Fillet	20.2	
PERCH2	perch	9-Dec-04	39.4221	-75.4565	119.50	32.45	07.13	Carcass	73.2	
MHC-	nerch	9-Dec-04	30 1227	-75 4585	155.86	28.86	181 72	Fillet	17.0	
PERCH3	percit	9-Dec-04	39.4221	-73.4303	155.00	20.00	101.72	Carcass	36.5	
FTP-C-01	catfish	16-Dec-04						Whole body	88.9	North of Tacony Palmyra bridge
FTP-C-02	catfish	16-Dec-04						Whole body	324.5	North of Tacony Palmyra bridge
FTP-C-03	catfish	16-Dec-04						Whole body	185.6	North of Tacony Palmyra bridge
TI-3-C-01	catfish	16-Dec-04						Whole body	439.3	South of Tinicum Island
TI-3-C-02	catfish	16-Dec-04						Whole body	273.8	South of Tinicum Island
TI-3-C-03	catfish	16-Dec-04						Whole body	464.3	South of Tinicum Island
	gizzard	16 Dec 04						Fillet	101.7	Marcus Hook
1 1011-60-01	shad	10-Dec-04						Carcass	233.7	INIAICUS LIOOK
FMH-GC-02	gizzard	16-Dec-04						Fillet	82.8	Marcus Hook
1 1011 00 02	shad	10 200 04						Carcass	254.4	
FMH-C-01	catfish	16-Dec-04						Whole body	381.7	Marcus Hook
MH-GC-03	gizzard	16-Dec-04						Fillet	117.5	Marcus Hook
	shad	10 200 01						Carcass	362.5	
MH-C-02	catfish	16-Dec-04						Whole body	247.7	Marcus Hook
MH-C-03	catfish	16-Dec-04						Whole body	353.5	Marcus Hook
FCR-C-01	catfish	16-Dec-04						Whole body	139.1	Christina River
FCR-P-01	white	16-Dec-04						Fillet	89.4	Christina River
	perch	10 200 01						Carcass	233.1	
FCR-P-02	white	16-Dec-04						Fillet	72.1	Christina River
	perch	10 200 0 1						Carcass	270.8	
FCR-P-03	white	16-Dec-04						Fillet	209.5	Christina River
	perch							Carcass	1143.6	
FCR-C-02	catfish	16-Dec-04						Whole body	176.7	Christina River

Sample ID	Species	Date	Latitude	Longitude	Whole Body Wt. (g)	Fillet Wt (g)	Carcass Wt (g)	Tissue	Total PAHs (ng/g wet)	Comments
FCR-C-03	catfish	16-Dec-04						Whole body	235.4	Christina River
FPP-C-01	catfish	16-Dec-04						Whole body	374.8	North of Pea Patch Island
FPP-C-02	catfish	16-Dec-04						Whole body	129.6	North of Pea Patch Island
FPP-C-03	catfish	16-Dec-04						Whole body	140.9	North of Pea Patch Island
FPP-P-01	white	16-Dec-04						Fillet	124.6	North of Pea Patch
	perch	10 200 04						Carcass	205.6	Island
FPP-P-02	white	16-Dec-04						Fillet	238.6	North of Pea Patch
	perch	10 200 01						Carcass	755.0	Island
FPP-P-03	white	16-Dec-04						Fillet	134.3	North of Pea Patch
	perch	10 200 0 1						Carcass	827.0	Island
								Fillet	10.4	
NJDB-01	striped	3-May-05	39.0300	74.5658	2448.59	153.09	2295.50	Carcass	14.0	
	Dass							Carcass (dup)	11.5	
NJDB-02	striped	3-May-05	39 0248	74 5717	2538 99	121 19	2417 80	Fillet	10.2	
	bass	o may co	00.02.10		2000.00		2	Carcass	27.8	
NJDB-03	striped	10-May-	39 0785	74 5511	3311 63	190 23	3121 40	Fillet	11.1	
	bass	05			0011100	100120	0121110	Carcass	26.2	
NJDB-04	striped	10-May-	39.0793	74,5531	2442.97	184.97	2258.00	Fillet	7.2	
	bass	05			0 .			Carcass	53.2	
NJDB-05	striped	11-May-	39.0964	74,5809	5039.86	309.66	4730.20	Fillet	13.5	
	bass	05						Carcass	43.4	
	strined							Fillet	47.8	Linstream of Tacomy
UPTPBFT-A	bass	6-Jul-05			1454.22	171.48	1282.74	Fillet (dup)	15.7	Palmvra Bridge
								Carcass	21.9	
UPTPBFT-B	striped	6-Jul-05			1749 84	224 7	1525 14	Fillet	21.1	Upstream of Tacomy
	bass				11 1010 1		1020111	Carcass	41.7	Palmyra Bridge
UPTPBFT-C	striped	6-Jul-05			1521 46	167 19	1354 27	Fillet	130.6	Upstream of Tacomy
	bass				1021110		1001121	Carcass	291.5	Palmyra Bridge
UPTPBFT-D	striped	6-Jul-05			1467 00	166.95	1300.05	Fillet	13.7	Upstream of Tacomy
	bass	000.00			. 107.00	.00.00	.000.00	Carcass	60.3	Palmyra Bridge

Sample ID	Species	Date	Latitude	Longitude	Whole Body Wt. (g)	Fillet Wt (g)	Carcass Wt (g)	Tissue	Total PAHs (ng/g wet)	Comments
UPTPBFT-E	striped	6-Jul-05			1742.31	268.26	1474.05	Fillet	16.6	Upstream of Tacomy
	bass					200.20		Carcass	62.3	Palmyra Bridge
Fich # 1	striped	27-May-			2107.95	100 11	1095 11	Fillet	50.8	Lower end of Tinicum
FISH# 1	bass	05			2107.05	122.44	1903.41	Carcass	60.1	Island
Fich # 2	striped	27-May-			1/75 60	1/1 81	1333.88	Fillet	9.7	Lower end of Tinicum
1 1511 # 2	bass	05			1475.05	141.01	1555.00	Carcass	70.4	Island
Fich # 2	striped	27-May-			1222 /0	102 54	1100.96	Fillet	66.7	Lower end of Tinicum
1 1511 # 5	bass	05			1255.40	123.34	1109.00	Carcass	89.3	Island
Fich # 1	striped	31-May-			1522.05	157 /9	1275 57	Fillet	98.4	Lower end of Tinicum
F1511 # 4	bass	05			1555.05	157.40	1375.57	Carcass	26.8	Island
Fich # 5	striped	31-May-			1440.97	164.02	1275.05	Fillet	46.2	Lower end of Tinicum
FISH # 3	bass	05			1440.07	104.92	1210.90	Carcass	25.6	Island

G.2. Fish tissue PAH data.

Client Sample ID	MHC-PERCH1 Fillet	MHC-PERCH1 Carcass	
Sample Descriptor	Fillet	Carcass	
Original Sample			
GERG ID	C45258	C45259	
Sample Type	SAMP	SAMP	
SDG	EC170	EC170	
Dry Weight	1.34	1.84	
Wet Weight	6.28	6.58	
Sample Size Units	Grams	Grams	
Matrix	Tissue	Tissue	
% solid	21.4	28.0	
% Lipid	4.2	10.8	
Reporting Units	ng/g	ng/g	
Calculation Basis (dry/wet)	Wet	Wet	
QC Batch ID	T1463	T1463	
Method	GCMS	GCMS	
Collection Date	12/09/04	12/09/04	
Extraction Date	12/11/04	12/11/04	
Analysis Date	12/14/04	12/14/04	
	12/15/04	12/15/04	
Surrogate Compounds	%Recovery	%Recovery	
d8-Naphthalene	73.7	75.5	
d10-Acenaphthene	86.4	104.5	
d10-Phenanthrene	106.7	108.2	
d12-Chrysene	84.8	99.0	
d12-Perylene	71.7	80.4	
Total PAHs	Concentration	Concentration	
Total PAHs with Perylene	23.5	45.7	
Total PAHs without Perylene	23.5	45.7	
Total NS&T PAHs	7.1	18.6	

ND Not Detected

J <MDL

NA Not Applicable Q Results Outside QC I Interference

B Blank Contamination >3xMDL

Client Sample ID	MHC-PERCH1 Fillet			MHC-PERCH1 Carcass		
Sample Descriptor	Fillet			Carcass		
Original Sample						
GERG ID	C45258			C45259		
Sample Type	SAMP			SAMP		
SDG	EC170			EC170		
DAH Compounds	Concentration	MDI		Concentration	MDI	
PAH Compounds		MDL 0.95			MDL 0.91	
C1 Naphthalanas	1.31	0.85	т	1.78	0.81	
C2 Naphthalenes	0.46	1.40	J	1.75	0.81	
C3 Naphthalenes	0.46	0.84	J	1.41	0.81	
C4 Naphthalenes	1.19	1.20	J	1.45	1.22	
Biphonyl	0.42	1.28	J	0.50	0.67	т
Acenaphthylene	0.42	0.70	J	0.50	0.07	J
Acenaphthene	0.88	0.45	т	5.60	0.43	т
Fluorene	0.30	0.45	J	0.37	0.43	J
C1 Elucrenes	0.39	0.00	J	1.04	0.05	
C2 Elucrones	1.05	1.32		5.85	1.27	
C3 Elucrenes	5.45	1.32		5.93	1.27	
Dhananthrana	5.47	1.52	т	4.92	1.27	
Anthragono	0.48	0.62	J	0.90	0.59	
C1 Departhraps/Anthracenes	2.12	0.52		9.73	0.50	
C2 Phenanthrenes/Anthracenes	0.81	0.55		2.53	0.53	
C2 Phononthronos/Anthroponos	0.29	0.55	J	0.82	0.53	
C4 Phenanthrenes/Anthracenes	0.47	0.55	J	1.81	0.53	
Dibenzothiophene	0.27	0.55	J	0.66	0.53	
C1 Dibenzothiophenes	0.08	0.23	J	0.25	0.22	Ŧ
C2 Dibenzothiophenes	0.65	0.45	ND	0.40	0.43	J
C2 Dibenzothiophenes	0.00	0.45	ND	0.00	0.43	ND
Elucranthene	0.00	0.45	ND	0.00	0.43	ND
Prinona	0.21	0.56	J	0.51	0.54	J
C1 Elucranthanas/Duranas	0.20	0.61	J	0.38	0.58	J
C2 Elucranthenes/Pyrenes	0.00	1.17	ND	0.00	1.12	ND
C2 Elucranthenes/Europes	0.00	1.17	ND	0.00	1.12	ND
Co-Fluoranthenes/Fyrenes	0.00	1.17	ND	0.00	1.12	ND
Chrysene	0.10	0.58	J	0.27	0.56	J
C1 Chrysenes	0.06	0.46	J	0.15	0.44	J
C2 Chrysenes	0.00	0.92	ND	0.21	0.88	J
C2-Chrysenes	0.00	0.92	ND	0.26	0.88	J
C4 Chrysenes	0.00	0.92	ND	0.00	0.88	ND
Renzo(b)fluoranthene	0.00	0.92	ND	0.00	0.88	ND
Benzo(k)fluoranthene	0.04	1.06	J	0.07	1.01	J
Benzo(a)pyrana	0.09	0.72	J	0.32	0.69	J
Benzo(a)pyrene	0.02	0.57	J	0.04	0.55	J
Pervlene	0.00	1.14	ND	0.11	1.09	J
Indeno(1,2,3-c,d)pyrene	0.00	0.26	ND	0.00	0.25	ND
Dibenz(a h)anthracene	0.00	1.08	ND	0.00	1.03	ND
Benzo(g h i)pervlene	0.00	0.57	ND	0.00	0.54	ND
Bento(E,n,r)per yrene	0.00	0.89	ND	0.00	0.85	ND
2-Methylnaphthalene	0.63	0.65	J	1.05	0.62	
1-Methylnaphthalene	0.38	0.81	J	0.68	0.77	J
2,6-Dimethylnaphthalene	0.15	0.42	J	0.35	0.40	J
1,6,7-Trimethylnaphthalene	0.18	0.64	J	0.29	0.61	J
1-Methylphenanthrene	0.30	0.28		0.78	0.26	

- J <MDL NA Not Applicable Q Results Outside QC I Interference

B Blank Contamination >3xMDL

Client Sample ID	MHC-PERCH2 Fillet	MHC-PERCH2 Carcass	
Sample Descriptor	Fillet	Carcass	
Original Sample			
GERG ID	C45260	C45261	
Sample Type	SAMP	SAMP	
SDG	EC170	EC170	
Dry Weight	1.23	1.59	
Wet Weight	5.81	5.21	
Sample Size Units	Grams	Grams	
Matrix	Tissue	Tissue	
% solid	21.2	30.5	
% Lipid	5.1	26.1	
Reporting Units	ng/g	ng/g	
Calculation Basis (dry/wet)	Wet	Wet	
QC Batch ID	T1463	T1463	
Method	GCMS	GCMS	
Collection Date	12/09/04	12/09/04	
Extraction Date	12/11/04	12/11/04	
Analysis Date	12/14/04	12/14/04	
	12/15/04	12/15/04	
Surrogate Compounds	%Recovery	%Recovery	
d8-Naphthalene	59.5	91.6	
d10-Acenaphthene	63.0	111.1	
d10-Phenanthrene	74.4	106.8	
d12-Chrysene	54.7	95.6	
d12-Perylene	46.6	77.2	
Total PAHs	Concentration	Concentration	
Total PAHs with Perylene	20.2	73.2	
Total PAHs without Perylene	20.2	73.2	
Total NS&T PAHs	8.1	32.1	

- ND Not Detected
- J <MDL NA Not Applicable Q Results Outside QC
- I Interference
- B Blank Contamination >3xMDL

Client Sample ID	MHC-PERCH2 Fillet			MHC-PERCH2 Carcass		
Sample Descriptor	Fillet			Carcass		
Original Sample						
GERG ID	C45260			C45261		
Sample Type	SAMP			SAMP		
SDG	EC170			EC170		
DAH Compounds	Concentration	MDI		Concentration	MDI	
Nonhthalana				2.07	1.02	
C1 Nephthalanas	1.37	0.92	т	5.07	1.02	
C2 Naphthalenes	0.08	1.58	J	5:50	1.70	
C3 Naphthalenes	0.98	0.91	т	4.74	1.02	
C4 Naphthalenes	1.34	1.30	J	5.04 2.52	1.54	
Biphenyl	1.20	1.38	J	2.55	1.54	
A cenaphthylene	0.32	0.70	J	1.49	0.64	
Acenaphthana	0.49	0.48	т	3.04	0.54	
Fluorene	0.41	0.48	J	1.50	0.54	
C1 Elucranes	0.01	0.72	J	2.04	0.80	
C2 Eluorenes	1.39	1.45	J	3.98	1.00	
C3 Elucrenes	1.15	1.45	J	4.20	1.00	
Dhananthrana	3.49	1.43		5.16	1.00	
Anthracene	0.69	0.67		2.33	0.75	
C1 Departhrapes/Anthracenes	1.22	0.57	т	9.48	0.05	
C2 Departhrenes/Anthracenes	0.48	0.60	J	5.00	0.67	
C2 Phononthronos/Anthronos	0.37	0.60	J	1.01	0.67	
C4 Departhrenes/Anthracenes	0.76	0.60	ND	5.42	0.67	
Dibenzothionhene	0.00	0.60	ND	0.98	0.67	
C1 Dibenzothiophenes	0.13	0.25	J	0.36	0.27	
C2 Dibenzothiophenes	0.43	0.49	J	3.29	0.55	ND
C3 Dibenzothiophenes	0.16	0.49	J	0.00	0.55	ND
Eluoranthene	0.00	0.49	ND	0.00	0.55	ND
Primono	0.33	0.61	J	0.62	0.68	J
C1 Eluoranthenes/Duranes	0.30	0.66	J	0.44	0.73	J
C2 Elucranthenes/Pyrenes	0.00	1.27	ND	0.00	1.42	ND
C3 Eluoranthenes/Pyrenes	0.00	1.27	ND	0.00	1.42	ND
Benzo(a)anthracene	0.00	1.27	ND	0.00	1.42	ND
Chrysene	0.13	0.63	J	0.30	0.70	J
C1 Chrysenes	0.12	0.50	J	0.19	0.55	J
C2 Chrysenes	0.00	0.99	ND	0.17	1.11	J
C3 Chrysenes	0.00	0.99	ND	0.41	1.11	J
C4-Chrysenes	0.00	0.99	ND	0.00	1.11	ND
Benzo(b)fluoranthene	0.00	0.99	ND	0.00	1.11	ND
Benzo(k)fluoranthene	0.07	1.15	J	0.05	1.28	J
Benzo(e)nvrene	0.13	0.78	J	0.56	0.87	J
Benzo(a)pyrene	0.07	0.62	J	0.03	0.69	J
Pervlene	0.14	1.23	J	0.22	1.37	J
Indeno(1 2 3-c d)nyrene	0.00	0.29	ND	0.00	0.32	ND
Dibenz(a h)anthracene	0.00	1.17	ND	0.00	1.30	ND
Benzo(g h i)pervlepe	0.00	0.62	ND	0.00	0.69	ND
Benzo(g,n,r)peryrene	0.00	0.97	ND	0.00	1.08	ND
2-Methylnaphthalene	0.93	0.71		3.45	0.79	
1-Methylnaphthalene	0.56	0.87	J	2.11	0.97	
2,6-Dimethylnaphthalene	0.32	0.46	J	1.58	0.51	
1,6,7-Trimethylnaphthalene	0.23	0.69	J	1.05	0.77	
1-Methylphenanthrene	0.20	0.30	J	2.64	0.33	

J <MDL NA Not Applicable Q Results Outside QC I Interference

B Blank Contamination >3xMDL

Client Sample ID	MHC-PERCH3 Fillet	MHC-PERCH3 Carcass	
Sample Descriptor	Fillet	Carcass	
Original Sample			
GERG ID	C45262	C45263	
Sample Type	SAMP	SAMP	
SDG	EC170	EC170	
Dry Weight	1.26	1.95	
Wet Weight	6.13	7.29	
Sample Size Units	Grams	Grams	
Matrix	Tissue	Tissue	
% solid	20.6	26.8	
% Lipid	3.6	12.3	
Reporting Units	ng/g	ng/g	
Calculation Basis (dry/wet)	Wet	Wet	
QC Batch ID	T1463	T1463	
Method	GCMS	GCMS	
Collection Date	12/09/04	12/09/04	
Extraction Date	12/11/04	12/11/04	
Analysis Date	12/14/04	12/14/04	
	12/15/04	12/15/04	
Surrogate Compounds	%Recovery	%Recovery	
d8-Naphthalene	81.6	85.6	
d10-Acenaphthene	89.1	98.0	
d10-Phenanthrene	101.8	103.3	
d12-Chrysene	79.0	89.2	
d12-Perylene	68.7	72.7	
Total PAHs	Concentration	Concentration	
Total PAHs with Perylene	17.0	36.5	
Total PAHs without Perylene	17.0	36.5	
Total NS&T PAHs	5.7	13.5	

- ND Not Detected
- J <MDL NA Not Applicable Q Results Outside QC
- I Interference
- B Blank Contamination >3xMDL

Client Sample ID	MHC-PERCH3 Fillet			MHC-PERCH3 Carcass		
Sample Descriptor	Fillet			Carcass		
Original Sample						
GERG ID	C45262			C45263		
Sample Type	SAMP			SAMP		
SDG	EC170			EC170		
PAH Compounds	Concentration	MDI		Concentration	MDI	
Nanhthalene	1 12	0.87		1.60	0.73	
C1-Naphthalenes	0.96	1.50	т	1.00	1.26	
C2-Naphthalenes	0.55	0.87	J	1.50	0.73	
C3-Naphthalenes	0.82	1.31	J	1.57	1 10	
C4-Naphthalenes	1.23	1.31	J	1.08	1.10	T
Binhenvl	0.35	0.72	J	0.50	0.60	J
Acenaphthylene	0.44	0.72	J	1.71	0.00	3
Acenaphthene	0.28	0.40	J	0.54	0.38	
Fluorene	0.39	0.40	J	0.90	0.50	
C1-Fluorenes	1.32	1.36	J	2.48	1.14	
C2-Fluorenes	1.03	1.30	J	2.48	1.14	
C3-Fluorenes	3.67	1.30	3	5.61	1.14	
Phenanthrene	0.47	0.64	т	0.84	0.53	
Anthracene	1.01	0.04	3	4.76	0.55	
C1-Phenanthrenes/Anthracenes	0.69	0.54		4.70	0.43	
C2-Phenanthrenes/Anthracenes	0.09	0.57	т	0.65	0.48	
C3-Phenanthrenes/Anthracenes	0.27	0.57	J	1.79	0.48	
C4-Phenanthrenes/Anthracenes	0.09	0.57	т	0.00	0.48	ND
Dibenzothionhene	0.22	0.37	J	0.00	0.48	ND
C1-Dibenzothiophenes	0.57	0.23	J	2.20	0.20	
C2-Dibenzothiophenes	0.23	0.47	т	0.00	0.39	ND
C3-Dibenzothiophenes	0.00	0.47	J ND	0.00	0.39	ND
Fluoranthene	0.18	0.47	I	0.32	0.39	I
Pyrene	0.18	0.58	J	0.32	0.49	J
C1-Fluoranthenes/Pyrenes	0.00	1.20	J	0.00	1.01	J
C2-Fluoranthenes/Pyrenes	0.00	1.20	ND	0.00	1.01	ND
C3-Fluoranthenes/Pyrenes	0.00	1.20	ND	0.00	1.01	ND
Benzo(a)anthracene	0.06	0.60	I	0.12	0.50	I
Chrysene	0.08	0.00	J	0.12	0.30	J
C1-Chrysenes	0.07	0.47	J	0.13	0.40	J T
C2-Chrysenes	0.00	0.94	ND	0.13	0.79	J
C3-Chrysenes	0.00	0.94	ND	0.00	0.79	ND
C4-Chrysenes	0.00	0.94	ND	0.00	0.79	ND
Benzo(b)fluoranthene	0.00	1.00	I	0.00	0.79	I
Benzo(k)fluoranthene	0.04	0.74	J	0.07	0.91	J
Benzo(e)pyrene	0.07	0.74	J	0.29	0.02	J T
Benzo(a)pyrene	0.03	1.17	J	0.05	0.49	J
Pervlene	0.00	0.27	ND	0.10	0.96	J
Indeno(1.2.3-c.d)pyrene	0.00	0.27	ND	0.00	0.23	ND
Dibenz(a,h)anthracene	0.00	0.50	ND	0.00	0.95	ND
Benzo(g,h,i)perylene	0.00	0.39	ND ND	0.00	0.49	ND
	5.00	0.72			5	
2-Methylnaphthalene	0.63	0.67	J	1.15	0.56	
1-Methylnaphthalene	0.33	0.83	J	0.75	0.69	
2,6-Dimethylnaphthalene	0.18	0.43	J	0.45	0.36	
1,6,7-Trimethylnaphthalene	0.15	0.65	J	0.46	0.55	J
1-Methylphenanthrene	0.42	0.28		0.96	0.24	

- J <MDL NA Not Applicable Q Results Outside QC I Interference

B Blank Contamination >3xMDL

Client Sample ID Sample Descriptor Original Sample GERG ID Sample Type SDG	FCR-P-01 Fillet	FCR-P-01 Carcass	
	C45355	C45356	
	SAMP F1179	SAMP E1170	
		F1179	
Dry Weight	1.19	3.31	
Wet Weight	5.37	13.28	
Sample Size Units	Grams	Grams	
Matrix	Tissue	Tissue	
% solid	22.2	24.9	
% Lipid	ng/g	ng/g	
Reporting Units	Wet	Wet	
Calculation Basis (dry/wet)			
QC Batch ID	T1466	T1466	
Method	GCMS	GCMS	
Collection Date	12/16/04	12/16/04	
Receive Date	12/18/04	12/18/04	
Analysis Date	01/10/05	01/10/05	
	01/15/05	01/15/05	
Surrogate Compounds	%Recovery	%Recovery	
d8-Naphthalene	57.4	86.4	
d10-Acenaphthene	67.4	93.2	
d10-Phenanthrene	69.1	98.0	
d12-Chrysene	52.0	60.6	
d12-Perylene	69.0	75.2	
Total PAHs	Concentration	Concentration	
Total PAHs with Perylene	89.4	233.1	
Total PAHs without Perylene	89.4	232.9	
Total NS&T PAHs	20.5	65.5	

- ND Not Detected
- J <MDL NA Not Applicable Q Results Outside QC
- I Interference
- B Blank Contamination >3xMDL

Client Sample ID Sample Descriptor	FCR-P-01 Fillet		FCR-P-01 Carcass					
Original Sample								
GERGID	C45355			C45356				
Sample Type	SAMP			SAMP				
200	F1179			F1179				
PAH Compounds	Concentration	MDL		Concentration	MDL			
Naphthalene	2.67	0.99		4.71	0.40			
C1-Naphthalenes	3.95	1.71		7.68	0.69			
C2-Naphthalenes	7.10	0.99		18.13	0.40			
C3-Naphthalenes	8.36	1.49		18.18	0.60			
C4-Naphthalenes	11.10	1.49		24.81	0.60			
Biphenyl	1.23	0.82		1.47	0.33			
Acenaphthylene	2.65	0.52		5.37	0.21			
Acenaphthene	0.25	0.52	J	2.69	0.21			
Fluorene	1.44	0.78		3.85	0.31			
C1-Fluorenes	2.32	1.55		8.31	0.63			
C2-Fluorenes	5.39	1.55		14.95	0.63			
C3-Fluorenes	8.22	1.55		15.11	0.63			
Phenanthrene	1.16	0.73		8.51	0.29			
Anthracene	5.58	0.61		15.39	0.25			
C1-Phenanthrenes/Anthracenes	3.27	0.65		11.46	0.26			
C2-Phenanthrenes/Anthracenes	2.82	0.65		6.42	0.26			
C3-Phenanthrenes/Anthracenes	4.23	0.65		10.15	0.26			
C4-Phenanthrenes/Anthracenes	1.20	0.65		3.68	0.26			
Dibenzothiophene	0.57	0.27		2.26	0.11			
C1-Dibenzothiophenes	1.26	0.53		7.48	0.22			
C2-Dibenzothiophenes	2.12	0.53		7.90	0.22			
C3-Dibenzothiophenes	2.59	0.53		4.30	0.22			
Fluoranthene	0.92	0.66		4.02	0.27			
Pyrene	0.53	0.71	J	4.99	0.29			
C1-Fluoranthenes/Pyrenes	2.32	1.37		6.43	0.56			
C2-Fluoranthenes/Pyrenes	1.86	1.37		4.76	0.56			
C3-Fluoranthenes/Pyrenes	1 47	1.37		1.82	0.56			
Benzo(a)anthracene	0.34	0.68	J	1.23	0.28			
Chrysene	0.41	0.54	I	2 38	0.22			
C1-Chrysenes	0.77	1.07	5	1 47	0.43			
C2-Chrysenes	0.86	1.07		1.13	0.43			
C3-Chrysenes	0.00	1.07	ND	0.77	0.43			
C4-Chrysenes	0.00	1.07	ND	0.00	0.43	ND		
Benzo(b)fluoranthene	0.11	1.07	I	0.17	0.49	I		
Benzo(k)fluoranthene	0.00	0.85	ND	0.00	0.30	, ND		
Benzo(e)pyrene	0.00	0.67	I	0.00	0.27	ND		
Benzo(a)pyrene	0.00	1.33	ND	0.40	0.54	т		
Pervlene	0.00	0.31	ND	0.34	0.12	3		
Indeno(1.2.3-c.d)pyrene	0.00	1.26	ND	0.20	0.12	ND		
Dibenz(a,h)anthracene	0.00	0.67	ND	0.00	0.27	ND		
Benzo(g,h,i)perylene	0.00	1.05	ND	0.14	0.42	J		
2-Methylnaphthalene	2.15	0.76		4.53	0.31			
1-Methylnaphthalene	1.80	0.94		3.15	0.38			
2.6-Dimethylnaphthalene	1.34	0.49		5.24	0.20			
1.6.7-Trimethylnaphthalene	1.46	0.75		5.25	0.30			
1-Methylphenanthrene	0.42	0.32		2.29	0.13			
2 A 1 1 1 1								

J <MDL NA Not Applicable Q Results Outside QC I Interference

B Blank Contamination >3xMDL

Client Sample ID Sample Descriptor Original Sample GERG ID Sample Type SDG	FCR-P-02 Fillet	FCR-P-02 Carcass	
	C45357 SAMP F1179	C45358	
		SAMP F1179	
Dry Weight	1.03	3.19	
Wet Weight	5.07	11.46	
Sample Size Units	Grams	Grams	
Matrix	Tissue	Tissue	
% solid	20.4	27.8	
% Lipid	ng/g	ng/g	
Reporting Units	Wet	Wet	
Calculation Basis (dry/wet)			
QC Batch ID	T1466	T1466	
Method	GCMS	GCMS	
Collection Date	12/16/04	12/16/04	
Extraction Date	12/18/04	12/18/04	
Analysis Date	01/10/05	01/10/05	
	01/15/05	01/15/05	
Surrogate Compounds	%Recovery	%Recovery	
d8-Naphthalene	81.3	72.1	
d10-Acenaphthene	85.1	84.4	
d10-Phenanthrene	89.8	96.7	
d12-Chrysene	64.0	68.0	
d12-Perylene	80.7	73.6	
Total PAHs	Concentration	Concentration	
Total PAHs with Perylene	72.1	270.8	
Total PAHs without Perylene	72.1	270.0	
Total NS&T PAHs	21.8	74.1	

ND Not Detected

J <MDL NA Not Applicable Q Results Outside QC

I Interference

B Blank Contamination >3xMDL
Client Sample ID Sample Descriptor Original Sample	FCR-P-02 Fillet			FCR-P-02 Carcass		
GERG ID	C45357			C45358		
Sample Type	SAMP			SAMP		
SDG	F1179			F1179		
PAH Compounds	Concentration	MDL		Concentration	MDL	
Naphthalene	2.38	1.05		4.26	0.46	
C1-Naphthalenes	3.86	1.81		8.84	0.80	
C2-Naphthalenes	4.74	1.05		15.34	0.46	
C3-Naphthalenes	5.32	1.58		16.37	0.70	
C4-Naphthalenes	4.73	1.58		16.68	0.70	
Biphenyl	1.06	0.87		1.36	0.38	
Acenaphthylene	1.81	0.55		6.37	0.24	
Acenaphthene	1.36	0.55		4.45	0.24	
Fluorene	1.52	0.82		4.45	0.36	
C1-Fluorenes	3.29	1.64		6.95	0.73	
C2-Fluorenes	6.13	1.64		21.48	0.73	
C3-Fluorenes	6.91	1.64		17.40	0.73	
Phenanthrene	3.09	0.77		10.95	0.34	
Anthracene	5.63	0.65		20.13	0.29	
C1-Phenanthrenes/Anthracenes	1.80	0.69		10.88	0.30	
C2-Phenanthrenes/Anthracenes	1.54	0.69		11.33	0.30	
C3-Phenanthrenes/Anthracenes	3.29	0.69		14.82	0.30	
C4-Phenanthrenes/Anthracenes	1.36	0.69		6.17	0.30	
Dibenzothiophene	0.58	0.28		1.80	0.12	
C1-Dibenzothiophenes	1.40	0.56		5.07	0.25	
C2-Dibenzothiophenes	1.22	0.56		10.84	0.25	
C3-Dibenzothiophenes	1.51	0.56		11.34	0.25	
Fluoranthene	0.49	0.70	J	2.73	0.31	
Pyrene	0.24	0.76	J	3.73	0.33	
C1-Fluoranthenes/Pyrenes	2.26	1.46		6.02	0.64	
C2-Fluoranthenes/Pyrenes	1.85	1.46		7.67	0.64	
C3-Fluoranthenes/Pyrenes	0.57	1.46	J	5.25	0.64	
Benzo(a)anthracene	0.21	0.72	J	1.45	0.32	
Chrysene	0.20	0.57	J	4.03	0.25	
C1-Chrysenes	0.67	1.14	J	3.27	0.50	
C2-Chrysenes	0.86	1.14	J	3.76	0.50	
C3-Chrysenes	0.00	1.14	ND	0.97	0.50	
C4-Chrysenes	0.00	1.14	ND	0.00	0.50	ND
Benzo(b)fluoranthene	0.08	1.31	J	0.97	0.58	
Benzo(k)fluoranthene	0.00	0.90	ND	0.27	0.40	J
Benzo(e)pyrene	0.14	0.71	J	1.76	0.31	
Benzo(a)pyrene	0.00	1.41	ND	0.00	0.62	ND
Perylene	0.00	0.33	ND	0.83	0.14	
Indeno(1,2,3-c,d)pyrene	0.00	1.34	ND	0.20	0.59	J
Dibenz(a,h)anthracene	0.00	0.71	ND	0.10	0.31	J
Benzo(g,h,i)perylene	0.00	1.11	ND	0.52	0.49	
2-Methylnaphthalene	2.34	0.81		5.33	0.36	
1-Methylnaphthalene	1.52	1.00		3.51	0.44	
2,6-Dimethylnaphthalene	1.17	0.52		3.64	0.23	
1,6,7-Trimethylnaphthalene	1.10	0.79		3.90	0.35	
1-Methylphenanthrene	0.45	0.34		1.42	0.15	

B Blank Contamination >3xMDL

Client Sample ID Sample Descriptor Original Sample GERG ID Sample Type SDG	FCR-P-03 Fillet C45359 SAMP F1179	FCR-P-03 Carcass C45360 SAMP F1179	
	1.02	2.95	
Dry weight Wet Weight	1.02	2.85	
Sample Size Units	5.09	11.85 Grome	
Matrix	Tissue	Ticue	
% solid	20.1	24 1	
% Lipid	ng/g	2-4.1 ng/g	
Reporting Units	Wet	Wet	
Calculation Basis (dry/wet)			
QC Batch ID	T1466	T1466	
Method	GCMS	GCMS	
Collection Date	12/16/04	12/16/04	
Receive Date	12/18/04	12/18/04	
Analysis Date	01/10/05	01/10/05	
	01/15/05	01/15/05	
Surrogate Compounds	%Recovery	%Recovery	
d8-Naphthalene	56.9	56.9	
d10-Acenaphthene	61.1	69.5	
d10-Phenanthrene	51.1	77.3	
d12-Chrysene	42.8	67.1	
d12-Perylene	59.0	62.2	
Total PAHs	Concentration	Concentration	
Total PAHs with Perylene	209.5	1143.6	
Total PAHs without Perylene	209.5	1141.8	
Total NS&T PAHs	41.1	140.5	

- ND Not Detected
- J <MDL NA Not Applicable Q Results Outside QC
- I Interference
- B Blank Contamination >3xMDL

Client Sample ID Sample Descriptor Original Sample	FCR-P-03 Fillet			FCR-P-03 Carcass		
GERG ID	C45359			C45360		
Sample Type	SAMP			SAMP		
SDG	F1179			F1179		
PAH Compounds	Concentration	MDL		Concentration	MDL	
Naphthalene	4.68	1.05		6.24	0.45	
C1-Naphthalenes	7.03	1.80		17.60	0.77	
C2-Naphthalenes	17.26	1.04		71.07	0.45	
C3-Naphthalenes	20.32	1.58		92.31	0.68	
C4-Naphthalenes	13.92	1.58		85.60	0.68	
Biphenyl	1.79	0.86		2.09	0.37	
Acenaphthylene	1.01	0.55		3.80	0.24	
Acenaphthene	2.24	0.55		4.43	0.24	
Fluorene	3.17	0.82		11.03	0.35	
C1-Fluorenes	6.29	1.64		27.78	0.70	
C2-Fluorenes	8.93	1.64		59.04	0.70	
C3-Fluorenes	11.42	1.64		77.48	0.70	
Phenanthrene	6.08	0.76		20.81	0.33	
Anthracene	2.58	0.65		8.67	0.28	
C1-Phenanthrenes/Anthracenes	11.42	0.68		57.04	0.29	
C2-Phenanthrenes/Anthracenes	11.44	0.68		48.78	0.29	
C3-Phenanthrenes/Anthracenes	11.21	0.68		69.00	0.29	
C4-Phenanthrenes/Anthracenes	4.46	0.68		45.00	0.29	
Dibenzothiophene	3.47	0.28		34.60	0.12	
C1-Dibenzothiophenes	10.93	0.56		42.97	0.24	
C2-Dibenzothiophenes	13.41	0.56		91.61	0.24	
C3-Dibenzothiophenes	9.02	0.56		75.02	0.24	
Fluoranthene	0.59	0.70	I	2.22	0.30	
Pyrene	0.71	0.75	J	4.73	0.32	
C1-Fluoranthenes/Pyrenes	4 60	1.45		20.60	0.62	
C2-Fluoranthenes/Pyrenes	4.84	1.45		37.84	0.62	
C3-Fluoranthenes/Pyrenes	3 90	1.45		39.13	0.62	
Benzo(a)anthracene	0.32	0.72	I	2.94	0.31	
Chrysene	1 48	0.57	U	10.60	0.24	
C1-Chrysenes	2.87	1.13		17.73	0.49	
C2-Chrysenes	5 15	1.13		30.84	0.49	
C3-Chrysenes	1 40	1.13		10.37	0.49	
C4-Chrysenes	0.00	1.13	ND	3 36	0.49	
Benzo(b)fluoranthene	0.41	1 31	I	2.16	0.15	
Benzo(k)fluoranthene	0.28	0.89	J	0.73	0.38	
Benzo(e)pyrene	0.20	0.09	I	3 73	0.30	
Benzo(a)pyrene	0.22	1 41	J	1 34	0.61	
Perylene	0.00	0.33	ND	1.87	0.01	
Indeno(1,2,3-c,d)pyrene	0.08	1 33	I	0.00	0.14	ND
Dibenz(a,h)anthracene	0.00	0.70	ND	0.52	0.30	ПЪ
Benzo(g,h,i)perylene	0.03	1.10	J	0.96	0.48	
2-Methylnaphthalene	4.06	0.80		9.53	0.35	
1-Methylnaphthalene	2.97	1.00		8.07	0.43	
2,6-Dimethylnaphthalene	6.85	0.52		26.16	0.22	
1,6,7-Trimethylnaphthalene	5.43	0.79		23.94	0.34	
1-Methylphenanthrene	2.84	0.34		15.49	0.15	

B Blank Contamination >3xMDL

Client Sample ID Sample Descriptor	FPP-P-01 Fillet	FPP-P-01 Carcass	
Original Sample			
GERG ID Sample Type SDG	C45361 SAMP F1179	C45362 SAMP F1179	
Dry Weight	1.37	3.39	
Wet Weight	6.20	11.55	
Sample Size Units	Grams	Grams	
Matrix	Tissue	Tissue	
% solid	22.1	29.3	
% Lipid	ng/g	ng/g	
Reporting Units	Wet	Wet	
Calculation Basis (dry/wet)			
QC Batch ID	T1466	T1466	
Method	GCMS	GCMS	
Collection Date	12/16/04	12/16/04	
Extraction Date	12/18/04	12/18/04	
Analysis Date	01/10/05	01/10/05	
	01/15/05	01/16/05	
Surrogate Compounds	%Recovery	%Recovery	
d8-Naphthalene	71.7	51.0	
d10-Acenaphthene	81.1	75.6	
d10-Phenanthrene	83.1	60.7	
d12-Chrysene	45.9	39.7	Q
d12-Perylene	72.3	54.8	
Total PAHs	Concentration	Concentration	
Total PAHs with Perylene	124.6	205.6	
Total PAHs without Perylene	124.2	205.0	
Total NS&T PAHs	34.4	50.4	

- J <MDL NA Not Applicable Q Results Outside QC

I Interference

B Blank Contamination >3xMDL

Page 7 Printed 3/15/2005

Client Sample ID Sample Descriptor Original Sample	FPP-P-01 Fillet			FPP-P-01 Carcass		
GERG ID	C45361			C45362		
Sample Type	SAMP			SAMP		
SDG	F1179			F1179		
PAH Compounds	Concentration	MDL		Concentration	MDL	
Naphthalene	2.51	0.86		2.41	0.46	
C1-Naphthalenes	3.43	1.48		4.11	0.79	
C2-Naphthalenes	9.65	0.86		16.52	0.46	
C3-Naphthalenes	10.80	1.29		19.68	0.69	
C4-Naphthalenes	12.80	1.29		24.00	0.69	
Biphenyl	1.37	0.71		0.91	0.38	
Acenaphthylene	2.57	0.45		4.50	0.24	
Acenaphthene	4.43	0.45		1.00	0.24	
Fluorene	1.75	0.67		2.37	0.36	
C1-Fluorenes	5.45	1.34		6.29	0.72	
C2-Fluorenes	9.21	1.34		11.25	0.72	
C3-Fluorenes	7.01	1.34		8.19	0.72	
Phenanthrene	4.57	0.63		4.53	0.34	
Anthracene	8.67	0.53		19.60	0.29	
C1-Phenanthrenes/Anthracenes	5.52	0.56		10.41	0.30	
C2-Phenanthrenes/Anthracenes	3.00	0.56		6.19	0.30	
C3-Phenanthrenes/Anthracenes	7.08	0.56		13.31	0.30	
C4-Phenanthrenes/Anthracenes	1.20	0.56		3.82	0.30	
Dibenzothiophene	1.29	0.23		2.25	0.12	
C1-Dibenzothiophenes	3.65	0.46		7.03	0.25	
C2-Dibenzothiophenes	3.82	0.46		6.54	0.25	
C3-Dibenzothiophenes	1.44	0.46		3.44	0.25	
Fluoranthene	0.59	0.57		2.44	0.31	
Pyrene	0.39	0.62	J	1.53	0.33	
C1-Fluoranthenes/Pyrenes	2.78	1.19	U	4 39	0.64	
C2-Fluoranthenes/Pyrenes	1 98	1.19		4 70	0.64	
C3-Fluoranthenes/Pyrenes	0.00	1 19	ND	1.63	0.64	ND
Benzo(a)anthracene	0.41	0.59	J	1.57	0.32	ПЪ
Chrysene	1.00	0.47	U	0.82	0.25	
C1-Chrysenes	0.93	0.93	I	1.95	0.50	
C2-Chrysenes	1 11	0.93	5	1.63	0.50	
C3-Chrysenes	0.00	0.93	ND	0.00	0.50	ND
C4-Chrysenes	-0.22	0.93	I	0.00	0.50	ND
Benzo(b)fluoranthene	0.22	1.07	J	1.13	0.58	ND
Benzo(k)fluoranthene	1 34	0.73	5	2 21	0.39	
Benzo(e)pyrene	0.43	0.75	I	0.78	0.31	
Benzo(a)pyrene	0.00	1 1 5	y ND	0.51	0.51	т
Perylene	0.32	0.27	ND	0.51	0.02	J
Indeno(1,2,3-c,d)pyrene	0.52	1.09	I	0.57	0.14	T
Dibenz(a,h)anthracene	0.67	0.58	5	0.17	0.31	J
Benzo(g,h,i)perylene	0.57	0.91	J	0.58	0.49	5
2-Methylnaphthalene	1.99	0.66		2.29	0.35	
1-Methylnaphthalene	1.44	0.82		1.82	0.44	
2.6-Dimethylnaphthalene	3.11	0.43		4.42	0.23	
1,6,7-Trimethylnaphthalene	2.61	0.65		3.72	0.35	
1-Methylphenanthrene	0.78	0.28		2.62	0.15	

B Blank Contamination >3xMDL

Client Sample ID Sample Descriptor Original Sample	FPP-P-02 Fillet	FPP-P-02 Carcass	
GERGID	C45363	C45364	
Sample Type	SAMP	SAMP	
SDG	F1179	F1179	
Dry Weight	0.35	1.43	
Wet Weight	1.75	5.14	
Sample Size Units	Grams	Grams	
Matrix	Tissue	Tissue	
% solid	20.1	27.8	
% Lipid	ng/g	ng/g	
Reporting Units	Wet	Wet	
Calculation Basis (dry/wet)			
QC Batch ID	T1466	T1466	
Method	GCMS	GCMS	
Collection Date	12/16/04	12/16/04	
Extraction Date	12/18/04	12/18/04	
Analysis Date	01/10/05	01/10/05	
-	01/16/05	01/16/05	
Surrogate Compounds	%Recovery	%Recovery	
d8-Naphthalene	62.2	67.4	
d10-Acenaphthene	59.2	70.7	
d10-Phenanthrene	60.2	77.9	
d12-Chrysene	39.3	Q 65.2	
d12-Perylene	65.2	74.4	
Total PAHs	Concentration	Concentration	
Total PAHs with Perylene	238.6	755.0	
Total PAHs without Perylene	238.6	754.0	
Total NS&T PAHs	81.3	144.4	

- ND Not Detected
- J <MDL NA Not Applicable Q Results Outside QC
- I Interference
- B Blank Contamination >3xMDL

Client Sample ID Sample Descriptor Original Sample	FPP-P-02 Fillet			FPP-P-02 Carcass		
GERG ID	C45363			C45364		
Sample Type	SAMP			SAMP		
SDG	F1179			F1179		
PAH Compounds	Concentration	MDL		Concentration	MDL	
Naphthalene	8.68	3.04		10.72	1.04	
C1-Naphthalenes	13.25	5.24		27.82	1.78	
C2-Naphthalenes	28.98	3.03		82.40	1.03	
C3-Naphthalenes	29.72	4.59		81.70	1.56	
C4-Naphthalenes	17.71	4.59		71.88	1.56	
Biphenyl	3.21	2.52		4.64	0.86	
Acenaphthylene	3.62	1.60		7.68	0.55	
Acenaphthene	6.76	1.60		3.71	0.55	
Fluorene	5.42	2.38		13.64	0.81	
C1-Fluorenes	9.27	4.76		24.51	1.62	
C2-Fluorenes	11.36	4.76		37.57	1.62	
C3-Fluorenes	15.50	4.76		38.94	1.62	
Phenanthrene	6.23	2.23		9.63	0.76	
Anthracene	4.43	1.89		16.72	0.64	
C1-Phenanthrenes/Anthracenes	9.77	1.99		37.03	0.68	
C2-Phenanthrenes/Anthracenes	5.42	1.99		38.65	0.68	
C3-Phenanthrenes/Anthracenes	6.74	1.99		32.52	0.68	
C4-Phenanthrenes/Anthracenes	0.00	1.99	ND	14.85	0.68	
Dibenzothiophene	3.86	0.82		10.24	0.28	
C1-Dibenzothiophenes	9.44	1.63		28.14	0.56	
C2-Dibenzothiophenes	10.20	1.63		40.10	0.56	
C3-Dibenzothiophenes	5.71	1.63		32.06	0.56	
Fluoranthene	0.88	2.03	J	1.62	0.69	
Pyrene	0.55	2.19	J	2.70	0.75	
C1-Fluoranthenes/Pyrenes	3.00	4.22	J	9.99	1.44	
C2-Fluoranthenes/Pyrenes	4.87	4.22	-	15.07	1.44	
C3-Fluoranthenes/Pyrenes	2.82	4.22	ND	16.79	1.44	
Benzo(a)anthracene	3.95	2.10		1.43	0.71	
Chrysene	3.30	1.65		6.49	0.56	
C1-Chrysenes	2.08	3.30	J	8.72	1.12	
C2-Chrysenes	1.68	3.30	J	13.58	1.12	
C3-Chrysenes	0.00	3.30	ND	5.65	1.12	
C4-Chrysenes	0.00	3.30	ND	0.53	1.12	I
Benzo(b)fluoranthene	0.00	3.81	ND	1.04	1.30	Ţ
Benzo(k)fluoranthene	0.17	2.60	I	1.67	0.88	·
Benzo(e)pyrene	0.00	2.06	ND	2.05	0.70	
Benzo(a)pyrene	0.00	4 09	ND	0.89	1 39	T
Perylene	0.00	0.95	ND	0.98	0.32	5
Indeno(1,2,3-c,d)pyrene	0.00	3.88	ND	0.00	1.32	ND
Dibenz(a,h)anthracene	0.00	2.05	ND	0.31	0.70	I
Benzo(g,h,i)perylene	0.00	3.22	ND	0.52	1.09	J
2-Methylnaphthalene	7.89	2.34		15.99	0.80	
1-Methylnaphthalene	5.36	2.90		11.83	0.99	
2,6-Dimethylnaphthalene	18.69	1.52		32.89	0.52	
1,6,7-Trimethylnaphthalene	7.85	2.29		23.51	0.78	
1-Methylphenanthrene	5.92	0.99		8.18	0.34	

- J <MDL NA Not Applicable Q Results Outside QC

I Interference

B Blank Contamination >3xMDL

Client Sample ID Sample Descriptor Original Sample	FPP-P-03 Fillet	FPP-P-03 Carcass	
GERG ID	C45365	C45366	
Sample Type	SAMP	SAMP	
SDG	F1179	F1179	
Dry Weight	0.23	1.48	
Wet Weight	1.16	5.78	
Sample Size Units	Grams	Grams	
Matrix	Tissue	Tissue	
% solid	19.5	25.6	
% Lipid	ng/g	ng/g	
Reporting Units	Wet	Wet	
Calculation Basis (dry/wet)			
QC Batch ID	T1466	T1466	
Method	GCMS	GCMS	
Collection Date	12/16/04	12/16/04	
Extraction Date	12/18/04	12/18/04	
Analysis Date	01/10/05	01/10/05	
	01/16/05	01/16/05	
Surrogate Compounds	%Recovery	%Recovery	
d8-Naphthalene	108.0	46.5	
d10-Acenaphthene	102.0	59.1	
d10-Phenanthrene	97.9	58.1	
d12-Chrysene	72.3	46.0	
d12-Perylene	99.1	57.5	
Total PAHs	Concentration	Concentration	
Total PAHs with Perylene	134.3	827.0	
Total PAHs without Perylene	134.3	825.4	
Total NS&T PAHs	39.6	102.8	

ND Not Detected

- J <MDL NA Not Applicable Q Results Outside QC
- I Interference
- B Blank Contamination >3xMDL

Client Sample ID	FPP-P-03 Fillet		FPP-P-03 Carcass		
Sample Descriptor					
Original Sample					
GERG ID	C45365		C45366		
Sample Type	SAMP		SAMP		
SDG	F1179		F1179		
PAH Compounds	Concentration		Concentration	MDL	
Naphthalene	7.96		4.43	0.92	
C1-Naphthalenes	6.07	J	10.26	1.59	
C2-Naphthalenes	12.81		47.93	0.92	
C3-Naphthalenes	20.24		68.53	1.39	
C4-Naphthalenes	14.19		63.96	1.39	
Biphenyl	2.90	J	1.76	0.76	
Acenaphthylene	0.88	J	2.69	0.48	
Acenaphthene	7.09		3.52	0.48	
Fluorene	1.97	J	6.58	0.72	
C1-Fluorenes	4.92		18.50	1.44	
C2-Fluorenes	6.77	J	36.55	1.44	
C3-Fluorenes	4.11		46.95	1.44	
Phenanthrene	1.26	J	15.10	0.67	
Anthracene	2.30	J	10.69	0.57	
C1-Phenanthrenes/Anthracenes	5.83		43.57	0.60	
C2-Phenanthrenes/Anthracenes	4.01		64.29	0.60	
C3-Phenanthrenes/Anthracenes	4.77		55.18	0.60	
C4-Phenanthrenes/Anthracenes	0.00	ND	29.07	0.60	
Dibenzothiophene	1.66		6.75	0.25	
C1-Dibenzothiophenes	3.98		31.37	0.49	
C2-Dibenzothiophenes	6.48		58.61	0.49	
C3-Dibenzothiophenes	4.22		54.51	0.49	
Fluoranthene	0.54	J	1.41	0.61	
Pyrene	0.54	J	4.27	0.66	
C1-Fluoranthenes/Pyrenes	1.52	I	16.08	1.28	
C2-Fluoranthenes/Pyrenes	0.93	J	24.65	1.28	
C3-Fluoranthenes/Pyrenes	0.00	ND	26.08	1.28	
Benzo(a)anthracene	1.81	J	2.78	0.63	
Chrysene	1.51	J	2.70	0.50	
C1-Chrysenes	2 29	J	16.23	1.00	
C2-Chrysenes	0.00	ND	23.29	1.00	
C3-Chrysenes	0.00	ND	13.97	1.00	
C4-Chrysenes	0.00	ND	0.00	1.00	ND
Benzo(b)fluoranthene	0.00	ND	1.69	1.00	ПD
Benzo(k)fluoranthene	0.00	I	0.85	0.79	
Benzo(e)pyrene	0.00	J ND	3.88	0.62	
Benzo(a)pyrene	0.00	ND	0.82	1.24	т
Pervlene	0.00	ND	1.58	0.29	J
Indeno(1.2.3-c.d)pyrene	0.00	ND	0.00	1.17	ND
Dibenz(a,h)anthracene	0.00	ND	0.00	0.62	ND
Benzo(g.h.i)pervlene	0.00	ND	0.00	0.02	ND I
(G) / (F · J · · ·	0.00	nD	0.07	0.97	J
2-Methylnaphthalene	3.46	J	5.52	0.71	
1-Methylnaphthalene	2.61	J	4.74	0.88	
2,6-Dimethylnaphthalene	4.14		17.43	0.46	
1,6,7-Trimethylnaphthalene	3.91		17.22	0.69	

1.50

10.62

ND Not Detected J ⊲MDL NA Not Applicable Q Results Outside QC

I Interference

B Blank Contamination >3xMDL

1-Methylphenanthrene

D Dilution

0.30

Client Sample ID Sample Descriptor Original Sample GERG ID Sample Type SDG	FMH-GC-01 Fillet C45367	FMH-GC-01 Carcass C45368		
	F1179	F1179		
Dry Weight	1.13	2.49		
Wet Weight	5.69	10.04		
Sample Size Units	Grams	Grams		
Matrix	Tissue	Tissue		
% solid	19.9	24.9		
% Lipid	ng/g	ng/g		
Reporting Units	Wet	Wet		
Calculation Basis (dry/wet)				
QC Batch ID	T1466	T1466		
Method	GCMS	GCMS		
Collection Date	12/16/04	12/16/04		
Extraction Date	12/18/04	12/18/04		
Analysis Date	01/10/05	01/10/05		
	01/16/05	01/16/05		
Surrogate Compounds	%Recovery	%Recovery		
d8-Naphthalene	76.6	52.8		
d10-Acenaphthene	77.1	73.3		
d10-Phenanthrene	68.5	80.1		
d12-Chrysene	47.8	42.8		
d12-Perylene	81.2	68.5		
Total PAHs	Concentration	Concentration		
Total PAHs with Perylene	101.7	233.7		
Total PAHs without Perylene	101.7	233.6		
Total NS&T PAHs	36.6	81.8		

J <MDL NA Not Applicable Q Results Outside QC

Interference I

B Blank Contamination >3xMDL

Client Sample ID Sample Descriptor	FMH-GC-01 Fillet			FMH-GC-01 Carcass		
Original Sample						
GERG ID	C45367			C45368		
Sample Type	SAMP			SAMP		
SDG	F1179			F1179		
PAH Compounds	Concentration	MDL		Concentration	MDL	
Naphthalene	5.62	0.94		12.59	0.53	
C1-Naphthalenes	10.42	1.61		27.32	0.91	
C2-Naphthalenes	10.76	0.93		30.48	0.53	
C3-Naphthalenes	11.51	1.41		30.48	0.80	
C4-Naphthalenes	26.92	1.41		58.60	0.80	
Biphenyl	1.12	0.77		1.49	0.44	
Acenaphthylene	1.65	0.49		3.97	0.28	
Acenaphthene	2.55	0.49		4.81	0.28	
Fluorene	3.38	0.73		6.67	0.41	
C1-Fluorenes	1.76	1.46		5.03	0.83	
C2-Fluorenes	2.75	1.46		5.39	0.83	
C3-Fluorenes	3.81	1.46		5.37	0.83	
Phenanthrene	2.80	0.68		5.46	0.39	
Anthracene	5.17	0.58		10.69	0.33	
C1-Phenanthrenes/Anthracenes	1.74	0.61		3.52	0.35	
C2-Phenanthrenes/Anthracenes	1.14	0.61		1.33	0.35	
C3-Phenanthrenes/Anthracenes	1.39	0.61		2.39	0.35	
C4-Phenanthrenes/Anthracenes	0.00	0.61	ND	0.64	0.35	
Dibenzothiophene	1.03	0.25		2.18	0.14	
C1-Dibenzothiophenes	1.07	0.50		1.80	0.28	
C2-Dibenzothiophenes	1.01	0.50		1.67	0.28	
C3-Dibenzothiophenes	0.50	0.50	J	1.11	0.28	
Fluoranthene	0.88	0.62		2.04	0.35	
Pyrene	0.79	0.67		1.47	0.38	
C1-Fluoranthenes/Pyrenes	0.43	1.30	J	1.08	0.73	
C2-Fluoranthenes/Pyrenes	1.19	1.30	J	1.52	0.73	
C3-Fluoranthenes/Pyrenes	0.26	1.30	J	0.53	0.73	J
Benzo(a)anthracene	0.00	0.64	ND	0.41	0.37	
Chrysene	0.26	0.51	J	0.54	0.29	
C1-Chrysenes	0.00	1.01	ND	0.69	0.57	
C2-Chrysenes	0.00	1.01	ND	0.70	0.57	
C3-Chrysenes	0.00	1.01	ND	0.00	0.57	ND
C4-Chrysenes	-0.35	1.01	J	0.00	0.57	ND
Benzo(b)fluoranthene	0.00	1.17	ND	0.44	0.66	J
Benzo(k)fluoranthene	0.17	0.80	J	0.30	0.45	J
Benzo(e)pyrene	0.00	0.63	ND	0.25	0.36	J
Benzo(a)pyrene	0.00	1.26	ND	0.32	0.71	J
Perylene	0.00	0.29	ND	0.14	0.17	J
Indeno(1,2,3-c,d)pyrene	0.00	1.19	ND	0.08	0.68	J
Dibenz(a,h)anthracene	0.00	0.63	ND	0.00	0.36	ND
Benzo(g,h,i)perylene	0.00	0.99	ND	0.22	0.56	J
2-Methylnaphthalene	6.03	0.72		15.00	0.41	
1-Methylnaphthalene	4.39	0.89		12.32	0.50	
2,6-Dimethylnaphthalene	3.34	0.47		6.82	0.26	
1,6,7-Trimethylnaphthalene	2.69	0.71		5.69	0.40	
1-Methylphenanthrene	0.23	0.31	J	0.74	0.17	

I Interference

B Blank Contamination >3xMDL

Client Sample ID Sample Descriptor Original Sample	FMH-GC-02 Fillet	FMH-GC-02 Carcass		
GERGID	C45369	C45370		
Sample Type	SAMP	SAMP		
SDG	F1179	F1179		
Dry Weight	2.20	3.08		
Wet Weight	10.30	11.19		
Sample Size Units	Grams	Grams		
Matrix	Tissue	Tissue		
% solid	21.4	27.5		
% Lipid	ng/g	ng/g		
Reporting Units	Wet	Wet		
Calculation Basis (dry/wet)				
QC Batch ID	T1466	T1466		
Method	GCMS	GCMS		
Collection Date	12/16/04	12/16/04		
Extraction Date	12/18/04	12/18/04		
Analysis Date	01/10/05	01/10/05		
	01/16/05	01/16/05		
Surrogate Compounds	%Recovery	%Recovery		
d8-Naphthalene	51.5	45.7		
d10-Acenaphthene	60.5	85.7		
d10-Phenanthrene	64.0	74.5		
d12-Chrysene	42.9	41.5		
d12-Perylene	67.3	66.7		
Total PAHs	Concentration	Concentration		
Total PAHs with Perylene	82.8	254.4		
Total PAHs without Perylene	82.8	254.4		
Total NS&T PAHs	34.4	107.8		

- ND Not Detected
- J <MDL NA Not Applicable Q Results Outside QC
- I Interference
- B Blank Contamination >3xMDL

Client Sample ID Sample Descriptor Original Sample	FMH-GC-02 Fillet			FMH-GC-02 Carcass		
GERG ID	C45369			C45370		
Sample Type	SAMP			SAMP		
SDG	F1179			F1179		
PAH Compounds	Concentration	MDL		Concentration	MDL	
Naphthalene	5.47	0.52		16.53	0.48	
C1-Naphthalenes	10.35	0.89		34.41	0.82	
C2-Naphthalenes	10.76	0.52		38.07	0.47	
C3-Naphthalenes	11.69	0.78		37.26	0.72	
C4-Naphthalenes	11.20	0.78		33.71	0.72	
Biphenyl	0.92	0.43		1.59	0.39	
Acenaphthylene	0.90	0.27		2.42	0.25	
Acenaphthene	1.67	0.27		12.20	0.25	
Fluorene	4.51	0.40		10.47	0.37	
C1-Fluorenes	2.69	0.81		6.67	0.74	
C2-Fluorenes	2.33	0.81		6.36	0.74	
C3-Fluorenes	3.04	0.81		4.88	0.74	
Phenanthrene	3.34	0.38		10.56	0.35	
Anthracene	2.45	0.32		6.53	0.29	
C1-Phenanthrenes/Anthracenes	1.51	0.34		6.35	0.31	
C2-Phenanthrenes/Anthracenes	0.80	0.34		1.86	0.31	
C3-Phenanthrenes/Anthracenes	0.84	0.34		1.59	0.31	
C4-Phenanthrenes/Anthracenes	0.44	0.34		0.46	0.31	
Dibenzothiophene	1.11	0.14		3.14	0.13	
C1-Dibenzothiophenes	0.90	0.28		3.72	0.26	
C2-Dibenzothiophenes	0.75	0.28		2.43	0.26	
C3-Dibenzothiophenes	0.54	0.28		0.97	0.26	
Fluoranthene	1.13	0.34		3.32	0.32	
Pyrene	1.01	0.37		2.84	0.34	
C1-Fluoranthenes/Pyrenes	0.60	0.72	J	1.17	0.66	
C2-Fluoranthenes/Pyrenes	1.16	0.72		2.39	0.66	
C3-Fluoranthenes/Pyrenes	0.41	0.72	J	0.68	0.66	
Benzo(a)anthracene	0.07	0.36	J	0.15	0.33	J
Chrysene	0.17	0.28	J	0.71	0.26	
C1-Chrysenes	0.00	0.56	ND	0.30	0.52	J
C2-Chrysenes	0.00	0.56	ND	0.51	0.52	J
C3-Chrysenes	-0.04	0.56	J	0.00	0.52	ND
C4-Chrysenes	0.00	0.56	ND	0.00	0.52	ND
Benzo(b)fluoranthene	0.00	0.65	ND	0.06	0.59	J
Benzo(k)fluoranthene	0.08	0.44	J	0.11	0.41	J
Benzo(e)pyrene	0.00	0.35	ND	0.00	0.32	ND
Benzo(a)pyrene	0.00	0.70	ND	0.00	0.64	ND
Perylene	0.00	0.16	ND	0.00	0.15	ND
Indeno(1,2,3-c,d)pyrene	0.00	0.66	ND	0.00	0.61	ND
Dibenz(a,h)anthracene	0.00	0.35	ND	0.00	0.32	ND
Benzo(g,h,i)perylene	0.00	0.55	ND	0.00	0.50	ND
2-Methylnaphthalene	6.00	0.40		19.65	0.37	
1-Methylnaphthalene	4.35	0.49		14.76	0.45	
2,6-Dimethylnaphthalene	2.94	0.26		6.45	0.24	
1,6,7-Trimethylnaphthalene	2.51	0.39		5.89	0.36	
1-Methylphenanthrene	0.41	0.17		2.03	0.16	

I Interference

B Blank Contamination >3xMDL

Client Sample ID Sample Descriptor	MH-GC-03 Fillet	MH-GC-03 Carcass	
GERG ID Sample Type SDG	C45371 SAMP F1179	C45372 SAMP F1179	
Dry Weight	1.18	3.79	
Wet Weight	5.71	12.55	
Sample Size Units	Grams	Grams	
Matrix	Tissue	Tissue	
% solid	20.7	30.2	
% Lipid	ng/g	ng/g	
Reporting Units	Wet	Wet	
Calculation Basis (dry/wet)			
QC Batch ID	T1466	T1466	
Method	GCMS	GCMS	
Collection Date	12/16/04	12/16/04	
Extraction Date	12/18/04	12/18/04	
Analysis Date	01/10/05	01/10/05	
	01/16/05	01/16/05	
Surrogate Compounds	%Recovery	%Recovery	
d8-Naphthalene	73.6	61.2	
d10-Acenaphthene	79.7	143.7	Q
d10-Phenanthrene	90.1	102.1	
d12-Chrysene	57.2	73.6	
d12-Perylene	86.9	89.6	
Total PAHs	Concentration	Concentration	
Total PAHs with Perylene	117.5	362.5	
Total PAHs without Perylene	117.5	362.5	
Total NS&T PAHs	49.7	140.9	

- J <MDL NA Not Applicable Q Results Outside QC
- I Interference
- B Blank Contamination >3xMDL

Client Sample ID	MH-GC-03 Fillet			MH-GC-03 Carcass		
Sample Descriptor						
Original Sample						
GERGID	C45371			C45372		
Sample Type	SAMP			SAMP		
SDG	F1179			F1179		
PAH Compounds	Concentration	MDL		Concentration	MDL	
Naphthalene	5.36	0.93		17.82	0.42	
C1-Naphthalenes	10.88	1.61		41.24	0.73	
C2-Naphthalenes	12.10	0.93		53.17	0.42	
C3-Naphthalenes	11.51	1.41		48.75	0.64	
C4-Naphthalenes	16.95	1.41		53.53	0.64	
Biphenyl	1.42	0.77		1.48	0.35	
Acenaphthylene	3.74	0.49		7.38	0.22	
Acenaphthene	8.95	0.49		18.00	0.22	
Fluorene	3.49	0.73		6.28	0.33	
C1-Fluorenes	3.45	1.46		6.69	0.66	
C2-Fluorenes	4.06	1.46		8.40	0.66	
C3-Fluorenes	5.61	1.46		7.25	0.66	
Phenanthrene	4.63	0.68		7.35	0.31	
Anthracene	8.24	0.58		30.56	0.26	
C1-Phenanthrenes/Anthracenes	2.53	0.61		10.43	0.28	
C2-Phenanthrenes/Anthracenes	1.41	0.61		4.65	0.28	
C3-Phenanthrenes/Anthracenes	1.73	0.61		6.29	0.28	
C4-Phenanthrenes/Anthracenes	0.96	0.61		2.49	0.28	
Dibenzothiophene	1.00	0.25		3.39	0.11	
C1-Dibenzothiophenes	0.92	0.50		3.71	0.23	
C2-Dibenzothiophenes	1.43	0.50		3.60	0.23	
C3-Dibenzothiophenes	0.78	0.50		2.31	0.23	
Fluoranthene	0.93	0.62		3.41	0.28	
Pyrene	0.94	0.67		3.66	0.31	
C1-Fluoranthenes/Pyrenes	1.01	1.29	J	2.72	0.59	
C2-Fluoranthenes/Pyrenes	1.12	1.29	J	2.90	0.59	
C3-Fluoranthenes/Pyrenes	0.61	1.29	J	1.65	0.59	
Benzo(a)anthracene	0.47	0.64	J	0.80	0.29	
Chrysene	0.53	0.51		1.50	0.23	
C1-Chrysenes	0.38	1.01	J	0.45	0.46	J
C2-Chrysenes	0.27	1.01	J	0.21	0.46	J
C3-Chrysenes	0.00	1.01	ND	0.00	0.46	ND
C4-Chrysenes	0.00	1.01	ND	0.00	0.46	ND
Benzo(b)fluoranthene	0.07	1.17	J	0.10	0.53	J
Benzo(k)fluoranthene	0.00	0.80	ND	0.23	0.36	J
Benzo(e)pyrene	0.00	0.63	ND	0.07	0.29	J
Benzo(a)pyrene	0.00	1.25	ND	0.00	0.57	ND
Perylene	0.00	0.29	ND	0.00	0.13	ND
Indeno(1,2,3-c,d)pyrene	0.00	1.19	ND	0.00	0.54	ND
Dibenz(a,h)anthracene	0.00	0.63	ND	0.00	0.29	ND
Benzo(g,h,i)perylene	0.00	0.99	ND	0.00	0.45	ND
2-Methylnaphthalene	6.20	0.72		22.80	0.33	
1-Methylnaphthalene	4.68	0.89		18.44	0.40	
2,6-Dimethylnaphthalene	3.52	0.46		7.50	0.21	
1,6,7-Trimethylnaphthalene	2.99	0.70		6.02	0.32	
1-Methylphenanthrene	0.34	0.31		1.20	0.14	

I Interference

B Blank Contamination >3xMDL

Client Sample ID	FTP-C-01	FTP-C-02	
Sample Descriptor	0822	0822	
Original Sample	0022	0022	
GERG ID	C45201	C45222	
Sample Type	C43521	C43522	
SDG	FIP-C-01 E1170	F1170	
	F11/9	F1179	
Dry Weight	2.50	4.24	
Wet Weight	10.74	13.88	
Sample Size Units	Grams	Grams	
Matrix	Tissue	Tissue	
% solid	23.2	30.5	
% Lipid	13.7	25.3	
Reporting Units	ng/g	ng/g	
Calculation Basis (dry/wet)	Wet	Wet	
QC Batch ID	T1465	T1465	
Method	GCMS	GCMS	
Collection Date	12/16/04	12/16/04	
Receive Date	12/18/04	12/18/04	
Analysis Date	01/06/05	01/06/05	
Thay sis Dute	01/14/05	01/14/05	
Surrogate Compounds	%Recovery	%Recovery	
d8-Naphthalene	65.8	63.5	
d10-Acenaphthene	70.6	100.3	
d10-Phenanthrene	70.5	86.3	
d12-Chrysene	70.0	79.6	
d12-Perylene	63.2	59.2	
Total PAHs	Concentration	Concentration	
Total PAHs with Perylene	88.9	324.5	
Total PAHs without Perylene	88.9	324.5	
Total NS&T PAHs	43.6	159.3	

- J <MDL NA Not Applicable Q Results Outside QC
- I Interference
- B Blank Contamination >3xMDL

Client Sample ID	FTP-C-01			FTP-C-02		
Sample Descriptor	0822			0822		
Original Sample	0022			0022		
GERG ID	C45321			C45322		
Sample Type	ETB C 01			C43322		
SDG	F1170			F1F-C-02 E1170		
	F11/9			F11/9		
PAH Compounds	Concentration	MDL		Concentration	MDL	
Naphthalene	3.67	0.50		19.01	0.38	
C1-Naphthalenes	6.07	0.85		55.14	0.66	
C2-Naphthalenes	5.45	0.49		38.37	0.38	
C3-Naphthalenes	5.19	0.75		24.97	0.58	
C4-Naphthalenes	3 61	0.75		15.99	0.58	
Biphenyl	1 12	0.41		4 64	0.32	
Acenaphthylene	4 93	0.26		10.00	0.20	
Acenaphthene	3 59	0.26		19.78	0.20	
Fluorene	2.21	0.20		12.01	0.20	
C1-Fluorenes	1 73	0.39		18.64	0.50	
C2-Fluorenes	2.62	0.78		16.04	0.00	
C3-Fluorenes	2.02	0.78		5.72	0.00	
Dhananthrana	4.41	0.78		5.75	0.00	
Anthragono	6.90	0.36		7.04	0.28	
C1 Phononthronos/Anthrononas	12.62	0.31		25.92	0.24	
C2 Phononthronos/Anthronos	2.18	0.32		5.58	0.25	
C2-Filenanthrenes/Anthracenes	1.38	0.32		4.83	0.25	
C4 Phononthronog/Anthronog	4.26	0.32		9.78	0.25	
C4-Phenanthrenes/Anthracenes	0.80	0.32		2.07	0.25	
C1 Diharasthiasharas	0.43	0.13		1.85	0.10	
C1-Dibenzotniophenes	1.21	0.27		3.49	0.21	
C2-Dibenzotniophenes	0.83	0.27		3.98	0.21	
C3-Dibenzothiophenes	1.07	0.27		2.64	0.21	
Fluoranthene	1.85	0.33		4.21	0.26	
Pyrene	1.13	0.36		1.48	0.28	
C1-Fluoranthenes/Pyrenes	1.63	0.69		2.43	0.53	
C2-Fluoranthenes/Pyrenes	1.31	0.69		2.20	0.53	
C3-Fluoranthenes/Pyrenes	0.56	0.69		1.11	0.53	
Benzo(a)anthracene	0.92	0.34		0.96	0.26	
Chrysene	0.94	0.27		0.72	0.21	
C1-Chrysenes	0.89	0.54		0.99	0.42	
C2-Chrysenes	0.69	0.54		0.65	0.42	
C3-Chrysenes	0.00	0.54	ND	0.00	0.42	ND
C4-Chrysenes	0.00	0.54	ND	0.00	0.42	ND
Benzo(b)fluoranthene	0.51	0.62	J	0.25	0.48	J
Benzo(k)fluoranthene	0.80	0.42		0.58	0.33	
Benzo(e)pyrene	0.31	0.34	J	0.14	0.26	J
Benzo(a)pyrene	0.51	0.67	J	0.00	0.52	ND
Perylene	0.00	0.15	ND	0.00	0.12	ND
Indeno(1,2,3-c,d)pyrene	0.24	0.63	J	0.00	0.49	ND
Dibenz(a,h)anthracene	0.09	0.33	J	0.00	0.26	ND
Benzo(g,h,i)perylene	0.28	0.52	J	0.00	0.41	ND
2-Methylnaphthalene	3 37	0.38		32.96	0.30	
1-Methylnaphthalene	2 75	0.30		22.90	0.30	
2 6-Dimethylnaphthalene	1 35	0.47		7 13	0.50	
1.6.7-Trimethylnaphthalene	1 30	0.25		5.24	0.12	
1-Methylphenanthrepe	0.35	0.57		0.52	0.27	
· ·····	0.55	0.10		0.02	0.15	

B Blank Contamination >3xMDL

Client Sample ID	FTP-C-03	FCR-C-01	
Sample Descriptor	0822	1232	
Original Sample	0022	1202	
GERG ID	C45323	C45324	
Sample Type	FTP-C-03	FCR-C-01	
SDG	F1179	F1179	
Dry Weight	2.62	2.45	
Wet Weight	11.39	10.40	
Sample Size Units	Grams	Grams	
Matrix	Tissue	Tissue	
% solid	23.0	23.6	
% Lipid	14.5	16.8	
Reporting Units	ng/g	ng/g	
Calculation Basis (dry/wet)	Wet	Wet	
QC Batch ID	T1465	T1465	
Method	GCMS	GCMS	
Collection Date	12/16/04	12/16/04	
Extraction Date	12/18/04	12/18/04	
Analysis Date	01/06/05	01/06/05	
	01/15/05	01/15/05	
Surrogate Compounds	%Recovery	%Recovery	
d8-Naphthalene	67.8	64.1	
d10-Acenaphthene	87.1	92.8	
d10-Phenanthrene	87.0	76.8	
d12-Chrysene	72.2	78.8	
d12-Perylene	71.2	76.6	
Total PAHs	Concentration	Concentration	
Total PAHs with Perylene	185.6	139.1	
Total PAHs without Perylene	185.6	139.1	
Total NS&T PAHs	61.2	49.2	

- J <MDL NA Not Applicable Q Results Outside QC
- I Interference
- B Blank Contamination >3xMDL

Client Sample ID	FTP-C-03			FCR-C-01		
Sample Descriptor	0822			1232		
Original Sample	0022			1202		
GERG ID	C45323			C45324		
Sample Type	ETP-C-03			ECR-C-01		
SDG	F1179			F1179		
	1117)			1117)		
PAH Compounds	Concentration	MDL		Concentration	MDL	
Naphthalene	5.31	0.47		3.60	0.51	
C1-Naphthalenes	12.10	0.80		7.37	0.88	
C2-Naphthalenes	19.00	0.47		13.13	0.51	
C3-Naphthalenes	26.76	0.70		12.38	0.77	
C4-Naphthalenes	16.31	0.70		12.40	0.77	
Biphenyl	1.20	0.39		2.57	0.42	
Acenaphthylene	7.12	0.25		4.91	0.27	
Acenaphthene	3.69	0.25		2.88	0.27	
Fluorene	4.25	0.37		1.75	0.40	
C1-Fluorenes	5.83	0.73		3.39	0.80	
C2-Fluorenes	8.50	0.73		7.64	0.80	
C3-Fluorenes	8.62	0.73		6.53	0.80	
Phenanthrene	4 25	0.34		8.13	0.37	
Anthracene	16.76	0.29		14 91	0.37	
C1-Phenanthrenes/Anthracenes	4 95	0.31		4.13	0.32	
C2-Phenanthrenes/Anthracenes	5.17	0.31		3 13	0.33	
C3-Phenanthrenes/Anthracenes	4 35	0.31		3 56	0.33	
C4-Phenanthrenes/Anthracenes	3 32	0.31		1 73	0.33	
Dibenzothiophene	0.84	0.13		0.75	0.33	
C1-Dibenzothiophenes	4 18	0.15		1.08	0.14	
C2-Dibenzothiophenes	4.10 2.46	0.25		3.87	0.27	
C3-Dibenzothiophenes	2.40	0.25		2.43	0.27	
Fluoranthene	3.16	0.23		2.45	0.27	
Pyrene	1.58	0.34		1.70	0.34	
C1-Fluoranthenes/Pyrenes	3.78	0.54		3.03	0.37	
C2-Fluoranthenes/Pyrenes	1 71	0.05		2.95	0.71	
C3-Fluoranthenes/Pyrenes	0.55	0.65		1.15	0.71	
Benzo(a)anthracene	0.55	0.03		0.68	0.71	
Chrysene	1.21	0.32		1.44	0.33	
C1-Chrysenes	1.21	0.23		1.44	0.28	
C2-Chrysenes	0.84	0.51		1.11	0.50	
C3-Chrysenes	0.04	0.51	ND	0.00	0.50	ND
C4-Chrysenes	0.00	0.51	ND	0.00	0.50	ND
Benzo(b)fluoranthene	0.00	0.51	ND	0.00	0.56	ND T
Benzo(k)fluoranthene	0.05	0.38	т	0.24	0.04	J
Benzo(e)nvrene	0.15	0.40	J	0.12	0.44	J
Benzo(a)pyrene	0.41	0.32	т	0.35	0.35	т
Pervlene	0.52	0.63	J	0.27	0.69	J
Indeno(1,2,3_c,d)nyrene	0.00	0.15	ND	0.00	0.16	ND
Dibenz(a h)anthracene	0.31	0.60	J	0.01	0.65	J
Benzo(g h i)pervlene	0.00	0.31	ND	0.00	0.34	ND
Benzo(g,n,r)peryrene	0.35	0.49	J	0.18	0.54	J
2-Methylnaphthalene	6.81	0.36		3.99	0.39	
I-Methylnaphthalene	5.29	0.44		3.38	0.49	
2,6-Dimethylnaphthalene	4.76	0.23		1.52	0.26	
1,6,7-Trimethylnaphthalene	6.93	0.35		2.08	0.39	
1-Methylphenanthrene	0.96	0.15		0.45	0.17	

B Blank Contamination >3xMDL

Client Sample ID Sample Descriptor Original Sample GERG ID	FCR-C-02 1303	FCR-C-03 1303	
Sample Type	C45325	C45326	
SDG	FCR-C-02	FCR-C-03	
	F1179	F1179	
Dry Weight	3.20	3.84	
Wet Weight	11.81	12.94	
Sample Size Units	Grams	Grams	
Matrix	Tissue	Tissue	
% solid	27.1	29.7	
% Lipid	20.9	28.2	
Reporting Units	ng/g	ng/g	
Calculation Basis (dry/wet)	Wet	Wet	
QC Batch ID	T1465	T1465	
Method	GCMS	GCMS	
Collection Date	12/16/04	12/16/04	
Receive Date	12/18/04	12/18/04	
Analysis Date	01/06/05	01/06/05	
,	01/15/05	01/15/05	
Surrogate Compounds	%Recovery	%Recovery	
d8-Naphthalene	59.6	48.6	
d10-Acenaphthene	94.4	69.9	
d10-Phenanthrene	75.5	63.9	
d12-Chrysene	72.4	75.3	
d12-Perylene	76.5	65.4	
Total PAHs	Concentration	Concentration	
Total PAHs with Perylene	176.7	235.4	
Total PAHs without Perylene	176.7	235.4	
Total NS&T PAHs	62.5	87.6	

- J <MDL NA Not Applicable Q Results Outside QC
- I Interference
- B Blank Contamination >3xMDL

Client Sample ID	FCR-C-02			FCR-C-03		
Sample Descriptor	1303			1303		
Original Sample	1505			1505		
GERG ID	C45325			C45326		
Sample Type	ECR-C-02			ECR-C-03		
SDG	F1179			F1179		
	111//			111//		
PAH Compounds	Concentration	MDL		Concentration	MDL	
Naphthalene	5.45	0.45		7.55	0.41	
C1-Naphthalenes	12.46	0.78		17.11	0.71	
C2-Naphthalenes	19.61	0.45		26.32	0.41	
C3-Naphthalenes	20.80	0.68		27.84	0.62	
C4-Naphthalenes	20.36	0.68		22.35	0.62	
Biphenyl	1.07	0.37		2.54	0.34	
Acenaphthylene	5.59	0.24		5.79	0.22	
Acenaphthene	5.01	0.24		6.33	0.22	
Fluorene	3.83	0.35		5.52	0.32	
C1-Fluorenes	5.47	0.71		6.47	0.64	
C2-Fluorenes	6.69	0.71		11.20	0.64	
C3-Fluorenes	4.11	0.71		7.65	0.64	
Phenanthrene	8.27	0.33		10.70	0.30	
Anthracene	15.18	0.28		20.68	0.25	
C1-Phenanthrenes/Anthracenes	4.20	0.29		8.09	0.27	
C2-Phenanthrenes/Anthracenes	3.74	0.29		5.13	0.27	
C3-Phenanthrenes/Anthracenes	5.13	0.29		6.64	0.27	
C4-Phenanthrenes/Anthracenes	1.37	0.29		2.01	0.27	
Dibenzothiophene	1.41	0.12		2.07	0.11	
C1-Dibenzothiophenes	2.92	0.24		3.83	0.22	
C2-Dibenzothiophenes	4 60	0.24		6.26	0.22	
C3-Dibenzothiophenes	2.93	0.24		2.84	0.22	
Fluoranthene	2.71	0.30		3.49	0.27	
Pyrene	2.47	0.32		3.38	0.30	
C1-Fluoranthenes/Pyrenes	2.23	0.62		3.07	0.57	
C2-Fluoranthenes/Pyrenes	2.30	0.62		3.11	0.57	
C3-Fluoranthenes/Pyrenes	1.09	0.62	ND	1 29	0.57	
Benzo(a)anthracene	0.70	0.31	112	0.58	0.28	
Chrysene	0.56	0.24		2 27	0.20	
C1-Chrysenes	0.54	0.49		0.68	0.45	
C2-Chrysenes	1.87	0.49		0.52	0.45	
C3-Chrysenes	0.00	0.49	ND	0.00	0.45	ND
C4-Chrysenes	0.00	0.49	ND	0.00	0.45	ND
Benzo(b)fluoranthene	0.22	0.49	I	0.18	0.51	I
Benzo(k)fluoranthene	1.29	0.30	3	1.51	0.31	5
Benzo(e)pyrene	0.27	0.39	т	0.23	0.35	т
Benzo(a)pyrene	0.00	0.51	J T	0.25	0.28	J
Pervlene	0.09	0.01	J ND	0.00	0.55	J ND
Indeno(1,2,3-c,d)pyrene	0.00	0.14	T	0.00	0.13	ND
Dibenz(a,h)anthracene	0.04	0.37	J	0.00	0.52	ND
Benzo(g.h.i)pervlene	0.00	0.30	ND I	0.00	0.28	ND I
	0.15	0.48	J	0.11	0.43	J
2-Methylnanhthalene	6 90	0.35		0.32	0.32	
1 Methylnaphthalara	0.07	0.55		7.32	0.32	
2 6-Dimethylpophthalene	2.57	0.45		5.81	0.39	
1.6.7 Trimethylnaphthalona	2.43	0.22		5.01	0.20	
1. Methylphenenthrope	5.05 1.02	0.54		1 22	0.51	
1-memyiphenanunene	1.02	0.13		1.33	0.15	

B Blank Contamination >3xMDL

Client Sample ID	FPP-C-01	FPP-C-02	
Sample Descriptor	1354	1354	
Original Sample	1001	1001	
GERG ID	C45330	C45331	
Sample Type	FPP-C-01	FPP-C-02	
SDG	F1179	F1179	
Dry Weight	2.73	2.21	
Wet Weight	10.89	10.75	
Sample Size Units	Grams	Grams	
Matrix	Tissue	Tissue	
% solid	25.1	20.5	
% Lipid	21.5	14.1	
Reporting Units	ng/g	ng/g	
Calculation Basis (dry/wet)	Wet	Wet	
QC Batch ID	T1465	T1465	
Method	GCMS	GCMS	
Collection Date	12/16/04	12/16/04	
Extraction Date	12/18/04	12/18/04	
Analysis Date	01/06/05	01/06/05	
	01/15/05	01/15/05	
Surrogate Compounds	%Recovery	%Recovery	
d8-Naphthalene	60.0	67.3	
d10-Acenaphthene	89.6	89.9	
d10-Phenanthrene	90.9	83.0	
d12-Chrysene	98.3	82.6	
d12-Perylene	68.3	67.4	
Total PAHs	Concentration	Concentration	
Total PAHs with Perylene	374.8	129.6	
Total PAHs without Perylene	373.7	128.6	
Total NS&T PAHs	85.0	37.2	

- J <MDL NA Not Applicable Q Results Outside QC
- I Interference
- B Blank Contamination >3xMDL

Client Sample ID	FPP-C-01			FPP-C-02		
Sample Descriptor	1354			1354		
Original Sample						
GERG ID	C45330			C45331		
Sample Type	EPP-C-01			FPP-C-02		
SDG	F1179			F1179		
PAH Compounds	Concentration	MDL		Concentration	MDL	
Naphthalene	3.21	0.49		1.44	0.50	
C1-Naphthalenes	6.63	0.84		1.12	0.85	
C2-Naphthalenes	18.85	0.49		2.67	0.49	
C3-Naphthalenes	27.32	0.74		4.43	0.75	
C4-Naphthalenes	33.95	0.74		6.40	0.75	
Biphenyl	3.04	0.40		1.60	0.41	
Acenaphthylene	7.72	0.26		4.21	0.26	
Acenaphthene	2.23	0.26		0.46	0.26	
Fluorene	3.14	0.38		0.61	0.39	
C1-Fluorenes	8.77	0.76		2.56	0.77	
C2-Fluorenes	22.59	0.76		5.92	0.77	
C3-Fluorenes	23.40	0.76		8.65	0.77	
Phenanthrene	14.51	0.36		9.00	0.36	
Anthracene	25.67	0.30		14.65	0.31	
C1-Phenanthrenes/Anthracenes	19.46	0.32		6.14	0.32	
C2-Phenanthrenes/Anthracenes	16.87	0.32		2.31	0.32	
C3-Phenanthrenes/Anthracenes	16.51	0.32		7.36	0.32	
C4-Phenanthrenes/Anthracenes	10.69	0.32		5.16	0.32	
Dibenzothiophene	2.11	0.13		0.35	0.13	
C1-Dibenzothiophenes	9.12	0.26		1.34	0.27	
C2-Dibenzothiophenes	17.16	0.26		3.05	0.27	
C3-Dibenzothiophenes	15.16	0.26		2.26	0.27	
Fluoranthene	2.82	0.33		0.87	0.33	
Pyrene	4.97	0.35		1.65	0.36	
C1-Fluoranthenes/Pyrenes	7.40	0.68		1.54	0.69	
C2-Fluoranthenes/Pyrenes	11.22	0.68		2.62	0.69	
C3-Fluoranthenes/Pyrenes	8.76	0.68		1.95	0.69	
Benzo(a)anthracene	1.90	0.34		0.96	0.34	
Chrysene	3.96	0.26		1.53	0.27	
C1-Chrysenes	6.95	0.53		1.39	0.54	
C2-Chrysenes	8.21	0.53		22.16	0.54	
C3-Chrysenes	2.85	0.53		0.00	0.54	ND
C4-Chrysenes	0.00	0.53	ND	0.00	0.54	ND
Benzo(b)fluoranthene	1.42	0.61		0.46	0.62	J
Benzo(k)fluoranthene	0.29	0.42	J	0.12	0.42	J
Benzo(e)pyrene	1.76	0.33		0.43	0.34	
Benzo(a)pyrene	1.19	0.66		0.40	0.67	J
Perylene	1.11	0.15		0.92	0.15	
Indeno(1,2,3-c,d)pyrene	0.58	0.62	J	0.25	0.63	J
Dibenz(a,h)anthracene	0.36	0.33		0.16	0.33	J
Benzo(g,h,i)perylene	0.90	0.52		0.45	0.52	J
2-Methylnaphthalene	3.37	0.38		0.58	0.38	
1-Methylnaphthalene	3.26	0.47		0.54	0.47	
2,6-Dimethylnaphthalene	5.37	0.24		0.46	0.25	
1.6.7-Trimethylnaphthalene	5.30	0.37		0.73	0.37	
1-Methylphenanthrene	3.12	0.16		0.90	0.16	

B Blank Contamination >3xMDL

Client Sample ID	FPP-C-03	FMH-C-01	
Sample Descriptor	1354	1121	
Original Sample	1001		
GERG ID	C45332	C45339	
Sample Type	EPP-C-03	E43337	
SDG	F1179	F1179	
Dry Weight	2.93	2.70	
Wet Weight	11.52	9.14	
Sample Size Units	Grams	Grams	
Matrix	Tissue	Tissue	
% solid	25.5	29.5	
% Lipid	22.6	18.4	
Reporting Units	ng/g	ng/g	
Calculation Basis (dry/wet)	Wet	Wet	
QC Batch ID	T1465	T1465	
Method	GCMS	GCMS	
Collection Date	12/16/04	12/16/04	
Receive Date	12/18/04	12/18/04	
Analysis Date	01/06/05	01/06/05	
	01/15/05	01/15/05	
Surrogate Compounds	%Recovery	%Recovery	
d8-Naphthalene	70.9	49.9	
d10-Acenaphthene	84.8	109.0	
d10-Phenanthrene	80.2	85.1	
d12-Chrysene	73.9	77.7	
d12-Perylene	83.1	86.1	
Total PAHs	Concentration	Concentration	
Total PAHs with Perylene	140.9	381.7	
Total PAHs without Perylene	140.7	381.7	
Total NS&T PAHs	38.3	143.6	

- J <MDL NA Not Applicable Q Results Outside QC
- I Interference
- B Blank Contamination >3xMDL

Client Sample ID	FPP-C-03			FMH-C-01		
Sample Descriptor	1354			1121		
Original Sample	1001			1121		
GERG ID	C 45332			C45220		
Sample Type	EDD C 02			C43339		
SDG	FFF-C-03			FNIE-C-01		
	F11/9			F11/9		
PAH Compounds	Concentration	MDL		Concentration	MDL	
Naphthalene	1.80	0.46		19.32	0.58	
C1-Naphthalenes	2.83	0.80		54.60	1.00	
C2-Naphthalenes	11.06	0.46		60.03	0.58	
C3-Naphthalenes	13.42	0.70		48.83	0.88	
C4-Naphthalenes	14 94	0.70		40.36	0.88	
Biphenyl	1 18	0.38		1.93	0.48	
Acenaphthylene	5 56	0.24		931	0.31	
Acenaphthene	1.22	0.24		8.58	0.31	
Fluorene	1 31	0.36		5 39	0.46	
C1-Fluorenes	3 36	0.72		5.47	0.10	
C2-Fluorenes	6.96	0.72		10.95	0.91	
C3-Fluorenes	6.92	0.72		7 49	0.91	
Phenanthrene	1.40	0.72		1.49	0.71	
Anthracene	18.26	0.29		32.40	0.45	
C1-Phenanthrenes/Anthracenes	5 77	0.29		8 63	0.30	
C2-Phenanthrenes/Anthracenes	4.74	0.30		6.84	0.38	
C3-Phenanthrenes/Anthracenes	6.31	0.30		10.63	0.38	
C4-Phenanthrenes/Anthracenes	2.22	0.30		5 75	0.38	
Dibenzothiophene	2.33	0.30		2.75	0.38	
C1-Dibenzothiophenes	3.24	0.12		2.34	0.10	
C2-Dibenzothiophenes	5.24	0.23		5.47	0.31	
C3-Dibenzothiophenes	4.03	0.25		1.51	0.31	
Fluoranthene	1.05	0.23		4.74	0.31	
Pyrene	1.40	0.31		2.20	0.39	
C1-Fluoranthenes/Pyrenes	2.10	0.53		2.23	0.42	
C2-Fluoranthenes/Pyrenes	3.08	0.04		4.37	0.81	
C3-Fluoranthenes/Pyrenes	1.20	0.04		4.32	0.81	ND
Benzo(a)anthracene	1.39	0.04		1.38	0.81	ND
Chrysene	0.93	0.32		1.20	0.40	
C1-Chrysenes	1.43	0.23		1.47	0.52	
C2-Chrysenes	1.12	0.50		0.33	0.03	
C3-Chrysenes	1.37	0.30	ND	0.70	0.03	ND
C4-Chrysenes	0.00	0.30		0.00	0.63	ND
Benzo(h)fluoranthene	0.00	0.50	ND	0.00	0.63	ND
Benzo(k)fluoranthene	0.21	0.58	J	0.35	0.73	J
Benzo(e)nvrene	0.14	0.39	J	0.06	0.50	J
Benzo(a)pyrene	0.39	0.31	T	0.30	0.39	J
Pervlene	0.33	0.62	J	0.00	0.78	ND
Indeno(1,2,3-c,d)pyrene	0.26	0.14	T	0.00	0.18	ND
Dibenz(a h)anthracene	0.20	0.59	J	0.00	0.74	ND
Benzo(a h i)pervlene	0.10	0.31	J	0.00	0.39	ND
zenzo(g,n,r)peryrene	0.29	0.49	J	0.17	0.62	J
2-Methylnanhthalene	1 54	0.36		31.80	0.45	
1-Methylnaphthalene	1.54	0.30		22.80	0.55	
2 6-Dimethylnaphthalene	2 27	0.44		6 95	0.55	
1.6.7-Trimethylnaphthalene	3.03	0.25		6/1	0.27	
1-Methylphenanthrepe	0.85	0.55		1 28	0.19	
· ·····	0.00	0.15		1.20	0.17	

I Interference

B Blank Contamination >3xMDL

Client Sample ID Sample Descriptor Original Sample	MH-C-02 1145	MH-C-03 1145	
GERG ID	C45340	C45341	
Sample Type	MH-C-02	MH-C-03	
200	F1179	F1179	
Dry Weight	2.87	2.88	
Wet Weight	12.46	11.68	
Sample Size Units	Grams	Grams	
Matrix	Tissue	Tissue	
% solid	23.0	24.7	
% Lipid	12.9	14.9	
Reporting Units	ng/g	ng/g	
Calculation Basis (dry/wet)	Wet	Wet	
QC Batch ID	T1465	T1465	
Method	GCMS	GCMS	
Collection Date	12/16/04	12/16/04	
Receive Date	12/18/04	12/18/04	
Analysis Date	01/06/05	01/06/05	
	01/15/05	01/15/05	
Surrogate Compounds	%Recovery	%Recovery	
d8-Naphthalene	78.6	77.0	
d10-Acenaphthene	76.2	106.5	
d10-Phenanthrene	78.2	109.4	
d12-Chrysene	59.7	83.2	
d12-Perylene	83.1	93.6	
Total PAHs	Concentration	Concentration	
Total PAHs with Perylene	247.7	353.5	
Total PAHs without Perylene	247.7	353.5	
Total NS&T PAHs	72.5	113.7	

J <MDL NA Not Applicable Q Results Outside QC

I Interference

B Blank Contamination >3xMDL

Client Sample ID	MH-C-02			MH-C-03		
Sample Descriptor	1145			1145		
Original Sample						
GERG ID	C45340			C45341		
Sample Type	MH-C-02			MH-C-03		
SDG	F1179			F1179		
PAH Compounds	Concentration	MDL		Concentration	MDL	
Naphthalene	7.37	0.43		10.66	0.46	
C1-Naphthalenes	23.84	0.74		33.55	0.78	
C2-Naphthalenes	43.80	0.43		60.25	0.45	
C3-Naphthalenes	32.17	0.64		50.59	0.69	
C4-Naphthalenes	22.18	0.64		28.04	0.69	
Biphenyl	1.97	0.35		1.94	0.38	
Acenaphthylene	7.19	0.22		10.97	0.24	
Acenaphthene	7.45	0.22		10.07	0.24	
Fluorene	4.35	0.33		6.61	0.36	
C1-Fluorenes	7.91	0.67		8.84	0.71	
C2-Fluorenes	7.95	0.67		12.33	0.71	
C3-Fluorenes	9.52	0.67		11.95	0.71	
Phenanthrene	4.25	0.31		5.27	0.33	
Anthracene	7.86	0.26		22.98	0.28	
C1-Phenanthrenes/Anthracenes	6.79	0.28		12.80	0.30	
C2-Phenanthrenes/Anthracenes	9.36	0.28		7.92	0.30	
C3-Phenanthrenes/Anthracenes	5.58	0.28		7.71	0.30	
C4-Phenanthrenes/Anthracenes	2.22	0.28		3.15	0.30	
Dibenzothiophene	1.25	0.11		2.81	0.12	
C1-Dibenzothiophenes	3.05	0.23		6.71	0.24	
C2-Dibenzothiophenes	5.95	0.23		8.96	0.24	
C3-Dibenzothiophenes	4.90	0.23		6.31	0.24	
Fluoranthene	1.41	0.28		2.92	0.30	
Pyrene	0.99	0.31		1.87	0.33	
C1-Fluoranthenes/Pyrenes	2.36	0.59		3.94	0.63	
C2-Fluoranthenes/Pyrenes	2.62	0.59		2.81	0.63	
C3-Fluoranthenes/Pyrenes	2.16	0.59		1.73	0.63	
Benzo(a)anthracene	0.47	0.29		1.48	0.31	
Chrysene	1.75	0.23		2.31	0.25	
C1-Chrysenes	1.39	0.46		1.51	0.49	
C2-Chrysenes	2.11	0.46		0.92	0.49	
C3-Chrysenes	0.64	0.46		0.46	0.49	J
C4-Chrysenes	0.00	0.46	ND	0.00	0.49	ND
Benzo(b)fluoranthene	0.57	0.53		0.27	0.57	J
Benzo(k)fluoranthene	3.54	0.36		2.07	0.39	
Benzo(e)pyrene	0.49	0.29		0.63	0.31	
Benzo(a)pyrene	0.00	0.57	ND	0.00	0.61	ND
Perylene	0.00	0.13	ND	0.00	0.14	ND
Indeno(1,2,3-c,d)pyrene	0.11	0.54	J	0.00	0.58	ND
Dibenz(a,h)anthracene	0.00	0.29	ND	0.00	0.31	ND
Benzo(g,h,i)perylene	0.16	0.45	J	0.17	0.48	J
2-Methylnaphthalene	13 37	0 33		19.00	0 35	
1-Methylnaphthalene	10.47	0.55		14.55	0.43	
2 6-Dimethylnaphthalene	8 57	0.71		12.08	0.43	
1.6.7-Trimethylnaphthalene	9.09	0.21		11.55	0.23	
1-Methylphenanthrene	1.76	0.14		1.31	0.15	
	1.70				0.10	

J <MDL NA Not Applicable Q Results Outside QC

I Interference

B Blank Contamination >3xMDL

Client Sample ID Sample Descriptor Original Sample GERG ID Sample Type SDG	TI3-C-01 1022 C45342 TI3-C-01	TI3-C-02 1022 C45343 TI3-C-02
	F1179	F1179
Dry Weight	3.94	3.19
Wet Weight	11.40	11.59
Sample Size Units	Grams	Grams
Matrix	Tissue	Tissue
% solid	34.6	27.5
% Lipid	31.7	21.6
Reporting Units	ng/g	ng/g
Calculation Basis (dry/wet)	Wet	Wet
QC Batch ID	T1465	T1465
Method	GCMS	GCMS
Collection Date	12/16/04	12/16/04
Receive Date	12/18/04	12/18/04
Analysis Date	01/06/05	01/06/05
	01/15/05	01/15/05
Surrogate Compounds	%Recovery	%Recovery
d8-Naphthalene	68.5	61.9
d10-Acenaphthene	173.1	Q 96.1
d10-Phenanthrene	99.6	72.9
d12-Chrysene	86.7	67.5
d12-Perylene	80.8	73.0
Total PAHs	Concentration	Concentration
Total PAHs with Perylene	439.3	273.8
Total PAHs without Perylene	439.3	273.8
Total NS&T PAHs	172.9	121.8

- J <MDL NA Not Applicable Q Results Outside QC
- Interference I
- B Blank Contamination >3xMDL

Client Sample ID	TI3-C-01			TI3-C-02		
Sample Descriptor	1022			1022		
Original Sample						
GERG ID	C45342			C45343		
Sample Type	TI3-C-01			TI3-C-02		
SDG	F1170			F1170		
	11179			11177		
PAH Compounds	Concentration	MDL		Concentration	MDL	
Naphthalene	23.33	0.47		14.81	0.46	
C1-Naphthalenes	45.42	0.80		36.68	0.79	
C2-Naphthalenes	50.40	0.47		39.50	0.46	
C3-Naphthalenes	50.70	0.70		30.09	0.69	
C4-Naphthalenes	41.64	0.70		20.29	0.69	
Biphenyl	1.41	0.39		2.26	0.38	
Acenaphthylene	10.81	0.25		6.47	0.24	
Acenaphthene	7.28	0.25		10.55	0.24	
Fluorene	5.82	0.37		6.04	0.36	
C1-Fluorenes	7.30	0.73		4.93	0.72	
C2-Fluorenes	12.64	0.73		7.37	0.72	
C3-Fluorenes	8.66	0.73		5.74	0.72	
Phenanthrene	10.25	0.34		12.44	0.34	
Anthracene	54.61	0.29		22.39	0.28	
C1-Phenanthrenes/Anthracenes	14.01	0.31		7.68	0.30	
C2-Phenanthrenes/Anthracenes	9.80	0.31		4 86	0.30	
C3-Phenanthrenes/Anthracenes	14.86	0.31		6.78	0.30	
C4-Phenanthrenes/Anthracenes	5.11	0.31		1.48	0.30	
Dibenzothiophene	3.74	0.13		1.88	0.12	
C1-Dibenzothiophenes	7.80	0.25		4 16	0.25	
C2-Dibenzothiophenes	9.78	0.25		5 37	0.25	
C3-Dibenzothiophenes	8.50	0.25		3.30	0.25	
Fluoranthene	5.87	0.31		3 54	0.31	
Pvrene	3.24	0.34		2.21	0.33	
C1-Fluoranthenes/Pyrenes	7.80	0.65		2.80	0.64	
C2-Fluoranthenes/Pyrenes	5.87	0.65		2.52	0.64	
C3-Fluoranthenes/Pyrenes	2.11	0.65	ND	0.00	0.64	ND
Benzo(a)anthracene	1.72	0.32	112	1.12	0.32	112
Chrysene	4 52	0.25		1.81	0.25	
C1-Chrysenes	1.74	0.51		0.77	0.50	
C2-Chrysenes	1.62	0.51		1 33	0.50	
C3-Chrysenes	0.00	0.51	ND	0.00	0.50	ND
C4-Chrysenes	0.00	0.51	ND	0.00	0.50	ND
Benzo(b)fluoranthene	0.37	0.58	J	0.00	0.57	J
Benzo(k)fluoranthene	0.07	0.40	T	2.04	0.39	
Benzo(e)pyrene	0.35	0.10	5	0.26	0.31	T
Benzo(a)pyrene	0.00	0.63	ND	0.00	0.62	ND
Perylene	0.00	0.05	ND	0.00	0.02	ND
Indeno(1,2,3-c,d)pyrene	0.00	0.19	ND	0.00	0.58	ND
Dibenz(a,h)anthracene	0.00	0.31	ND	0.00	0.30	ND
Benzo(g,h,i)perylene	0.13	0.49	J	0.10	0.49	J
					,	
2-Methylnaphthalene	25 56	0.36		21.00	0.35	
1-Methylnaphthalene	19.86	0.44		15.68	0.44	
2.6-Dimethylpaphthalene	6.76	0.23		6.69	0.23	
1.6.7-Trimethylnaphthalene	5.88	0.35		6.36	0.35	
1-Methylphenanthrene	2.34	0.15		0.97	0.15	

J <MDL NA Not Applicable Q Results Outside QC I Interference

B Blank Contamination >3xMDL

Client Sample ID Sample Descriptor Original Sample GERG ID Sample Type SDG	TI3-C-03 1022 C45344 TI3-C-03 F1179	
Dry Weight Wet Weight Sample Size Units Matrix % solid % Lipid Reporting Units Calculation Basis (dry/wet)	3.32 10.55 Grams Tissue 31.5 27.5 ng/g Wet	
QC Batch ID Method Collection Date Receive Date Extraction Date Analysis Date	T1465 GCMS 12/16/04 12/18/04 01/06/05 01/15/05	
Surrogate Compounds d8-Naphthalene d10-Acenaphthene d10-Phenanthrene d12-Chrysene d12-Perylene	%Recovery 72.7 97.2 64.7 59.3 75.7	
Total PAHs Total PAHs with Perylene Total PAHs without Perylene Total NS&T PAHs	Concentration 464.3 464.3 186.6	

- J <MDL NA Not Applicable Q Results Outside QC
- I Interference
- B Blank Contamination >3xMDL

Client Sample ID	TI3-C-03		
Sample Descriptor	1022		
Original Sample			
GERG ID	C45344		
Sample Type	TI3-C-03		
SDG	F1179		
PAH Compounds	Concentration	MDL	
Naphthalene	21.00	0.50	
C1-Naphthalenes	42.69	0.87	
C2-Naphthalenes	70.73	0.50	
C3-Naphthalenes	61.84	0.76	
C4-Naphthalenes	42.45	0.76	
Biphenyl	3.25	0.42	
Acenaphthylene	11.79	0.27	
Acenaphthene	28.87	0.27	
Fluorene	11.08	0.39	
C1-Fluorenes	10.47	0.79	
C2-Fluorenes	12.29	0.79	
C3-Fluorenes	8.76	0.79	
Phenanthrene	13.17	0.37	
Anthracene	37.89	0.31	
C1-Phenanthrenes/Anthracenes	15.89	0.33	
C2-Phenanthrenes/Anthracenes	6.64	0.33	
C3-Phenanthrenes/Anthracenes	11.37	0.33	
C4-Phenanthrenes/Anthracenes	3.52	0.33	
Dibenzothiophene	4.56	0.14	
C1-Dibenzothiophenes	6.72	0.27	
C2-Dibenzothiophenes	5.87	0.27	
C3-Dibenzothiophenes	3.76	0.27	
Fluoranthene	7.10	0.34	
Pyrene	4.61	0.36	
C1-Fluoranthenes/Pyrenes	5.45	0.70	
C2-Fluoranthenes/Pyrenes	5.07	0.70	
C3-Fluoranthenes/Pyrenes	0.00	0.70	ND
Benzo(a)anthracene	1.72	0.35	
Chrysene	2.32	0.27	
C1-Chrysenes	1.59	0.55	
C2-Chrysenes	0.58	0.55	
C3-Chrysenes	0.00	0.55	ND
C4-Chrysenes	0.00	0.55	ND
Benzo(b)fluoranthene	0.35	0.63	J
Benzo(k)fluoranthene	0.46	0.43	
Benzo(e)pyrene	0.28	0.34	J
Benzo(a)pyrene	0.00	0.68	ND
Perylene	0.00	0.16	ND
Indeno(1,2,3-c,d)pyrene	0.00	0.64	ND
Dibenz(a,h)anthracene	0.00	0.34	ND
Benzo(g,h,i)perylene	0.14	0.53	J
	· · ·		
2-Methylnaphthalene	24 75	0 39	
1-Methylnaphthalene	17.94	0.48	
2 6-Dimethylnaphthalene	10.87	0.40	
1 6 7-Trimethylnaphthalene	13 50	0.38	
1-Methylphenanthrene	1.72	0.16	

J <MDL NA Not Applicable Q Results Outside QC

I Interference

B Blank Contamination >3xMDL

Appendix G.3. Striped Bass tissue data.

Source	NJ DEP	NJ DEP	
Client Sample ID	NJDB-01	NJDB-02	
Sample Descriptor	Fillet	Fillet	
Original Sample			
GERG ID	C46568	C46570	
Sample Type	SAMP	SAMP	
SDG	F7234	F7234	
Dry Weight	2.13	2.39	
Wet Weight	10.04	10.27	
Sample Size Units	Grams	Grams	
Matrix	tissue	tissue	
% solid	21.3	23.3	
% Lipid	3.7	7.2	
Reporting Units	ng/g	ng/g	
Calculation Basis (dry/wet)	Wet	Wet	
QC Batch ID	T1499	T1499	
Method	GCMS	GCMS	
Collection Date	05/03/05	05/03/05	
Receive Date	07/21/05	07/21/05	
Extraction Date	08/30/05	08/30/05	
Analysis Date	09/10/05	09/10/05	
Surrogate Compounds	%Recovery	%Recovery	
d8-Naphthalene	49.5	46.3	
d10-Acenaphthene	64.3	68.1	
d10-Phenanthrene	70.2	75.6	
d12-Chrysene	62.8	64.5	
d12-Perylene	66.6	69.6	
Total PAHs	Concentration	Concentration	
Total PAHs with Perylene	10.4	10.2	
Total PAHs without Perylene	10.3	10.1	
Total NS&T PAHs	5.2	7.1	

ATHOS I Oil Spill

 ND
 Not Detected

 J
 <MDL</td>

 NA
 Not Applicable

 Q
 Results Outside QC

I Interference B Blank Contamination >3xMDL

D Dilution

Page 1 Printed 9/15/2005

Client Sample ID	NJDB-01			NJDB-02		
Sample Descriptor	Fillet			Fillet		
Original Sample						
GERG ID	C46568			C46570		
Sample Type	SAMP			SAMP		
SDG	F7234			F7234		
	C 1 1	MDI		C i i	MDI	
PAH Compounds	Concentration	NDL		Concentration	MDL	
Naphthalene	1.13	0.53		1.21	0.52	
C1-Naphthalenes	1.11	0.91	NID	1.49	0.89	
C2-Naphthalenes	0.00	0.53	ND	1.17	0.52	ND
C3-Naphthalenes	0.00	0.80	ND	0.00	0.78	ND
C4-Naphthalenes	4.12	0.80	т	0.00	0.78	ND
Biphenyi	0.41	0.44	J	0.45	0.43	
Acenaphthylene	0.41	0.28	т	1.05	0.27	
Acenaphthene	0.23	0.28	J	0.32	0.27	
Fluorene	0.54	0.41	NID	0.59	0.41	ND
C1-Fluorenes	0.00	0.83	ND	0.00	0.81	ND
C2-Fluorenes	0.00	0.83	ND	0.00	0.81	ND
C3-Fluorenes	0.00	0.83	ND	0.00	0.81	ND
Phenanthrene	0.37	0.39		0.56	0.38	
Anthracene	0.65	0.33		1.61	0.32	
C1-Phenanthrenes/Anthracenes	0.46	0.35	NID	0.59	0.34	NID
C2-Phenanthrenes/Anthracenes	0.00	0.35	ND	0.00	0.34	ND
C3-Phenanthrenes/Anthracenes	0.00	0.35	ND	0.00	0.34	ND
C4-Phenanthrenes/Anthracenes	0.00	0.35	ND	0.00	0.34	ND
Dibenzothiophene	0.12	0.14	J	0.15	0.14	
C1-Dibenzothiophenes	0.00	0.28	ND	0.00	0.28	ND
C2-Dibenzothiophenes	0.00	0.28	ND	0.00	0.28	ND
C3-Dibenzothiophenes	0.00	0.28	ND	0.00	0.28	ND
Fluoranthene	0.13	0.35	J	0.13	0.35	J
Pyrene	0.11	0.38	J	0.25	0.37	J
C1-Fluoranthenes/Pyrenes	0.00	0.73	ND	0.00	0.72	ND
C2-Fluoranthenes/Pyrenes	0.00	0.73	ND	0.00	0.72	ND
C3-Fluoranthenes/Pyrenes	0.00	0.73	ND	0.00	0.72	ND
Benzo(a)anthracene	0.06	0.37	J	0.20	0.36	J
Chrysene	0.00	0.29	ND	0.00	0.28	ND
C1-Chrysenes	0.00	0.57	ND	0.00	0.56	ND
C2-Chrysenes	0.00	0.57	ND	0.00	0.56	ND
C3-Chrysenes	0.00	0.57	ND	0.00	0.56	ND
C4-Chrysenes	0.00	0.57	ND	0.00	0.56	ND
Benzo(b)fluoranthene	0.07	0.66	J	0.00	0.65	ND
Benzo(k)fluoranthene	0.14	0.45	J	0.10	0.44	J
Benzo(e)pyrene	0.05	0.36	J	0.05	0.35	J
Benzo(a)pyrene	0.07	0.71	J	0.05	0.70	J
Perylene	0.10	0.16	J	0.08	0.16	J
Indeno(1,2,3-c,d)pyrene	0.04	0.68	J	0.06	0.66	J
Dibenz(a,h)anthracene	0.01	0.36	J	0.04	0.35	J
Benzo(g,h,i)perylene	0.03	0.56	J	0.03	0.55	J
2-Methylnaphthalene	0.69	0.41		0.91	0.40	
1-Methylnaphthalene	0.42	0.50	J	0.58	0.49	
2.6-Dimethylnaphthalene	0.17	0.26	Ĵ	0.11	0.26	J
1.6.7-Trimethylnaphthalene	0.09	0.40	J	0.11	0.39	J
1-Methylphenanthrene	0.08	0.17	J	0.00	0.17	ND
			-			

 ND
 Not Detected

 J
 <MDL</td>

 NA
 Not Applicable

 Q
 Results Outside QC

 I
 Interference

 B
 Blank Contamination >3xMDL

D Dilution

Page 2 Printed 9/15/2005

Source	NJ DEP	NJ DEP	
Client Sample ID	NJDB-03	NJDB-04	
Sample Descriptor	Fillet	Fillet	
Original Sample			
GERG ID	C46572	C46574	
Sample Type	SAMP	SAMP	
SDG	F7234	F7234	
Dry Weight	2.29	2.11	
Wet Weight	10.00	10.32	
Sample Size Units	Grams	Grams	
Matrix	tissue	tissue	
% solid	22.9	20.5	
% Lipid	2.2	4.4	
Reporting Units	ng/g	ng/g	
Calculation Basis (dry/wet)	Wet	Wet	
QC Batch ID	T1499	T1499	
Method	GCMS	GCMS	
Collection Date	05/10/05	05/10/05	
Receive Date	07/21/05	07/21/05	
Extraction Date	08/30/05	08/30/05	
Analysis Date	09/10/05	09/10/05	
Surrogate Compounds	%Recovery	%Recovery	
d8-Naphthalene	68.4	51.4	
d10-Acenaphthene	75.7	66.8	
d10-Phenanthrene	79.2	74.9	
d12-Chrysene	72.3	66.0	
d12-Perylene	75.0	66.2	
Total PAHs	Concentration	Concentration	
Total PAHs with Perylene	11.1	7.2	
Total PAHs without Perylene	11.1	7.2	
Total NS&T PAHs	5.7	5.8	

ND Not Detected J <MDL

NA Not Applicable Q Results Outside QC I Interference

I Interference B Blank Contamination >3xMDL D Dilution

Page 3 Printed 9/15/2005

Client Sample ID	NJDB-03			NJDB-04		
Sample Descriptor	Fillet			Fillet		
Original Sample						
GERG ID	C46572			C46574		
Sample Type	SAMP			SAMP		
SDG	F7234			F7234		
		MDI				
PAH Compounds	Concentration	MDL		Concentration	MDL	
Naphthalene	1.70	0.53		1.33	0.52	
C1-Naphthalenes	1.96	0.92		1.32	0.89	
C2-Naphthalenes	0.70	0.53	ND	1.07	0.51	ND
C3-Naphthalenes	0.00	0.80	ND	0.00	0.78	ND
C4-Naphthalenes	4.32	0.80		0.00	0.78	ND
Biphenyl	0.36	0.44	J	0.39	0.43	J
Acenaphthylene	0.18	0.28	J	0.25	0.27	J
Acenaphthene	0.12	0.28	J	0.17	0.27	J
Fluorene	0.30	0.42	J	0.42	0.40	
C1-Fluorenes	0.00	0.83	ND	0.00	0.81	ND
C2-Fluorenes	0.00	0.83	ND	0.00	0.81	ND
C3-Fluorenes	0.00	0.83	ND	0.00	0.81	ND
Phenanthrene	0.39	0.39		0.37	0.38	J
Anthracene	0.30	0.33	J	0.48	0.32	
C1-Phenanthrenes/Anthracenes	0.22	0.35		0.64	0.34	
C2-Phenanthrenes/Anthracenes	0.00	0.35	ND	0.00	0.34	ND
C3-Phenanthrenes/Anthracenes	0.00	0.35	ND	0.00	0.34	ND
C4-Phenanthrenes/Anthracenes	0.00	0.35	ND	0.00	0.34	ND
Dibenzothiophene	0.10	0.14	J	0.11	0.14	J
C1-Dibenzothiophenes	0.00	0.29	ND	0.00	0.28	ND
C2-Dibenzothiophenes	0.00	0.29	ND	0.00	0.28	ND
C3-Dibenzothiophenes	0.00	0.29	ND	0.00	0.28	ND
Fluoranthene	0.11	0.35	J	0.13	0.34	J
Pyrene	0.09	0.38	J	0.21	0.37	l
C1-Fluoranthenes/Pyrenes	0.00	0.74	ND	0.00	0.71	ND
C2-Fluoranthenes/Pyrenes	0.00	0.74	ND	0.00	0.71	ND
C3-Fluoranthenes/Pyrenes	0.00	0.74	ND	0.00	0.71	ND
Benzo(a)anthracene	0.00	0.37	ND	0.00	0.36	ND
Chrysene	0.00	0.29	ND	0.00	0.28	ND
C1-Chrysenes	0.00	0.58	ND	0.00	0.56	ND
C2-Chrysenes	0.00	0.58	ND	0.00	0.56	ND
C3-Chrysenes	0.00	0.58	ND	0.00	0.56	ND
C4-Chrysenes	0.00	0.58	ND	0.00	0.56	ND
Benzo(b)fluoranthene	0.01	0.67	J	0.01	0.65	J
Benzo(k)fluoranthene	0.10	0.45	J	0.11	0.44	J
Benzo(e)pyrene	0.03	0.36	J	0.04	0.35	J
Benzo(a)pyrene	0.00	0.72	ND	0.05	0.69	J
Perylene	0.03	0.17	J	0.08	0.16	J
Indeno(1,2,3-c,d)pyrene	0.03	0.68	J	0.02	0.66	J
Dibenz(a,h)anthracene	0.02	0.36	J	0.02	0.35	J
Benzo(g,h,i)perylene	0.01	0.56	J	0.01	0.54	J
2-Methylnaphthalene	1.27	0.41		0.78	0.40	
1-Methylnaphthalene	0.69	0.51		0.54	0.49	
2,6-Dimethylnaphthalene	0.16	0.27	J	0.12	0.26	J
1,6,7-Trimethylnaphthalene	0.07	0.40	J	0.14	0.39	J
1-Methylphenanthrene	0.09	0.17	J	0.69	0.17	

ND Not Detected J <MDL NA Not Applicable Q Results Outside QC I Interference B Blank Contamination >3xMDL D Dilution

Page 4 Printed 9/15/2005

Source	NJ DEP	NJ DEP	
Client Sample ID	NJDB-05	NJDB-05	
Sample Descriptor	Fillet	Filet	
Original Sample		C46576	
GERG ID	C46576	Q22251	
Sample Type	SAMP	DUP	
SDG	F7234	F7234	
Dry Weight	2.39	2.35	
Wet Weight	10.05	10.09	
Sample Size Units	Grams	Grams	
Matrix	tissue		
% solid	23.7	23.3	
% Lipid	8.9	9.5	
Reporting Units	ng/g	ng/g	
Calculation Basis (dry/wet)	Wet	Wet	
QC Batch ID	T1499	T1499	
Method	GCMS	GCMS	
Collection Date	05/11/05	05/11/05	
Receive Date	07/21/05	07/21/05	
Extraction Date	08/30/05	08/30/05	
Analysis Date	09/10/05	09/10/05	
Surrogate Compounds	%Recovery	% Recovery	
d8-Naphthalene	49.7	54.3	
d10-Acenaphthene	68.4	70.6	
d10-Phenanthrene	69.9	79.1	
d12-Chrysene	63.8	68.3	
d12-Perylene	66.9	73.0	
Total PAHs	Concentration	Concentration	
Total PAHs with Perylene	13.5	15.7	
Total PAHs without Perylene	13.4	15.6	
Total NS&T PAHs	8.4	9.1	

ND Not Detected J <MDL NA Not Applicable Q Results Outside QC I Interference B Blank Contamination >3xMDL D Division

D Dilution

Page 5 Printed 9/15/2005
Client Sample ID	NJDB-05			NJDB-05		
Sample Descriptor	Fillet			Filet		
Original Sample				C46576		
GERG ID	C46576			O22251		
Sample Type	SAMP			DUP		
SDG	F7234			F7234		
PAH Compounds	Concentration	MDI		Concentration	MDI	
Nonhthalana	2.01	0.52		2.17	0.52	
C1 Naphthalanas	2.51	0.55		2.17	0.55	
C2 Naphthalenes	2.55	0.91		2.70	0.91	
C2-Naphthalanas	0.00	0.33	ND	0.00	0.33	ND
C4 Naphthalanas	0.00	0.80	ND	0.00	0.80	ND
C4-Naphthalenes	0.00	0.80	ND	0.00	0.80	ND
Accommentation	0.44	0.44		0.52	0.44	
Acenaphinylene	0.42	0.28	T	0.37	0.28	
Element	0.27	0.28	J	0.29	0.28	
Fluorene C1 Elucronec	0.60	0.41		0.72	0.41	
C2 Elucrenes	2.00	0.83	ND	2.80	0.83	ND
C2-Fluorenes	0.00	0.83	ND	0.00	0.83	ND
C3-Fluorenes	0.00	0.83	ND	0.00	0.83	ND
Phenanthrene	0.60	0.39		0.65	0.39	
Anthracene	1.14	0.33		1.05	0.33	
C1-Phenanthrenes/Anthracenes	0.30	0.35	J	1.15	0.34	
C2-Phenanthrenes/Anthracenes	0.00	0.35	ND	0.00	0.34	ND
C3-Phenanthrenes/Anthracenes	0.00	0.35	ND	0.00	0.34	ND
C4-Phenanthrenes/Anthracenes	0.00	0.35	ND	0.00	0.34	ND
Dibenzothiophene	0.20	0.14		0.18	0.14	
C1-Dibenzothiophenes	0.00	0.28	ND	0.00	0.28	ND
C2-Dibenzothiophenes	0.00	0.28	ND	0.00	0.28	ND
C3-Dibenzothiophenes	0.00	0.28	ND	0.00	0.28	ND
Fluoranthene	0.17	0.35	J	0.19	0.35	l
Pyrene	0.12	0.38	J	0.23	0.38	l
C1-Fluoranthenes/Pyrenes	0.00	0.73	ND	0.00	0.73	ND
C2-Fluoranthenes/Pyrenes	0.00	0.73	ND		0.73	ND
C3-Fluoranthenes/Pyrenes	0.00	0.73	ND		0.73	ND
Benzo(a)anthracene	0.13	0.36	J	0.10	0.36	J
Chrysene	0.00	0.29	ND	0.00	0.29	ND
C1-Chrysenes	0.00	0.57	ND	0.00	0.57	ND
C2-Chrysenes	0.00	0.57	ND	0.00	0.57	ND
C3-Chrysenes	0.00	0.57	ND	0.00	0.57	ND
C4-Chrysenes	0.00	0.57	ND	0.00	0.57	ND
Benzo(b)fluoranthene	0.02	0.66	J	0.08	0.66	J
Benzo(k)fluoranthene	0.09	0.45	J	0.12	0.45	J
Benzo(e)pyrene	0.00	0.36	ND	0.08	0.36	J
Benzo(a)pyrene	0.03	0.71	J	0.04	0.71	J
Perylene	0.14	0.16	J	0.09	0.16	J
Indeno(1,2,3-c,d)pyrene	0.01	0.67	J	0.05	0.67	J
Dibenz(a,h)anthracene	0.03	0.36	J	0.02	0.36	l
Benzo(g,h,i)perylene	0.01	0.56	J	0.09	0.56	J
2-Mathylnanhthalana	1.57	0.41		1.75	0.41	
2-Methylnaphthalene	0.96	0.41		1.75	0.41	
2.6 Dimothylnophtholono	0.90	0.50	T	0.20	0.50	т
2,0-Dimenty maphilatene	0.10	0.20	J	0.20	0.20	J
1.Methylphenanthrane	0.09	0.40	ND	0.19	0.40	ND
r-meany ipnentation ene	0.00	0.1/		0.00	0.17	

ND Not Detected J <MDL NA Not Applicable Q Results Outside QC I Interference P Black Contamination

B Blank Contamination >3xMDL

D Dilution

Page 6 Printed 9/15/2005

Source	PA DEP	PA DEP	
Client Sample ID	UPTPBFT-A	UPTPBFT-B	
Sample Descriptor	Fillet	Fillet	
Original Sample			
GERG ID	C46624	C46626	
Sample Type	SAMP	SAMP	
SDG	F8241	F8241	
Dry Weight	2.32	1.96	
Wet Weight	10.25	10.05	
Sample Size Units	Grams	Grams	
Matrix	Tissue	Tissue	
% solid	22.7	19.5	
% Lipid	1.6	1.7	
Reporting Units	ng/g	ng/g	
Calculation Basis (dry/wet)	Wet	Wet	
QC Batch ID	T1499	T1499	
Method	GCMS	GCMS	
Collection Date	07/06/05	07/06/05	
Receive Date	08/04/05	08/04/05	
Extraction Date	08/30/05	08/30/05	
Analysis Date	09/10/05	09/10/05	
Surrogate Compounds	%Recovery	%Recovery	
d8-Naphthalene	45.3	41.0	
d10-Acenaphthene	61.7	57.8	
d10-Phenanthrene	69.0	72.2	
d12-Chrysene	67.3	67.3	
d12-Perylene	70.1	63.5	
Total PAHs	Concentration	Concentration	
Total PAHs with Perylene	47.8	21.1	
Total PAHs without Perylene	47.5	21.0	
Total NS&T PAHs	18.4	11.0	

ND Not Detected J <MDL

- NA Not Applicable Q Results Outside QC
- I Interference B Blank Contamination >3xMDL D Dilution

Client Sample ID	UPTPBFT-A			UPTPBFT-B		
Sample Descriptor	Fillet			Fillet		
Original Sample						
GERG ID	C46624			C46626		
Sample Type	SAMP			SAMP		
SDG	F8241			F8241		
PAH Compounds	Concentration	MDL		Concentration	MDL	
Naphthalene	1.53	0.52		2.33	0.53	
C1-Naphthalenes	4.95	0.89		2.61	0.91	
C2-Naphthalenes	7.31	0.52		1.45	0.53	
C3-Naphthalenes	6.92	0.78		0.00	0.80	ND
C4-Naphthalenes	4.22	0.78		0.00	0.80	ND
Biphenvl	0.56	0.43		0.33	0.44	J
Acenaphthylene	0.21	0.27	J	0.79	0.28	
Acenaphthene	1.19	0.27		0.42	0.28	
Fluorene	2.39	0.41		0.54	0.41	
C1-Fluorenes	3.43	0.81		0.00	0.83	ND
C2-Fluorenes	2.24	0.81		2.85	0.83	
C3-Fluorenes	3.07	0.81		2.84	0.83	
Phenanthrene	3.11	0.38		0.71	0.39	
Anthracene	1.29	0.32		1.20	0.33	
C1-Phenanthrenes/Anthracenes	0.90	0.34		1.29	0.35	
C2-Phenanthrenes/Anthracenes	0.00	0.34	ND	0.00	0.35	ND
C3-Phenanthrenes/Anthracenes	0.00	0.34	ND	0.00	0.35	ND
C4-Phenanthrenes/Anthracenes	0.00	0.34	ND	0.00	0.35	ND
Dibenzothiophene	0.59	0.14	1.12	0.13	0.14	J
C1-Dibenzothiophenes	0.51	0.28		0.00	0.28	ND
C2-Dibenzothiophenes	0.00	0.28	ND	0.00	0.28	ND
C3-Dibenzothiophenes	0.00	0.28	ND	0.00	0.28	ND
Fluoranthene	0.84	0.35		0.68	0.35	
Pyrene	0.34	0.37	I	0.65	0.38	
C1-Fluoranthenes/Pyrenes	0.00	0.72	ND	0.00	0.73	ND
C2-Fluoranthenes/Pyrenes	0.00	0.72	ND	0.00	0.73	ND
C3-Fluoranthenes/Pyrenes	0.00	0.72	ND	0.00	0.73	ND
Benzo(a)anthracene	0.11	0.36	J	0.16	0.36	J
Chrysene	0.10	0.28	J	0.28	0.29	l
C1-Chrysenes	0.00	0.56	ND	0.00	0.57	ND
C2-Chrysenes	0.00	0.56	ND	0.00	0.57	ND
C3-Chrysenes	0.00	0.56	ND	0.00	0.57	ND
C4-Chrysenes	0.00	0.56	ND	0.00	0.57	ND
Benzo(b)fluoranthene	0.09	0.65	J	0.31	0.66	J
Benzo(k)fluoranthene	0.23	0.44	J	0.28	0.45	Ţ
Benzo(e)pyrene	0.18	0.35	J	0.33	0.36	Ţ
Benzo(a)pyrene	0.21	0.70	J	0.31	0.71	J
Pervlene	0.28	0.16	U	0.14	0.16	1
Indeno(1.2.3-c.d)pyrene	0.35	0.66	I	0.25	0.67	I
Dibenz(a h)anthracene	0.25	0.35	I	0.08	0.36	J
Benzo(g,h,i)perylene	0.38	0.55	J	0.17	0.56	J
2-Methylnaphthalene	2.85	0.40		1.63	0.41	
1-Methylnaphthalene	2.10	0.49		0.98	0.50	
2,6-Dimethylnaphthalene	1.04	0.26		0.16	0.26	J
1,6,7-Trimethylnaphthalene	1.14	0.39		0.20	0.40	J
1-Methylphenanthrene	0.00	0.17	ND	0.06	0.17	J

ND Not Detected J <MDL

NA Not Applicable Q Results Outside QC I Interference B Blank Contamination >3xMDL D Dilution

Source	PA DEP	PA DEP	
Client Sample ID	UPTPBFT-C	UPTPBFT-D	
Sample Descriptor	Fillet	Fillet	
Original Sample			
GERG ID	C46628	C46630	
Sample Type	SAMP	SAMP	
SDG	F8241	F8241	
Dry Weight	2.32	2.19	
Wet Weight	10.64	10.42	
Sample Size Units	Grams	Grams	
Matrix	Tissue	Tissue	
% solid	21.8	21.1	
% Lipid	4.8	2.8	
Reporting Units	ng/g	ng/g	
Calculation Basis (dry/wet)	Wet	Wet	
QC Batch ID	T1499	T1499	
Method	GCMS	GCMS	
Collection Date	07/06/05	07/06/05	
Receive Date	08/04/05	08/04/05	
Extraction Date	08/30/05	08/30/05	
Analysis Date	09/10/05	09/10/05	
Surrogate Compounds	%Recovery	%Recovery	
d8-Naphthalene	42.3	33.2	Q
d10-Acenaphthene	58.1	57.5	
d10-Phenanthrene	67.5	68.5	
d12-Chrysene	62.5	63.6	
d12-Perylene	58.5	64.0	
Total PAHs	Concentration	Concentration	
Total PAHs with Perylene	130.6	13.7	
Total PAHs without Perylene	130.5	13.7	
Total NS&T PAHs	53.3	8.4	

ND Not Detected J <MDL

- J
 <MDL</td>

 NA
 Not Applicable

 Q
 Results Outside QC

 I
 Interference

 B
 Blank Contamination >3xMDL

 D
 Dilution

Page 9 Printed 9/15/2005

Client Sample ID	UPTPBFT-C			UPTPBFT-D		
Sample Descriptor	Fillet			Fillet		
Original Sample						
GERG ID	C46628			C46630		
Sample Type	SAMP			SAMP		
SDG	F8241			F8241		
PAH Compounds	Concentration	MDL		Concentration	MDL	
Naphthalene	2.83	0.50		2.11	0.51	
C1-Naphthalenes	15.70	0.86		2.22	0.88	
C2-Naphthalenes	28.03	0.50		1.44	0.51	
C3-Naphthalenes	20.34	0.75		0.00	0.77	ND
C4-Naphthalenes	10.69	0.75		0.00	0.77	ND
Biphenyl	1.44	0.41		0.30	0.42	l
Acenaphthylene	2.30	0.26		0.62	0.27	
Acenaphthene	3.58	0.26		0.31	0.27	
Fluorene	6.84	0.39		0.45	0.40	
C1-Fluorenes	9.39	0.78		0.00	0.80	ND
C2-Fluorenes	5.52	0.78		0.00	0.80	ND
C3-Fluorenes	0.00	0.78	ND	0.00	0.80	ND
Phenanthrene	7.83	0.37		0.51	0.37	
Anthracene	5.94	0.31		1.34	0.32	
C1-Phenanthrenes/Anthracenes	5.30	0.33		3.19	0.33	
C2-Phenanthrenes/Anthracenes	0.00	0.33	ND	0.00	0.33	ND
C3-Phenanthrenes/Anthracenes	0.00	0.33	ND	0.00	0.33	ND
C4-Phenanthrenes/Anthracenes	0.00	0.33	ND	0.00	0.33	ND
Dibenzothiophene	1.04	0.13		0.13	0.14	J
C1-Dibenzothiophenes	0.00	0.27	ND	0.00	0.27	ND
C2-Dibenzothiophenes	0.00	0.27	ND	0.00	0.27	ND
C3-Dibenzothiophenes	0.00	0.27	ND	0.00	0.27	ND
Fluoranthene	1.84	0.33		0.27	0.34	J
Pvrene	0.74	0.36		0.21	0.37	J
C1-Fluoranthenes/Pyrenes	0.00	0.69	ND	0.00	0.71	ND
C2-Fluoranthenes/Pyrenes	0.00	0.69	ND	0.00	0.71	ND
C3-Fluoranthenes/Pyrenes	0.00	0.69	ND	0.00	0.71	ND
Benzo(a)anthracene	0.53	0.34	112	0.13	0.35	I
Chrysene	0.14	0.27	I	0.07	0.28	ĩ
C1-Chrysenes	0.00	0.54	ND	0.00	0.55	ND
C2-Chrysenes	0.00	0.54	ND	0.00	0.55	ND
C3-Chrysenes	0.00	0.54	ND	0.00	0.55	ND
C4-Chrysenes	0.00	0.54	ND	0.00	0.55	ND
Benzo(h)fluoranthene	0.11	0.63	I	0.03	0.55	I
Benzo(k)fluoranthene	0.15	0.03	J	0.05	0.44	J
Benzo(e)nvrene	0.05	0.34	J	0.13	0.35	Ţ
Benzo(a)pyrene	0.00	0.67	ND	0.02	0.55	J
Pervlene	0.13	0.16	I	0.05	0.16	J I
Indepo(1.2.2.c.d)pyrone	0.15	0.10	J	0.05	0.10	J
Dibanz(a h)anthracana	0.07	0.04	J	0.03	0.05	J
Banzo(g h i)pervlene	0.04	0.54	J	0.03	0.54	J
Benzo(g,n,i)perytene	0.02	0.55	5	0.04	0.54	J
2-Methylnaphthalene	9.34	0.39		1.39	0.39	
1-Methylnaphthalene	6.36	0.48		0.83	0.49	
2.6-Dimethylnaphthalene	5,06	0.25		0,10	0.25	J
1,6,7-Trimethylnaphthalene	3.52	0.38		0.17	0.39	l
1-Methylphenanthrene	0.61	0.16		0.12	0.17	J

ND Not Detected J <MDL NA Not Applicable Q Results Outside QC I Interference B Blank Contamination >3xMDL D Dilution

Page 10 Printed 9/15/2005

Source	PA DEP	DE DNREC	
Client Sample ID	UPTPBFT-E	Fish # 1	
Sample Descriptor	Fillet	Fillet	
Original Sample			
GERG ID	C46632	C46664	
Sample Type	SAMP	SAMP	
SDG	F8241	F8243	
Dry Weight	4.86	1.94	
Wet Weight	10.14	10.24	
Sample Size Units	Grams	Grams	
Matrix	Tissue	Tissue	
% solid	47.9	18.9	
% Lipid	0.4	0.6	
Reporting Units	ng/g	ng/g	
Calculation Basis (dry/wet)	Wet	Wet	
QC Batch ID	T1499	T1499	
Method	GCMS	GCMS	
Collection Date	07/06/05	05/27/05	
Receive Date	08/04/05	08/12/05	
Extraction Date	08/30/05	08/30/05	
Analysis Date	09/10/05	09/10/05	
Surrogate Compounds	%Recovery	%Recovery	
d8-Naphthalene	50.6	48.9	
d10-Acenaphthene	66.0	67.7	
d10-Phenanthrene	73.9	73.8	
d12-Chrysene	71.4	74.3	
d12-Perylene	71.1	66.7	
Total PAHs	Concentration	Concentration	
Total PAHs with Perylene	16.6	50.8	
Total PAHs without Perylene	16.5	50.8	
Total NS&T PAHs	7.7	38.9	

ND Not Detected J <MDL

- NA Not Applicable Q Results Outside QC
- I Interference B Blank Contamination >3xMDL
- D Dilution

Page 11 Printed 9/15/2005

Client Sample ID	UPTPBFT-E			Fish # 1		
Sample Descriptor	Fillet			Fillet		
Original Sample						
GERG ID	C46632			C46664		
Sample Type	SAMP			SAMP		
SDG	F8241			F8243		
PAH Compounds	Concentration	MDL		Concentration	MDL	
Naphthalene	1.03	0.52		15.60	0.52	
C1-Naphthalenes	1.41	0.90		18.71	0.89	
C2-Naphthalenes	2.15	0.52		3.89	0.52	
C3-Naphthalenes	2.87	0.79		2.88	0.78	
C4-Naphthalenes	0.00	0.79	ND	0.00	0.78	ND
Biphenyl	0.35	0.43	1	0.34	0.43	J
Acenaphthylene	0.20	0.28	J	0.84	0.27	
Acenaphthene	0.54	0.28		0.27	0.27	J
Fluorene	0.86	0.41		0.52	0.41	
C1-Fluorenes	2.35	0.82		1.97	0.81	
C2-Fluorenes	0.00	0.82	ND	1.85	0.81	
C3-Fluorenes	0.00	0.82	ND	0.00	0.81	ND
Phenanthrene	1.36	0.38		0.67	0.38	
Anthracene	0.70	0.33		0.46	0.32	
C1-Phenanthrenes/Anthracenes	0.85	0.34		0.94	0.34	
C2-Phenanthrenes/Anthracenes	0.00	0.34	ND	0.00	0.34	ND
C3-Phenanthrenes/Anthracenes	0.00	0.34	ND	0.00	0.34	ND
C4-Phenanthrenes/Anthracenes	0.00	0.34	ND	0.00	0.34	ND
Dibenzothiophene	0.26	0.14		0.07	0.14	J
C1-Dibenzothiophenes	0.50	0.28		0.00	0.28	ND
C2-Dibenzothiophenes	0.00	0.28	ND	0.00	0.28	ND
C3-Dibenzothiophenes	0.00	0.28	ND	0.00	0.28	ND
Fluoranthene	0.59	0.35		0.52	0.35	
Pyrene	0.26	0.38	J	0.48	0.37	
C1-Fluoranthenes/Pyrenes	0.00	0.73	ND	0.00	0.72	ND
C2-Fluoranthenes/Pyrenes	0.00	0.73	ND	0.00	0.72	ND
C3-Fluoranthenes/Pyrenes	0.00	0.73	ND	0.00	0.72	ND
Benzo(a)anthracene	0.07	0.36	j	0.16	0.36	J
Chrysene	0.02	0.28	J	0.06	0.28	J
C1-Chrysenes	0.00	0.57	ND	0.00	0.56	ND
C2-Chrysenes	0.00	0.57	ND	0.00	0.56	ND
C3-Chrysenes	0.00	0.57	ND	0.00	0.56	ND
C4-Chrysenes	0.00	0.57	ND	0.00	0.56	ND
Benzo(b)fluoranthene	0.00	0.66	ND	0.13	0.65	J
Benzo(k)fluoranthene	0.07	0.45	1	0.00	0.44	ND
Benzo(e)pyrene	0.01	0.36	J	0.11	0.35	J
Benzo(a)pyrene	0.00	0.71	ND	0.15	0.70	J
Perylene	0.13	0.16	J	0.04	0.16	J
Indeno(1,2,3-c,d)pyrene	0.00	0.67	ND	0.12	0.66	J
Dibenz(a,h)anthracene	0.02	0.35	1	0.02	0.35	J
Benzo(g,h,1)perylene	0.04	0.55	J	0.01	0.55	1
2-Methylnaphthalene	0.76	0.40		12.30	0.40	
1-Methylnaphthalene	0.65	0.50		6.41	0.49	
2,6-Dimethylnaphthalene	0.29	0.26		0.74	0.26	
1,6,7-Trimethylnaphthalene	0.25	0.40	J	0.25	0.39	J
1-Methylphenanthrene	0.08	0.17	J	0.05	0.17	J

ND Not Detected J <MDL NA Not Applicable Q Results Outside QC I Interference B Blank Contamination >3xMDL D Dilution

Page 12 Printed 9/15/2005

Source Client Sample ID	DE DNREC Fish # 2	DE DNREC Fish # 3	
Sample Descriptor	Fillet	Fillet	
Original Sample GERG ID			
	C46666	C46668	
Sample Type	SAMP	SAMP	
SDG	F8243	F8243	
Dry Weight	2.10	2.24	
Wet Weight	10.08	10.05	
Sample Size Units	Grams	Grams	
Matrix	Tissue	Tissue	
% solid	20.9	22.3	
% Lipid	1.3	5.8	
Reporting Units	ng/g	ng/g	
Calculation Basis (dry/wet)	Wet	Wet	
QC Batch ID	T1499	T1499	
Method	GCMS	GCMS	
Collection Date	05/27/05	05/27/05	
Receive Date	08/12/05	08/12/05	
Extraction Date	08/30/05	08/30/05	
Analysis Date	09/10/05	09/10/05	
Surrogate Compounds	%Recovery	%Recovery	
d8-Naphthalene	44.3	50.5	
d10-Acenaphthene	68.4	74.6	
d10-Phenanthrene	78.6	77.1	
d12-Chrysene	76.7	72.2	
d12-Perylene	73.7	62.6	
Total PAHs	Concentration	Concentration	
Total PAHs with Perylene	9.7	66.7	
Total PAHs without Perylene	9.6	66.6	
Total NS&T PAHs	6.2	47.9	

ND Not Detected J <MDL

 NA
 Not Applicable

 Q
 Results Outside QC

 I
 Interference

 B
 Blank Contamination >3xMDL

 D
 Dilution

Page 13 Printed 9/15/2005

Client Sample ID	Fish # 2			Fish # 3		
Sample Descriptor	Fillet			Fillot		
Original Sample	Thict			Fillet		
	CAGGGG			C16669		
GERG ID	C40000			C40008		
sample Type	5AMP E8242			5AWF		
SDG	F8243			F8243		
PAH Compounds	Concentration	MDL		Concentration	MDL	
Naphthalene	1.67	0.53		20.45	0.53	
C1-Naphthalenes	1.57	0.91		19.09	0.91	
C2-Naphthalenes	1.07	0.53		4.92	0.53	
C3-Naphthalenes	1.02	0.80		2.60	0.80	
C4-Naphthalenes	0.00	0.80	ND	0.00	0.80	ND
Biphenyl	0.25	0.44	J	0.46	0.44	
Acenaphthylene	0.40	0.28		1.97	0.28	
Acenaphthene	0.27	0.28	J	0.60	0.28	
Fluorene	0.51	0.41		0.74	0.41	
C1-Fluorenes	0.00	0.83	ND	0.00	0.83	ND
C2-Fluorenes	0.00	0.83	ND	0.00	0.83	ND
C3-Fluorenes	0.00	0.83	ND	0.00	0.83	ND
Phenanthrene	0.34	0.39	J	0.84	0.39	
Anthracene	0.66	0.33		3.42	0.33	
C1-Phenanthrenes/Anthracenes	0.89	0.35		9.54	0.35	
C2-Phenanthrenes/Anthracenes	0.00	0.35	ND	0.04	0.35	J
C3-Phenanthrenes/Anthracenes	0.00	0.35	ND	0.00	0.35	ND
C4-Phenanthrenes/Anthracenes	0.00	0.35	ND	0.00	0.35	ND
Dibenzothiophene	0.08	0.14	I	0.22	0.14	T(D)
C1-Dibenzothiophenes	0.00	0.28	ND	0.00	0.28	ND
C2-Dibenzothiophenes	0.00	0.28	ND	0.00	0.28	ND
C3-Dibenzothiophenes	0.00	0.28	ND	0.00	0.28	ND
Fluoranthene	0.22	0.35	I	0.56	0.35	112
Pyrene	0.25	0.38	Ţ	0.61	0.38	
C1-Fluoranthenes/Pyrenes	0.00	0.73	ND	0.00	0.73	ND
C2-Fluoranthenes/Pyrenes	0.00	0.73	ND	0.00	0.73	ND
C3-Fluoranthenes/Pyrenes	0.00	0.73	ND	0.00	0.73	ND
Benzo(a)anthracene	0.11	0.36	I	0.17	0.36	I
Chrysene	0.05	0.29	J	0.10	0.29	Ţ
C1-Chrysenes	0.00	0.57	ND	0.00	0.57	ND
C2-Chrysenes	0.00	0.57	ND	0.00	0.57	ND
C3-Chrysenes	0.00	0.57	ND	0.00	0.57	ND
C4-Chrysenes	0.00	0.57	ND	0.00	0.57	ND
Benzo(h)fluoranthene	0.02	0.66	I	0.11	0.66	I
Benzo(k)fluoranthene	0.10	0.45	J	0.09	0.45	Ţ
Benzo(e)nvrene	0.05	0.36	J	0.04	0.36	J
Benzo(a)pyrene	0.04	0.50	J	0.04	0.71	ND
Pervlene	0.04	0.16	J	0.05	0.16	I
Indeno(1,2,3,c,d)nyrene	0.04	0.10	J	0.05	0.10	J
Dibenz(a h)anthracene	0.03	0.36	J	0.00	0.36	ND
Banzo(g h i)pervlene	0.05	0.56	J ND	0.00	0.56	I
Benzo(g,n,r)peryrene	0.00	0.50	ΝD	0.02	0.50	J
2-Methylnaphthalene	0.96	0.41		12.62	0.41	
1-Methylnaphthalene	0.50	0.50		6.47	0.50	
2 6-Dimethylnaphthalene	0.12	0.26	I	0.75	0.26	
1.6.7-Trimethylnaphthalene	0.12	0.20	ĩ	0.31	0.20	I
1-Methylphenanthrene	0.00	0.17	ND	0.00	0.17	ND
	0.00			0.00		

ND Not Detected J <MDL

NA Not Applicable Q Results Outside QC I Interference B Blank Contamination >3xMDL

D Dilution

Page 14 Printed 9/15/2005

Source	DE DNREC	DE DNREC	
Client Sample ID	Fish #4	Fish # 5	
Sample Descriptor	Fillet	Fillet	
Original Sample			
GERG ID	C46670	C46672	
Sample Type	SAMP	SAMP	
SDG	F8243	F8243	
Dry Weight	2.45	2.18	
Wet Weight	10.01	10.26	
Sample Size Units	Grams	Grams	
Matrix	Tissue	Tissue	
% solid	24.5	21.2	
% Lipid	16.4	2.2	
Reporting Units	ng/g	ng/g	
Calculation Basis (dry/wet)	Wet	Wet	
QC Batch ID	T1499	T1499	
Method	GCMS	GCMS	
Collection Date	05/31/05	05/31/05	
Receive Date	08/12/05	08/12/05	
Extraction Date	08/30/05	08/30/05	
Analysis Date	09/10/05	09/10/05	
Surrogate Compounds	%Recovery	%Recovery	
d8-Naphthalene	57.7	58.3	
d10-Acenaphthene	64.7	70.3	
d10-Phenanthrene	71.4	74.7	
d12-Chrysene	66.3	64.4	
d12-Perylene	63.3	66.7	
Total PAHs	Concentration	Concentration	
Total PAHs with Perylene	98.4	46.2	
Total PAHs without Perylene	98.4	46.2	
Total NS&T PAHs	60.5	36.7	

ND Not Detected J <MDL

- NA Not Applicable Q Results Outside QC I Interference B Blank Contamination >3xMDL
- D Dilution

Page 15 Printed 9/15/2005

Client Sample ID	Fish #4			Fish #5		
Sample Descriptor	Fillet			Fillet		
Original Sample						
GERG ID	C46670			C46672		
Sample Type	SAMP			SAMP		
SDG	F8243			F8243		
PAH Compounds	Concentration	MDL		Concentration	MDL	
Naphthalene	18 29	0.53		14 22	0.52	
C1-Naphthalenes	19.15	0.92		16.11	0.89	
C2-Naphthalenes	8 54	0.53		4.06	0.52	
C3-Naphthalenes	11.72	0.80		2.46	0.78	
C4-Naphthalenes	8 69	0.80		0.00	0.78	ND
Biphenyl	0.61	0.44		0.46	0.43	112
Acenaphthylene	3 34	0.28		1.47	0.27	
Acenaphthene	2.28	0.28		0.44	0.27	
Fluorene	2.20	0.42		0.65	0.41	
C1-Fluorenes	0.00	0.83	ND	0.00	0.81	ND
C2-Fluorenes	0.00	0.83	ND	0.00	0.81	ND
C3-Fluorenes	0.00	0.83	ND	0.00	0.81	ND
Phenanthrene	2.81	0.39	ND	0.68	0.38	ND
Anthracana	7.36	0.33		2.03	0.33	
C1_Phananthranas/Anthracanas	7.01	0.35		2.03	0.34	
C2-Phononthranos/Anthraconos	7.01	0.35	ND	2.02	0.34	ND
C2-Phenanthranes/Anthracenes	0.00	0.35	ND	0.00	0.34	ND
C4 Phononthronos/Anthrononos	0.00	0.35	ND	0.00	0.34	ND
Dibanzothiophone	0.61	0.33	ND	0.00	0.34	ND
C1-Dibenzothiophenes	0.01	0.14	ND	0.20	0.14	ND
C2 Dibenzothiophenes	0.00	0.29	ND	0.00	0.28	ND
C2-Dibenzothiophenes	0.00	0.29	ND	0.00	0.28	ND
Eluoranthono	2.21	0.25	ND	0.00	0.25	ND
Pirono	2.51	0.35		0.40	0.35	
C1 Elucranthenes/Burenes	2.59	0.38	ND	0.00	0.37	ND
C2 Elucranthenes/Europes	0.00	0.74	ND	0.00	0.72	ND
C2-Fluoranthenes/Fyrenes	0.00	0.74	ND	0.00	0.72	ND
C3-Fluoranthenes/Fylenes	0.00	0.74		0.00	0.72	ND T
Chrusana	0.52	0.37	J	0.12	0.30	J
C1 Chrysones	0.00	0.29	J ND	0.03	0.28	J ND
C2 Chrysenes	0.00	0.58	ND	0.00	0.56	ND
C2-Chrysenes	0.00	0.58	ND	0.00	0.56	ND
C4 Chrysenes	0.00	0.58	ND	0.00	0.56	ND
C4-Chrysenes	0.00	0.58	ND	0.00	0.56	ND
Benzo(b)fluoranthene	0.00	0.00		0.01	0.65	J
Benzo(k)huorannene	0.02	0.45	J	0.00	0.44	I
Benzo(e)pyrene	0.03	0.30	J	0.09	0.33	J
Benzo(a)pyrene	0.03	0.72	J	0.02	0.70	J
Ferviene	0.02	0.17	J	0.01	0.16	J
Diheng(a, k)enthroegene	0.00	0.08	IND T	0.00	0.00	ND T
Dibenz(a,n)anthracene	0.04	0.56	J	0.02	0.35	J
benzo(g,n,i)peryiene	0.02	0.50	1	0.02	0.55	J
2-Methylnaphthalene	12.60	0.41		10.60	0.40	
1-Methylnaphthalene	6.55	0.51		5.51	0.49	
2,6-Dimethylnaphthalene	2.03	0.26		0.70	0.26	
1,6,7-Trimethylnaphthalene	2.19	0.40		0.28	0.39	J
1-Methylphenanthrene	0.00	0.17	ND	0.00	0.17	ND

ND Not Detected J <MDL NA Not Applicable Q Results Outside QC I Interference B Blank Contamination >3xMDL D Division

D Dilution

Page 16 Printed 9/15/2005

Source	NJ DEP	NJ DEP	
Client Sample ID	NJDB-01	NJDB-01	
Sample Descriptor	Carcass	Carcass	
Original Sample		C46569	
GERG ID	C46569	Q22256	
Sample Type	SAMP	DUP	
SDG	F7234	F7234	
Dry Weight	2.35	2.30	
Wet Weight	10.11	10.06	
Sample Size Units	Grams	Grams	
Matrix	Tissue	Tissue	
% solid	23.2	22.8	
% Lipid	6.9	8.2	
Reporting Units	ng/g	ng/g	
Calculation Basis (dry/wet)	Wet	Wet	
QC Batch ID	T1500	T1500	
Method	GCMS	GCMS	
Collection Date	05/03/05	05/11/05	
Receive Date	07/21/05	07/21/05	
Extraction Date	08/31/05	08/31/05	
Analysis Date	09/11/05	09/11/05	
Surrogate Compounds	%Recovery	% Recovery	
d8-Naphthalene	63.3	66.2	
d10-Acenaphthene	67.4	71.8	
d10-Phenanthrene	82.3	88.7	
d12-Chrysene	58.6	63.4	
d12-Perylene	57.3	67.9	
Total PAHs	Concentration	Concentration	
Total PAHs with Perylene	14.0	11.5	
Total PAHs without Perylene	13.9	11.4	
Total NS&T PAHs	9.8	8.9	

ND Not Detected J <MDL

- J <MDL NA Not Applicable Q Results Outside QC I Interference B Blank Contamination >3xMDL D Dilution

Page 1 Printed 9/15/2005

Client Sample ID	NJDB-01			NJDB-01		
Sample Descriptor	Carcass			Carcass		
Original Sample				C46569		
GERG ID	C46569			Q22256		
Sample Type	SAMP			DUP		
SDG	F7234			F7234		
DALL Company to	Construction	MDI		Concentration	MDI	
PAH Compounds	Concentration	MDL 0.52		Concentration	MDL 0.52	
Naphthalene	2.59	0.53		2.12	0.53	
CI-Naphthalenes	2.36	0.91		2.00	0.91	
C2-Naphthalenes	1.04	0.52	ND	0.00	0.53	ND
C3-Naphthalenes	0.00	0.79	ND	0.00	0.80	ND
C4-Naphthalenes	0.00	0.79	ND	0.00	0.80	ND
Biphenyl	0.47	0.44		0.52	0.44	
Acenaphthylene	0.97	0.28		1.02	0.28	
Acenaphthene	0.28	0.28		0.24	0.28	1
Fluorene	0.79	0.41		0.74	0.41	
C1-Fluorenes	0.50	0.82	J	0.00	0.83	ND
C2-Fluorenes	0.00	0.82	ND	0.00	0.83	ND
C3-Fluorenes	0.00	0.82	ND	0.00	0.83	ND
Phenanthrene	0.53	0.38		0.58	0.39	
Anthracene	1.68	0.33		1.62	0.33	
C1-Phenanthrenes/Anthracenes	1.46	0.34		1.26	0.35	
C2-Phenanthrenes/Anthracenes	0.00	0.34	ND	0.00	0.35	ND
C3-Phenanthrenes/Anthracenes	0.00	0.34	ND	0.00	0.35	ND
C4-Phenanthrenes/Anthracenes	0.00	0.34	ND	0.00	0.35	ND
Dibenzothiophene	0.11	0.14	J	0.11	0.14	J
C1-Dibenzothiophenes	0.00	0.28	ND	0.00	0.28	ND
C2-Dibenzothiophenes	0.00	0.28	ND	0.00	0.28	ND
C3-Dibenzothiophenes	0.00	0.28	ND	0.00	0.28	ND
Fluoranthene	0.16	0.35	J	0.20	0.35	l
Pyrene	0.12	0.38	J	0.17	0.38	l
C1-Fluoranthenes/Pyrenes	0.00	0.73	ND	0.00	0.73	ND
C2-Fluoranthenes/Pyrenes	0.00	0.73	ND		0.73	ND
C3-Fluoranthenes/Pyrenes	0.00	0.73	ND		0.73	ND
Benzo(a)anthracene	0.22	0.36	J	0.17	0.36	J
Chrysene	0.06	0.29	J	0.07	0.29	J
C1-Chrysenes	0.00	0.57	ND	0.00	0.57	ND
C2-Chrysenes	0.00	0.57	ND	0.00	0.57	ND
C3-Chrysenes	0.00	0.57	ND	0.00	0.57	ND
C4-Chrysenes	0.00	0.57	ND	0.00	0.57	ND
Benzo(b)fluoranthene	0.16	0.66	J	0.13	0.66	J
Benzo(k)fluoranthene	0.05	0.45	J	0.12	0.45	J
Benzo(e)pyrene	0.07	0.36	J	0.07	0.36	J
Benzo(a)pyrene	0.08	0.71	J	0.08	0.71	J
Perylene	0.09	0.16	J	0.08	0.16	J
Indeno(1,2,3-c,d)pyrene	0.06	0.67	J	0.04	0.67	J
Dibenz(a,h)anthracene	0.08	0.35	J	0.01	0.36	J
Benzo(g,h,i)perylene	0.07	0.56	l	0.10	0.56	J
2 Mathylnanhthalana	1.57	0.41		1.29	0.41	
2-meanymaphinarene	1.37	0.41		1.28	0.41	
2.6 Dimothylnonhtholono	0.79	0.50	т	0.72	0.50	т
2,0-Dimethylnaphthalene	0.21	0.26	1 J	0.19	0.26	J
1,0,/-IIImethymaphthane	0.09	0.40	J	0.06	0.40	J
1-ivieury/phenanthrene	0.00	0.17	ND	0.00	0.17	ND

ND Not Detected J <MDL NA Not Applicable Q Results Outside QC I Interference B Blank Contamination >3xMDL D Dilution

Page 2 Printed 9/15/2005

Source	NJ DEP	NJ DEP	
Client Sample ID	NJDB-02	NJDB-03	
Sample Descriptor	Carcass	Carcass	
Original Sample			
GERG ID	C46571	C46573	
Sample Type	SAMP	SAMP	
SDG	F7234	F7234	
Dry Weight	3.08	2.40	
Wet Weight	10.26	10.26	
Sample Size Units	Grams	Grams	
Matrix	Tissue	Tissue	
% solid	30.0	23.4	
% Lipid	12.6	8.9	
Reporting Units	ng/g	ng/g	
Calculation Basis (dry/wet)	Wet	Wet	
QC Batch ID	T1500	T1500	
Method	GCMS	GCMS	
Collection Date	05/03/05	05/10/05	
Receive Date	07/21/05	07/21/05	
Extraction Date	08/31/05	08/31/05	
Analysis Date	09/11/05	09/11/05	
Surrogate Compounds	%Recovery	%Recovery	
d8-Naphthalene	55.9	59.4	
d10-Acenaphthene	62.5	68.7	
d10-Phenanthrene	77.5	75.3	
d12-Chrysene	51.1	54.9	
d12-Perylene	55.7	56.3	
Total PAHs	Concentration	Concentration	
Total PAHs with Perylene	27.8	26.2	
Total PAHs without Perylene	27.7	26.0	
Total NS&T PAHs	16.9	13.8	

ND Not Detected J <MDL NA Not Applicable Q Results Outside QC I Interference B Blank Contamination >3xMDL D Dilution

Client Sample ID	NJDB-02			NJDB-03		
Sample Descriptor	Carcass			Carcass		
Original Sample						
GERG ID	C46571			C46573		
Sample Type	SAMP			SAMP		
SDG	F7234			F7234		
PAH Compounds	Concentration	MDL		Concentration	MDL	
Nanhthalene	3 77	0.52		3 77	0.52	
C1-Nanhthalenes	3.79	0.89		4.86	0.89	
C2-Nanhthalenes	1.53	0.52		1.07	0.52	
C3-Naphthalenes	1.05	0.78		2.15	0.78	
C4-Nanhthalenes	0.00	0.78	ND	0.00	0.78	ND
Binhanyl	0.70	0.43	ND	0.47	0.43	ND
Acenaphthylene	2.16	0.27		0.74	0.27	
A conspittane	0.70	0.27		0.74	0.27	
Fluorana	1.10	0.27		0.52	0.41	
C1-Eluorenes	1.19	0.41		0.54	0.41	T
C2-Fluorenes	0.00	0.81	ND	0.04	0.81	ND
C2-Fluorenes	0.00	0.81	ND	0.00	0.81	ND
C5-Fluorenes Phononthrono	0.00	0.81	ND	0.00	0.81	ND
A nthra conc	0.88	0.38		0.89	0.38	
Anunracene	3.93	0.32		0.97	0.32	
C1-Phenanthrenes/Anthracenes	2.04	0.34		0.08	0.34	ND
C2-Filenanthrenes/Anthracenes	1.52	0.34	ND	0.00	0.34	ND
C4. Phononthronos/Anthronos	0.00	0.34	ND	0.00	0.34	ND
C4-Phenanthrenes/Anthracenes	0.00	0.34	ND	0.00	0.34	ND
C1 Dibergethierkerer	0.15	0.14	ND	0.13	0.14	J
C1-Dibenzotniophenes	0.00	0.28	ND	0.00	0.28	ND
C2-Dibenzothiophenes	0.00	0.28	ND	0.00	0.28	ND
C3-Dibenzotniopnenes	0.00	0.28	ND	0.00	0.28	ND
Fluorantnene	0.29	0.35	J	0.22	0.35	J
Pyrene	0.34	0.37	J	0.28	0.37	J
C1-Fluoranthenes/Pyrenes	0.00	0.72	ND	0.00	0.72	ND
C2-Fluoranthenes/Pyrenes	0.00	0.72	ND	0.00	0.72	ND
C3-Fluoranthenes/Pyrenes	0.00	0.72	ND	0.00	0.72	ND
Benzo(a)anthracene	0.39	0.36		0.23	0.36	J
Chrysene	0.08	0.28	J	0.14	0.28	J
C1-Chrysenes	0.00	0.56	ND	0.00	0.56	ND
C2-Chrysenes	0.00	0.56	ND	0.00	0.56	ND
C3-Chrysenes	0.00	0.56	ND	0.00	0.56	ND
C4-Chrysenes	0.00	0.56	ND	0.00	0.56	ND
Benzo(b)fluoranthene	0.10	0.65	J	0.18	0.65	J
Benzo(k)fluoranthene	0.11	0.44	J	0.13	0.44	J
Benzo(e)pyrene	0.11	0.35	J	0.08	0.35	J
Benzo(a)pyrene	0.06	0.70	J	0.00	0.70	ND
Perylene	0.13	0.16	J	0.17	0.16	
Indeno(1,2,3-c,d)pyrene	0.27	0.66	J	0.21	0.66	J
Dibenz(a,h)anthracene	0.13	0.35	J	0.00	0.35	ND
Benzo(g,h,i)perylene	0.07	0.55	J	0.15	0.55	l
2-Methylnaphthalene	2.55	0.40		3.16	0.40	
1-Methylnaphthalene	1.24	0.49		1.70	0.49	
2.6-Dimethylnaphthalene	0.27	0.26		0.27	0.26	
1,6,7-Trimethylnaphthalene	0.34	0.39	J	0.16	0.39	J
1-Methylphenanthrene	0.11	0.17	J	0.19	0.17	

ND Not Detected J <MDL NA Not Applicable Q Results Outside QC

I Interference B Blank Contamination >3xMDL

D Dilution

Source	NJ DEP	NJ DEP	
Client Sample ID	NJDB-04	NJDB-05	
Sample Descriptor	Carcass	Carcass	
Original Sample			
GERG ID	C46575	C46577	
Sample Type	SAMP	SAMP	
SDG	F7234	F7234	
Dry Weight	3.17	2.71	
Wet Weight	10.36	10.10	
Sample Size Units	Grams	Grams	
Matrix	Tissue	Tissue	
% solid	30.6	26.8	
% Lipid	12.4	16.4	
Reporting Units	ng/g	ng/g	
Calculation Basis (dry/wet)	Wet	Wet	
QC Batch ID	T1500	T1500	
Method	GCMS	GCMS	
Collection Date	05/10/05	05/11/05	
Receive Date	07/21/05	07/21/05	
Extraction Date	08/31/05	08/31/05	
Analysis Date	09/11/05	09/11/05	
Surrogate Compounds	%Recovery	%Recovery	
d8-Naphthalene	73.3	64.2	
d10-Acenaphthene	73.0	65.7	
d10-Phenanthrene	92.2	78.1	
d12-Chrysene	56.3	53.2	
d12-Perylene	69.8	52.8	
Total PAHs	Concentration	Concentration	
Total PAHs with Perylene	53.2	43.4	
Total PAHs without Perylene	51.9	42.3	
Total NS&T PAHs	26.3	23.7	

- ND Not Detected J <MDL NA Not Applicable Q Results Outside QC I Interference
- I Interference B Blank Contamination >3xMDL
- D Dilution

Page 5 Printed 9/15/2005

Client Sample ID	NJDB-04			NJDB-05		
Sample Descriptor	Carcass			Carcass		
Original Sample						
GERG ID	C46575			C46577		
Sample Type	SAMP			SAMP		
SDG	F7234			F7234		
PAH Compounds	Concentration	MDL		Concentration	MDL	
Nanhthalene	3 84	0.51		3 22	0.53	
C1-Nanhthalenes	4 38	0.88		3.83	0.91	
C2-Nanhthalenes	2.25	0.51		2.38	0.53	
C3-Naphthalenes	2.23	0.77		2.56	0.79	
C4-Naphthalenes	0.00	0.77	ND	0.00	0.79	ND
Biphenyl	0.71	0.42	110	0.70	0.44	ND
Acenanhthylene	1.36	0.27		1.15	0.28	
Acenaphthene	0.58	0.27		0.68	0.28	
Fluorene	1.51	0.40		1.45	0.28	
C1-Fluorenes	1.51	0.40		1.45	0.82	
C2-Fluorenes	0.00	0.80	ND	0.00	0.82	ND
C2 Fluorenes	0.00	0.80	ND	0.00	0.82	ND
Phononthrono	1.02	0.80	ND	1.80	0.82	ND
Anthracana	2.51	0.38		2.01	0.39	
C1 Bhananthranas/Anthrasanas	2.51	0.32		2.91	0.33	
C2 Phononthronog/Anthrocomog	12.18	0.34		8.54	0.34	ND
C2-Phenanthrenes/Anthracenes	2.89	0.34	ND	0.00	0.34	ND
C4 Phononthronog/Anthroponog	0.00	0.34	ND	0.00	0.34	ND
C4-Phenanthrenes/Anthracenes	0.00	0.34	ND	0.00	0.34	ND
C1 Dihannathianhanan	0.29	0.14	ND	0.29	0.14	ND
C1-Dibenzothiophenes	0.00	0.28	ND	0.00	0.28	ND
C2-Dibenzothiophenes	0.00	0.28	ND	0.00	0.28	ND
C3-Dibenzouniophenes	0.00	0.28	ND	0.00	0.28	ND
Pruorantnene	2.43	0.34		1.87	0.35	
Pyrene Cl El di D	1.92	0.37	ND	1.58	0.38	ND
C1-Fluoranthenes/Pyrenes	0.00	0.71	ND	0.00	0.73	ND
C2-Fluoranthenes/Pyrenes	0.00	0.71	ND	0.00	0.73	ND
C3-Fluoranthenes/Pyrenes	0.00	0.71	ND	0.00	0.73	ND
Benzo(a)anthracene	1.08	0.35		0.81	0.36	
Chrysene	0.79	0.28	ND	0.70	0.29	ND
C1-Chrysenes	0.00	0.56	ND	0.00	0.57	ND
C2-Chrysenes	0.00	0.56	ND	0.00	0.57	ND
C3-Chrysenes	0.00	0.56	ND	0.00	0.57	ND
C4-Chrysenes	0.00	0.56	ND	0.00	0.57	ND
Benzo(b)fluoranthene	1.25	0.64		1.60	0.66	
Benzo(k)fluoranthene	0.98	0.44		0.54	0.45	
Benzo(e)pyrene	1.05	0.35		0.86	0.36	
Benzo(a)pyrene	1.28	0.69		0.95	0.71	
Perylene	1.34	0.16		1.13	0.16	
Indeno(1,2,3-c,d)pyrene	1.54	0.65		1.60	0.67	
Dibenz(a,h)anthracene	0.30	0.35	J	0.51	0.35	
Benzo(g,h,1)perylene	1.09	0.54		1.09	0.56	
2-Methylnaphthalene	2.89	0.40		2.45	0.41	
1-Methylnaphthalene	1.49	0.49		1.38	0.50	
2.6-Dimethylnaphthalene	0.49	0.26		0.44	0.26	
1.6.7-Trimethylnaphthalene	0.26	0.39	J	0.35	0.40	J
1-Methylphenanthrene	0.12	0.17	J	0.24	0.17	

ND Not Detected J <MDL NA Not Applicable Q Results Outside QC

I Interference B Blank Contamination >3xMDL D Dilution

Source	PA DEP	PA DEP	
Client Sample ID	UPTPBFT-A	UPTPBFT-B	
Sample Descriptor	Carcass	Carcass	
Original Sample			
GERG ID	C46625	C46627	
Sample Type	SAMP	SAMP	
SDG	F8241	F8241	
Dry Weight	2.76	2.52	
Wet Weight	10.02	10.25	
Sample Size Units	Grams	Grams	
Matrix	Tissue	Tissue	
% solid	27.5	24.6	
% Lipid	9.0	2.9	
Reporting Units	ng/g	ng/g	
Calculation Basis (dry/wet)	Wet	Wet	
QC Batch ID	T1500	T1500	
Method	GCMS	GCMS	
Collection Date	07/06/05	07/06/05	
Receive Date	08/04/05	08/04/05	
Extraction Date	08/31/05	08/31/05	
Analysis Date	09/11/05	09/11/05	
Surrogate Compounds	%Recovery	%Recovery	
d8-Naphthalene	58.2	63.9	
d10-Acenaphthene	63.9	71.8	
d10-Phenanthrene	79.9	87.6	
d12-Chrysene	53.5	57.8	
d12-Perylene	57.2	63.1	
Total PAHs	Concentration	Concentration	
Total PAHs with Perylene	219.0	41.7	
Total PAHs without Perylene	219.0	41.6	
Total NS&T PAHs	105.5	23.9	

ND Not Detected J <MDL NA Not Applicable Q Results Outside QC I Interference B Blank Contamination >3xMDL D Dilution

Page 7 Printed 9/15/2005

Client Sample ID	UPTPBFT-A			UPTPBFT-B		
Sample Descriptor	Carcass			Carcass		
Original Sample						
GERG ID	C46625			C46627		
Sample Type	SAMP			SAMP		
SDG	F8241			F8241		
PAH Compounds	Concentration	MDL		Concentration	MDL	
Naphthalene	6.94	0.53		5.62	0.52	
C1-Naphthalenes	30.54	0.91		5.76	0.89	
C2-Naphthalenes	45.74	0.53		2.65	0.52	
C3-Naphthalenes	30.47	0.80		2.24	0.78	
C4-Naphthalenes	15.99	0.80		2.25	0.78	
Biphenyl	2.68	0.44		0.53	0.43	
Acenaphthylene	1.86	0.28		1.27	0.27	
Acenaphthene	8.08	0.28		0.76	0.27	
Fluorene	14.59	0.42		0.88	0.41	
C1-Fluorenes	7.16	0.83		4.40	0.81	
C2-Fluorenes	4.05	0.83		0.00	0.81	ND
C3-Fluorenes	0.00	0.83	ND	0.00	0.81	ND
Phenanthrana	17.87	0.39	110	1.43	0.38	нD
Anthracene	7.56	0.33		2.71	0.33	
C1 Phananthranas/Anthracanas	5.85	0.35		1.72	0.34	
C2-Phananthranas/Anthracanas	3.56	0.35		0.00	0.34	ND
C2 Phananthranas/Anthracanas	0.00	0.35	ND	0.00	0.34	ND
C4 Phananthranas/Anthracanas	0.00	0.35	ND	0.00	0.34	ND
Dihenzothiophone	1.87	0.35	ND	0.00	0.14	ND
C1 Dihanzathianhanas	1.87	0.14		0.18	0.14	
C2 Dihenzothiophenes	5.52	0.29	ND	0.70	0.28	ND
C2-Dibenzothiophenes	0.00	0.29	ND	0.00	0.28	ND
Elucronthone	5.21	0.29	ND	0.00	0.28	ND
Purona	1.49	0.33		1.45	0.33	
C1 Elucranthanas/Puranas	0.00	0.38	ND	1.17	0.37	ND
C2 Elucronthonos/Pyronos	0.00	0.74	ND	0.00	0.72	ND
C2-Fluoranthenes/Pyrenes	0.00	0.74	ND	0.00	0.72	ND
C3-Fluoranthenes/Fyrenes	0.00	0.74	ND I	0.00	0.72	ND
Benzo(a)anthracene	0.34	0.37	J	0.65	0.36	
Cli Chirisonos	0.08	0.29	J	0.03	0.28	ND
C1-Chrysenes	0.00	0.58	ND	0.00	0.56	ND
C2-Chrysenes	0.00	0.58	ND	0.00	0.56	ND
C4 Chrysenes	0.00	0.58	ND	0.00	0.56	ND
C4-Chrysenes	0.00	0.58	ND	0.00	0.56	ND
Benzo(b)fluoranthene	1.80	0.66		1.29	0.65	
Benzo(k)Iluorantnene	0.13	0.45	J	0.49	0.44	
Benzo(e)pyrene	0.74	0.36		0.61	0.35	
Benzo(a)pyrene	0.09	0.71	J	0.62	0.70	J
Perylene	0.06	0.17	J	0.16	0.16	J
Indeno(1,2,3-c,d)pyrene	0.28	0.68	J	0.76	0.66	
Dibenz(a,n)anthracene	0.29	0.36	J	0.23	0.35	J
Benzo(g,n,1)perylene	0.28	0.56	J	0.52	0.55	1
2-Methylnaphthalene	18.23	0.41		3.80	0.40	
1-Methylnaphthalene	12.31	0.51		1.96	0.49	
2,6-Dimethylnaphthalene	7.96	0.26		0.47	0.26	
1,6,7-Trimethylnaphthalene	6.34	0.40		0.26	0.39	J
1-Methylphenanthrene	0.90	0.17		0.24	0.17	

ND Not Detected J <MDL NA Not Applicable Q Results Outside QC I Interference B Blank Contamination >3xMDL D Dilution

Page 8 Printed 9/15/2005

Source	PA DEP	PA DEP	
Client Sample ID	UPTPBFT-C	UPTPBFT-D	
Sample Descriptor	Carcass	Carcass	
Original Sample			
GERG ID	C46629	C46631	
Sample Type	SAMP	SAMP	
SDG	F8241	F8241	
Dry Weight	2.63	2.79	
Wet Weight	10.03	10.11	
Sample Size Units	Grams	Grams	
Matrix	Tissue	Tissue	
% solid	26.2	27.6	
% Lipid	17.2	10.9	
Reporting Units	ng/g	ng/g	
Calculation Basis (dry/wet)	Wet	Wet	
QC Batch ID	T1500	T1500	
Method	GCMS	GCMS	
Collection Date	07/06/05	07/06/05	
Receive Date	08/04/05	08/04/05	
Extraction Date	08/31/05	08/31/05	
Analysis Date	09/11/05	09/11/05	
Surrogate Compounds	%Recovery	%Recovery	
d8-Naphthalene	57.0	64.8	
d10-Acenaphthene	65.8	67.6	
d10-Phenanthrene	67.5	88.1	
d12-Chrysene	53.6	61.2	
d12-Perylene	57.9	64.3	
Total PAHs	Concentration	Concentration	
Total PAHs with Perylene	291.5	60.3	
Total PAHs without Perylene	291.4	60.1	
Total NS&T PAHs	139.3	27.8	

- ND Not Detected J <MDL NA Not Applicable Q Results Outside QC I Interference B Blank Contamination >3xMDL D Dilution

Page 9 Printed 9/15/2005

Client Sample ID	UPTPBFT-C			UPTPBFT-D		
Sample Descriptor	Carcass			Carcass		
Original Sample						
GERG ID	C46629			C46631		
Sample Type	SAMP			SAMP		
SDG	F8241			F8241		
PAH Compounds	Concentration	MDL		Concentration	MDL	
Naphthalene	7.80	0.53		4.77	0.53	
C1-Naphthalenes	36.71	0.91		4.83	0.91	
C2-Naphthalenes	52.71	0.53		2.34	0.52	
C3-Naphthalenes	37.23	0.80		2.49	0.79	
C4-Naphthalenes	18.31	0.80		0.00	0.79	ND
Biphenvl	3.20	0.44		0.60	0.44	
Acenaphthylene	6.04	0.28		3.74	0.28	
Acenaphthene	8.53	0.28		0.40	0.28	
Fluorene	15.46	0.41		1.50	0.41	
C1-Fluorenes	14.02	0.83		5.28	0.82	
C2-Fluorenes	0.00	0.83	ND	0.00	0.82	ND
C3-Fluorenes	0.00	0.83	ND	0.00	0.82	ND
Phenanthrene	23.95	0.39		1.55	0.39	
Anthracene	21.66	0.33		9.66	0.33	
C1-Phenanthrenes/Anthracenes	23.38	0.35		12.31	0.34	
C2-Phenanthrenes/Anthracenes	8.66	0.35		6.58	0.34	
C3-Phenanthrenes/Anthracenes	0.00	0.35	ND	0.00	0.34	ND
C4-Phenanthrenes/Anthracenes	0.00	0.35	ND	0.00	0.34	ND
Dibenzothiophene	2.80	0.14		0.33	0.14	
C1-Dibenzothiophenes	0.00	0.28	ND	0.00	0.28	ND
C2-Dibenzothiophenes	0.00	0.28	ND	0.00	0.28	ND
C3-Dibenzothiophenes	0.00	0.28	ND	0.00	0.28	ND
Fluoranthene	6.35	0.35		1.05	0.35	
Pyrene	2.43	0.38		1.29	0.38	
C1-Fluoranthenes/Pyrenes	0.00	0.74	ND	0.00	0.73	ND
C2-Fluoranthenes/Pyrenes	0.00	0.74	ND	0.00	0.73	ND
C3-Fluoranthenes/Pyrenes	0.00	0.74	ND	0.00	0.73	ND
Benzo(a)anthracene	1.33	0.37		0.67	0.36	
Chrysene	0.16	0.29	J	0.08	0.29	J
C1-Chrysenes	0.00	0.58	ND	0.00	0.57	ND
C2-Chrysenes	0.00	0.58	ND	0.00	0.57	ND
C3-Chrysenes	0.00	0.58	ND	0.00	0.57	ND
C4-Chrysenes	0.00	0.58	ND	0.00	0.57	ND
Benzo(b)fluoranthene	0.31	0.66	J	0.14	0.66	J
Benzo(k)fluoranthene	0.06	0.45	J	0.12	0.45	J
Benzo(e)pyrene	0.15	0.36	J	0.11	0.36	J
Benzo(a)pyrene	0.04	0.71	J	0.03	0.71	J
Perylene	0.06	0.17	J	0.15	0.16	J
Indeno(1,2,3-c,d)pyrene	0.13	0.68	J	0.21	0.67	J
Dibenz(a,h)anthracene	0.00	0.36	ND	0.01	0.35	J
Benzo(g,h,i)perylene	0.00	0.56	ND	0.03	0.56	J
2-Methylnaphthalene	21.95	0.41		3.10	0.41	
1-Methylnaphthalene	14.76	0.50		1.73	0.50	
2.6-Dimethylnaphthalene	973	0.26		0.39	0.26	
1.6.7-Trimethylnaphthalene	7.52	0.40		0.61	0.40	
1-Methylphenanthrene	1.71	0.17		0.75	0.17	
/ T				017.0		

ND Not Detected J <MDL

J <MIDL NA Not Applicable Q Results Outside QC I Interference B Blank Contamination >3xMDL D Dilution

Page 10

Source Client Sample ID Sample Descriptor Original Sample GERG ID	PA DEP UPTPBFT-E Carcass C46633	DE DNREC Fish # 1 Carcass C46665	
Sample Type SDG	F8241	F8243	
Dry Weight	2.65	2.44	
Wet Weight	10.26	10.01	
Sample Size Units	Grams	Grams	
Matrix	Tissue	Tissue	
% solid	25.8	24.4	
% Lipid	4.4	1.1	
Reporting Units	ng/g	ng/g	
Calculation Basis (drv/wet)	Wet	Wet	
QC Batch ID	T1500	T1500	
Method	GCMS	GCMS	
Collection Date	07/06/05	05/27/05	
Receive Date	08/04/05	08/12/05	
Extraction Date	08/31/05	08/31/05	
Analysis Date	09/11/05	09/11/05	
Surrogate Compounds	%Recovery	%Recovery	
d8-Naphthalene	66.5	66.9	
d10-Acenaphthene	72.6	71.1	
d10-Phenanthrene	88.3	82.9	
d12-Chrysene	59.3	57.5	
d12-Perylene	64.4	63.5	
Total PAHs	Concentration	Concentration	
Total PAHs with Perylene	62.3	60.1	
Total PAHs without Perylene	62.3	60.1	
Total NS&T PAHs	30.1	44.4	

- ND Not Detected J <MDL NA Not Applicable Q Results Outside QC I Interference B Plack Contemination
- B Blank Contamination >3xMDL
- D Dilution

Client Sample ID	UPTPBFT-E			Fish # 1		
Sample Descriptor	Carcass			Carcass		
Original Sample						
GERG ID	C46633			C46665		
Sample Type	SAMP			SAMP		
SDG	F8241			F8243		
PAH Compounds	Concentration	MDL		Concentration	MDL	
Naphthalene	2.83	0.52		18.90	0.53	
C1-Naphthalenes	5.68	0.89		20.27	0.92	
C2-Naphthalenes	7.60	0.52		4.13	0.53	
C3-Naphthalenes	6.95	0.78		2.81	0.80	
C4-Naphthalenes	5.24	0.78		3.48	0.80	
Biphenyl	0.73	0.43		0.38	0.44	J
Acenaphthylene	1.23	0.27		1.00	0.28	
Acenaphthene	2.06	0.27		0.34	0.28	
Fluorene	3.56	0.41		0.83	0.42	
C1-Fluorenes	2.00	0.81		3.19	0.83	
C2-Fluorenes	0.00	0.81	ND	0.00	0.83	ND
C3-Fluorenes	0.00	0.81	ND	0.00	0.83	ND
Phenanthrene	5.06	0.38		0.76	0.39	
Anthracene	4.51	0.32		0.87	0.33	
C1-Phenanthrenes/Anthracenes	7.87	0.34		0.91	0.35	
C2-Phenanthrenes/Anthracenes	2.15	0.34		0.95	0.35	
C3-Phenanthrenes/Anthracenes	0.00	0.34	ND	0.00	0.35	ND
C4-Phenanthrenes/Anthracenes	0.00	0.34	ND	-0.02	0.35	T
Dibenzothionhene	0.62	0.14	112	0.10	0.14	Ţ
C1-Dibenzothionhenes	0.00	0.28	ND	0.00	0.29	ND
C2-Dibenzothionhenes	0.00	0.28	ND	0.00	0.29	ND
C3-Dibenzothionhenes	0.00	0.28	ND	0.00	0.29	ND
Fluoranthene	2 37	0.35	III.	0.40	0.35	III.
Pyrene	1.00	0.37		0.40	0.38	
C1-Fluoranthenes/Purenes	0.00	0.72	ND	0.00	0.74	ND
C2-Fluoranthenes/Pyrenes	0.00	0.72	ND	0.00	0.74	ND
C2 Fluoranthenes/Pyrenes	0.00	0.72	ND	0.00	0.74	ND
Renzo(a)anthracana	0.00	0.72	I	0.00	0.74	I
Chrysene	0.20	0.30	T	0.00	0.37	J
C1 Chrysenes	0.00	0.28	ND	0.03	0.29	ND
C2 Chrysenes	0.00	0.56	ND	0.00	0.58	ND
C2-Chrysenes	0.00	0.56	ND	0.00	0.58	ND
C4 Chargenes	0.00	0.56	ND	0.00	0.58	ND
C4-Chrysenes	0.00	0.56	T	0.00	0.58	T
Benzo(b)fluoranthene	0.14	0.65	,	0.03	0.66	J
Benzo(k)riuorantnene	0.03	0.44	,	0.04	0.45	J
Benzo(e)pyrene	0.11	0.35	,	0.09	0.36	J
Benzo(a)pyrene	0.02	0.70	J	0.06	0.71	J
Perylene	0.09	0.16	J -	0.02	0.17	J
Indeno(1,2,3-c,d)pyrene	0.02	0.66	J	0.02	0.68	J
Dibenz(a,n)anthracene	0.05	0.35	,	0.00	0.36	ND
Benzo(g,h,i)perylene	0.05	0.55	1	0.04	0.56	J
2-Methylnaphthalene	3.24	0.40		13.51	0.41	
1-Methylnaphthalene	2.44	0.49		6.76	0.51	
2,6-Dimethylnaphthalene	1.31	0.26		0.93	0.26	
1,6,7-Trimethylnaphthalene	1.18	0.39		0.33	0.40	J
1-Methylphenanthrene	0.35	0.17		0.09	0.17	J

ND Not Detected J <MDL NA Not Applicable Q Results Outside QC I Interference B Blank Contamination >3xMDL D Division

D Dilution

Page 12 Printed 9/15/2005

Source	DE DNREC	DE DNREC	
Client Sample ID	Fish # 2	Fish # 3	
Sample Descriptor	Carcass	Carcass	
Original Sample			
GERG ID	C46667	C46669	
Sample Type	SAMP	SAMP	
SDG	F8243	F8243	
Dry Weight	2.35	2.63	
Wet Weight	10.12	10.01	
Sample Size Units	Grams	Grams	
Matrix	Tissue	Tissue	
% solid	23.3	26.3	
% Lipid	2.6	13.9	
Reporting Units	ng/g	ng/g	
Calculation Basis (dry/wet)	Wet	Wet	
QC Batch ID	T1500	T1500	
Method	GCMS	GCMS	
Collection Date	05/27/05	05/27/05	
Receive Date	08/12/05	08/12/05	
Extraction Date	08/31/05	08/31/05	
Analysis Date	09/11/05	09/11/05	
Surrogate Compounds	%Recovery	%Recovery	
d8-Naphthalene	63.9	56.3	
d10-Acenaphthene	65.6	63.3	
d10-Phenanthrene	82.7	75.3	
d12-Chrysene	60.9	53.0	
d12-Perylene	66.5	50.5	
Total PAHs	Concentration	Concentration	
Total PAHs with Perylene	70.4	89.3	
Total PAHs without Perylene	70.3	89.3	
Total NS&T PAHs	11.5	60.1	

ND Not Detected

- J <MDL NA Not Applicable Q Results Outside QC I Interference B Blank Contamination >3xMDL D Diffusion
- D Dilution

Page 13 Printed 9/15/2005

Client Sample ID	Fish # 2			Fish # 3		
Sample Descriptor	Carcass			Carcass		
Original Sample						
GERG ID	C46667			C46669		
Sample Type	SAMP			SAMP		
SDG	F8243			F8243		
PAH Compounds	Concentration	MDL		Concentration	MDL	
Nanhthalene	3.01	0.53		19.51	0.53	
C1-Nanhthalenes	2.13	0.91		20.02	0.92	
C2-Naphthalenes	1.56	0.52		5.49	0.53	
C3-Nanhthalenes	2 24	0.79		5.05	0.80	
C4-Naphthalenes	0.00	0.79	ND	6.14	0.80	
Binhenyl	0.42	0.44	I	0.56	0.44	
Acenaphthylene	0.98	0.28	,	3.47	0.28	
Acenaphthene	0.48	0.28		1.36	0.28	
Fluorene	0.73	0.41		1.50	0.42	
C1-Fluorenes	4.90	0.82		5.60	0.83	
C2-Eluorenes	4.50	0.82	ND	0.00	0.83	ND
C2-Fluorenes	0.00	0.82	ND	0.00	0.83	ND
Phononthrono	0.00	0.32	ND	2.84	0.85	ND
Anthracana	1.67	0.38		2.04	0.39	
C1 Phononthronog/Anthrononog	42.77	0.33		4.52	0.35	
C2 Phananthrenes/Anthracenes	570	0.34		4.52	0.35	ND
C2-Phenanthrenes/Anthracenes	5.70	0.34	ND	0.00	0.35	ND
C4 Phononthronog/Anthropophos	0.00	0.34	ND	0.00	0.35	ND
C4-Frienanthrenes/Anthracenes	0.00	0.34	T	0.00	0.33	ND
C1 Dihangathianhanag	0.11	0.14	ND	0.55	0.14	ND
C2 Dibergetienberge	0.00	0.28	ND	0.00	0.29	ND
C2-Dibenzotniophenes	0.00	0.28	ND	0.00	0.29	ND
C3-Dibenzounophenes	0.00	0.28	ND	0.00	0.29	ND
Proven	0.43	0.33		1.29	0.35	
C1 Elucronthonos/Puronos	0.02	0.38	ND	0.00	0.38	ND
C2 Element (Description of C2)	0.00	0.73	ND	0.00	0.74	ND
C2-Fluoranthenes/Pyrenes	0.00	0.73	ND	0.00	0.74	ND
C3-Fluoranthenes/Pyrenes	0.00	0.73	ND	0.00	0.74	ND
Benzo(a)anthracene	0.26	0.36	J	0.44	0.37	
Chrysene Cl. Chrysene	0.38	0.29	ND	0.08	0.29	J
C1-Chrysenes	0.00	0.57	ND	0.00	0.58	ND
C2-Chrysenes	0.00	0.57	ND	0.00	0.58	ND
C3-Chrysenes	0.00	0.57	ND	0.00	0.58	ND
C4-Chrysenes	0.00	0.57	ND	0.00	0.58	ND
Benzo(b)fluoranthene	0.02	0.66	J	0.10	0.67	J
Benzo(k)fluorantnene	0.00	0.45	ND	0.00	0.45	ND
Benzo(e)pyrene	0.02	0.36	J	0.08	0.36	1
Benzo(a)pyrene	0.04	0.71	J	0.13	0.72	J
Perylene	0.07	0.16	J	0.04	0.17	J
Indeno(1,2,3-c,d)pyrene	0.00	0.67	ND	0.00	0.68	ND
Dibenz(a,h)anthracene	0.00	0.35	ND	0.00	0.36	ND
Benzo(g,h,i)perylene	0.00	0.56	ND	0.00	0.56	ND
2-Methylnaphthalene	1.41	0.41		13.27	0.41	
1-Methylnaphthalene	0.72	0.50		6.75	0.51	
2,6-Dimethylnaphthalene	0.25	0.26	J	1.04	0.27	
1,6,7-Trimethylnaphthalene	0.26	0.40	J	0.78	0.40	
1-Methylphenanthrene	0.09	0.17	J	0.46	0.17	

ND Not Detected J <MDL

NA Not Applicable Q Results Outside QC

I Interference B Blank Contamination >3xMDL

D Dilution

Source	DE DNREC	DE DNREC	
Client Sample ID	Fish # 4	Fish # 5	
Sample Descriptor	Carcass	Carcass	
Original Sample			
GERG ID	C46671	C46673	
Sample Type	SAMP	SAMP	
SDG	F8243	F8243	
Dry Weight	3.23	2.69	
Wet Weight	10.02	10.15	
Sample Size Units	Grams	Grams	
Matrix	Tissue	Tissue	
% solid	32.2	26.5	
% Lipid	18.8	13.8	
Reporting Units	ng/g	ng/g	
Calculation Basis (dry/wet)	Wet	Wet	
QC Batch ID	T1500	T1500	
Method	GCMS	GCMS	
Collection Date	05/31/05	05/31/05	
Receive Date	08/12/05	08/12/05	
Extraction Date	08/31/05	08/31/05	
Analysis Date	09/11/05	09/11/05	
Surrogate Compounds	%Recovery	%Recovery	
d8-Naphthalene	55.9	59.4	
d10-Acenaphthene	62.5	68.7	
d10-Phenanthrene	77.5	75.3	
d12-Chrysene	51.1	54.9	
d12-Perylene	55.7	56.3	
Total PAHs	Concentration	Concentration	
Total PAHs with Perylene	26.8	25.6	
Total PAHs without Perylene	26.6	25.4	
Total NS&T PAHs	16.9	13.8	

ND Not Detected J <MDL NA Not Applicable Q Results Outside QC I Interference B Blank Contamination >3xMDL D Difusion

D Dilution

Client Sample ID	Fish #4			Fish # 5		
Sample Descriptor	Carcass			Carcass		
Original Sample						
GERG ID	C46671			C46673		
Sample Type	SAMP			SAMP		
SDG	F8243			F8243		
52-5	10210			10215		
PAH Compounds	Concentration	MDL		Concentration	MDL	
Naphthalene	3.77	0.53		3.77	0.52	
C1-Naphthalenes	3.79	0.91		4.86	0.90	
C2-Naphthalenes	1.53	0.53		1.97	0.52	
C3-Naphthalenes	1.91	0.80		2.15	0.79	
C4-Naphthalenes	0.00	0.80	ND	0.00	0.79	ND
Biphenyl	0.70	0.44		0.47	0.43	
Acenaphthylene	2.16	0.28		0.74	0.28	
Acenaphthene	0.70	0.28		0.32	0.28	
Fluorene	1.19	0.42		0.97	0.41	
C1-Fluorenes	0.00	0.83	ND	0.00	0.82	ND
C2-Fluorenes	0.00	0.83	ND	0.00	0.82	ND
C3-Fluorenes	0.00	0.83	ND	0.00	0.82	ND
Phenanthrene	0.88	0.39		0.89	0.38	
Anthracene	3.93	0.33		0.97	0.32	
C1-Phenanthrenes/Anthracenes	2.64	0.35		6.58	0.34	
C2-Phenanthrenes/Anthracenes	1 32	0.35		0.00	0.34	ND
C3-Phenanthrenes/Anthracenes	0.00	0.35	ND	0.00	0.34	ND
C4-Phenanthrenes/Anthracenes	0.00	0.35	ND	0.00	0.34	ND
Dibenzothionhene	0.15	0.14	112	0.13	0.14	I
C1-Dibenzothionhenes	0.00	0.29	ND	0.00	0.28	ND
C2-Dibenzothionhenes	0.00	0.29	ND	0.00	0.28	ND
C3-Dibenzothionhenes	0.00	0.29	ND	0.00	0.28	ND
Eluoranthene	0.00	0.35	I	0.00	0.35	I
Purene	0.34	0.38	ī	0.22	0.38	T
C1-Fluoranthanas/Purranas	0.04	0.74	ND	0.00	0.73	ND
C2-Elucranthenes/Pyrenes	0.00	0.74	ND	0.00	0.73	ND
C2-Fluoranthenes/Pyrenes	0.00	0.74	ND	0.00	0.73	ND
Co-Fluoranthenes/Fyrenes	0.00	0.74	ND	0.00	0.75	I
Christene	0.09	0.37	т	0.25	0.30	J T
Cl Chrysene	0.08	0.29	ND	0.14	0.28	J ND
C2 Chrysenes	0.00	0.58	ND	0.00	0.57	ND
C2-Chrysenes	0.00	0.58	ND	0.00	0.57	ND
C4 Chrysenes	0.00	0.58	ND	0.00	0.57	ND
C4-Chrysenes	0.00	0.58	ND T	0.00	0.57	ND T
Benzo(b)fluorantnene	0.10	0.66	, ,	0.18	0.66	J
Benzo(k)riuorantnene	0.11	0.45	,	0.13	0.45	J
Benzo(e)pyrene	0.11	0.36	J	0.08	0.36	J
Benzo(a)pyrene	0.06	0.71	J	0.00	0.71	ND
Perylene	0.13	0.17	1	0.17	0.16	
Indeno(1,2,3-c,d)pyrene	0.27	0.68	1	0.21	0.67	J
Dibenz(a,h)anthracene	0.13	0.36	J	0.00	0.35	ND
Benzo(g,h,1)perylene	0.07	0.56	J	0.15	0.55	1
2-Methylnaphthalene	2.55	0.41		3.16	0.40	
I-Methylnaphthalene	1.24	0.51		1.70	0.50	
2,6-Dimethylnaphthalene	0.27	0.26		0.27	0.26	
1,6,7-Trimethylnaphthalene	0.34	0.40	J	0.16	0.40	l
1-Methylphenanthrene	0.11	0.17	J	0.19	0.17	

ND Not Detected

<MDL J

NA Not Applicable Q Results Outside QC I Interference B Blank Contamination >3xMDL D Dilution

57

Page 16 Printed 9/15/2005

APPENDIX H

Shoreline Assessment Results

- H.1. Delineation of shoreline segments designated for shoreline (SCAT) surveys.
- H.2. Shoreline oiling categories (Very Light, Light, Moderate, and Heavy) as derived for shoreline oiling data.
- H.3. Shoreline classification from the Environmental Sensitivity index (ESI) for Delaware, New Jersey, and Pennsylvania.
- H.4. Summary of shoreline oiling data.
- H.5. Report to the Pennsylvania Bureau of Forestry on a Visit to Inspect Oil Damage to Tidal Marshes of Little Tinicum Island from the Athos I Oil Spill of November 26, 2004.

Appendix H.1. Delineation of shoreline segments designated for shoreline (SCAT) surveys.

Appendix H.2. Shoreline oiling categories (Very Light, Light, Moderate, and Heavy) as derived for shoreline oiling data.

Shoreline Oiling Width	% Oiling within Shoreline Oiling Width	Oil Thickness	Oil Characterization		
		<.01 cm (film)	Very Light		
	-19/	>.011 cm (coat)	Very Light		
	< 1 %	>.1-1.0 cm (cover)	Light		
		>1 cm (thick or pooled)	Light		
			·		
		<.01 cm (film)	Very Light		
	1-10%	>.011 cm (coat)	Very Light		
	1-1078	>.1-1.0 cm (cover)	Light		
		>1 cm (thick or pooled)	Light		
		<.01 cm (film)	Very Light		
<0.5 foot	11 50%	>.011 cm (coat)	Very Light		
<0.5 1661	11-50%	>.1-1.0 cm (cover)	Light		
		>1 cm (thick or pooled)	Light		
	51-90%	<.01 cm (film)	Very Light		
		>.011 cm (coat)	Light		
		>.1-1.0 cm (cover)	Moderate		
		>1 cm (thick or pooled)	Moderate		
	91-100%	<.01 cm (film)	Light		
		>.011 cm (coat)	Moderate		
		>.1-1.0 cm (cover)	Moderate		
		>1 cm (thick or pooled)	Heavy		
		<.01 cm (film)	Very Light		
	<1%	>.011 cm (coat)	Very Light		
		>.1-1.0 cm (cover)	Light		
		>1 cm (thick or pooled)	Light		
		<.01 cm (film)	Very Light		
>0.5-3 feet	1-10%	>.011 cm (coat)	Very Light		
	1 10/0	>.1-1.0 cm (cover)	Light		
		>1 cm (thick or pooled)	Light		
		<.01 cm (film)	Very Light		
	11-50%	>.011 cm (coat)	Light		
		>.1-1.0 cm (cover)	Moderate		
		>1 cm (thick or pooled)	Moderate		

Shoreline Oiling Width	% Oiling within Shoreline Oiling Width	Oil Thickness	Oil Characterization
		<.01 cm (film)	Light
	51 00%	>.011 cm (coat)	Moderate
	51-90%	>.1-1.0 cm (cover)	Moderate
		>1 cm (thick or pooled)	Heavy
>0.5-3 feet			
		<.01 cm (film)	Light
	01 100%	>.011 cm (coat)	Moderate
	91-10078	>.1-1.0 cm (cover)	Heavy
		>1 cm (thick or pooled)	Heavy
		<.01 cm (film)	Very Light
	-1%	>.011 cm (coat)	Very Light
	<1%	.1-1.0 cm (cover)	Light
		>1 cm (thick or pooled)	Light
	1-10%	<.01 cm (film)	Very Light
		>.011 cm (coat)	Light
		>.1-1.0 cm (cover)	Moderate
		>1 cm (thick or pooled)	Moderate
		<.01 cm (film)	Light
>3-6 foot	11 500/	>.011 cm (coat)	Moderate
>3-0 1661	11-5078	.1-1.0 cm (cover)	Moderate
		>1 cm (thick or pooled)	Heavy
		<.01 cm (film)	Light
	51-90%	>.011 cm (coat)	Moderate
	31-9078	>.1-1.0 cm (cover)	Heavy
		>1 cm (thick or pooled)	Heavy
		<.01 cm (film)	Light
	Q1_100%	>.011 cm (coat)	Moderate
	31-100 /0	>.1-1.0 cm (cover)	Heavy
		>1 cm (thick or pooled)	Heavy

Shoreline Oiling Width	% Oiling within Shoreline Oiling Width	Oil Thickness	Oil Characterization
		<.01 cm (film)	Very Light
		>.011 cm (coat)	Very Light
	<1%	>.1-1.0 cm (cover)	Light
		>1 cm (thick or pooled)	Light
		<.01 cm (film)	Very Light
	1-10%	>.011 cm (coat)	Light
	1-1078	>.1-1.0 cm (cover)	Moderate
		>1 cm (thick or pooled)	Moderate
>6 feet			
	11-50%	<.01 cm (film)	Light
		>.011 cm (coat)	Moderate
		>.1-1.0 cm (cover)	Moderate
		>1 cm (thick or pooled)	Heavy
		<.01 cm (film)	Light
	F1 00%	>.011 cm (coat)	Moderate
	31-9078	>.1-1.0 cm (cover)	Heavy
		>1 cm (thick or pooled)	Heavy
		<.01 cm (film)	Light
	91-100%	>.011 cm (coat)	Moderate
	31-10070	>.1-1.0 cm (cover)	Heavy
		>1 cm (thick or pooled)	Heavy

Appendix H.3. Shoreline classification from the Environmental Sensitivity Index (ESI) for Delaware, New Jersey, and Pennsylvania.

ESI No.	Estuarine Shoreline Classification (ESI)
1B	Exposed seawalls and other solid structures made of concrete, wood, or metal
2A	Eroding bluffs
2B	Wave-cut clay platforms
3	Fine-grained sand beaches
4	Medium- to coarse-grained sand beaches
5	Mixed sand and gravel beaches
6A	Gravel beaches
6B	Riprap structures
7	Exposed tidal flats
8A	Vegetated, steeply sloping riverine bluffs
8B	Sheltered seawalls and other solid structures made of concrete, wood, or metal
9	Sheltered tidal flats
10A	Salt and brackish -water marshes
U	Unranked

From: NOAA (2000). Delaware, New Jersey, Pennsylvania Environmental Sensitivity Index Metadata. November 2000.

Appendix H.4. Summary of shoreline oiling data. See Appendix H.1 for delineation of shoreline segments; Appendix H.2 for definition of degree of oiling; and Appendix H.3 for description of ESI habitat type.

Segment	Degree of Oiling	ESI	Shoreline Segment Length (mi.)
	UNSURVEYED	6B	0.69
		10A/5	0.49
	LIGHT	1B	1.43
		6B	1.93
DE-1		10A/5	0.17
	MEDIUM	5	0.58
		6B	1.19
	VERY LIGHT	6B	0.80
	ПСНТ	10A	0.38
	LIGHT	6B	1.26
	MEDIUM	6B	0.09
DE-2		10A	0.56
	VERY LIGHT	1B	0.29
		5	0.79
		6B	3.28
	UNSURVEYED	10A	3.84
	CLEAN	10A	3.88
		1B	0.24
		5	0.49
DL-3		6B	2.82
		10A	0.23
	VERY LIGHT	1B	1.17
		6B	0.12
		10A	6.61
	UNSURVEYED	5	0.14
		6B	0.31
		10A	3.24
DL-4		10A/5	0.19
	CLEAN	5	1.39
		6A	0.26
		6B	0.95

Segment	Degree of Oiling	ESI	Shoreline Segment Length (mi.)
		10A	1.42
	UNSURVEYED	6B	0.45
		8A	3.68
		10A	7.42
		1B	0.23
		2A	0.06
	CLEAN	5	0.27
DE-5		6B	2.38
		6B/10A	0.32
	LIGHT	10A	0.55
		10A	3.61
		1B	0.46
	VERTLIGHT	6B	22.41
		8A	0.54
		10A	0.75
	UNSURVEYED	6B	0.37
	VERY LIGHT	10A	2.44
DE-6		1B	0.23
		1B/10A	0.11
		6B	0.92
	UNSURVEYED	6B	0.17
	LIGHT	10A	0.62
DE-1		6B	0.52
	VERY LIGHT	10A	0.92
	UNSURVEYED	10A	0.72
		10A	4.19
	LIGHT	1B	0.17
DE-8		10A	3.29
	VERY LIGHT	6B	0.30
		6B/5	0.08
	UNSURVEYED	10A	28.06
		10A	3.51
	CLEAN	4	0.07
		5	0.14
		10A	29.41
DE-9		1B	0.06
		1B/5	0.27
	VERYLIGHT	4	0.11
		5	0.36
		6B	0.22

Segment	Degree of Oiling	ESI	Shoreline Segment Length (mi.)
		10A	37.08
		1B	0.34
	UNSURVETED	5	1.24
		6B	0.14
DE-10		10A	10.03
22.0		10A/5	0.18
	CLEAN	1B	0.63
		5	2.86
		0B	0.09
	VERTLIGHT	10A 1 P	0.74
			6.14
		4	1 20
DE-12	CLEAN	4/10A	1.29
	OLLAN	5/10A	0.11
		6A	0.27
		6B	0.15
MD-1	UNSURVEYED	6B	11.08
	CLEAN	10A	0.58
		1B	1.05
		5	0.26
		6A	0.10
		6B	1.63
		8A	2.71
	HEAVY	5	0.02
NJ-1		1B	3.35
	LIGHT	5	0.66
		6B	0.38
	MEDIUM	5	0.75
		1B	1.05
		5	0.26
	VENTLIGITI	6B	0.72
		8A	1.01
		1B	6.04
	ЦСНТ	5	0.32
NI-2	LIGITI	6B	0.45
		8B	0.41
	MEDIUM	1B	3.32
	VERY LIGHT	1B	0.31
Segment	Degree of Oiling	ESI	Shoreline Segment Length (mi.)
---------	------------------	-----------	--------------------------------
		10A	5.91
	UNSURVEYED	1B	0.56
		5	0.67
	CLEAN	10A	0.44
		10A	0.76
		1B	0.90
	HEAVY	1B/5	0.16
		5	1.49
		6B	0.03
		0D 10Δ	0.02
		5	0.40
NJ-3	LIGHT	0 1	1.66
			1.00
		8B	0.21
		10A	0.89
		1B	0.16
	MEDIUM	5	2.75
	MEDIOM	6A	0.20
		6B	0.73
		8A	0.08
		10A	3.07
	VERY LIGHT	5	0.57
		6B	0.08
		10A	13.50
	UNSURVEYED	8A	2.13
		10A	0.87
	CLEAN	5	0.04
		10A	0.53
		1B	0.36
	HEAVY	1B/5	0.65
		5	0.98
		6B	0.68
		100	1 12
			0.00
		1B	0.20
NJ-4	LIGHT	1B/5	0.10
		5	1.99
		6A	0.03
		6B	0.28
		10A	2.36
	MEDIUM	<u>1B</u>	0.92
		2 6P	2.43
		404	1.00
			3.04
			1.89
	VERY LIGHT	1B	0.40
	-	5	0.05
		6B	0.49
		8A	0.10

Segment	Degree of Oiling	ESI	Shoreline Segment Length (mi.)
	UNSURVEYED	10A	3.30
	CLEAN	10A	0.66
	HEAVY	5	0.23
		10A	20.17
		10A/5	0.29
		10A/6A	0.09
		1B	0.21
	LIGHT	4	0.07
NJ-5		5	2.76
		6A	0.51
		8A	3.25
		10A	2.82
		10A/5	0.08
	MEDIUM	10A/6A	0.12
	_	5	0.18
		84	0.41
	VERYLIGHT	5	0.39
		104	0.33
	LIGHT	6B	0.00
		104	0.32
NJ-6		1R	0.62
	VERY LIGHT	5	1 85
		6B	0.72
		104	7 64
		5	0.08
	UNSURVEYED	6B	0.45
		84	1.88
NJ-7		101	0.22
		10A	0.22
	LIGHT		0.91
		5 6D	0.40
		104	4.66
	UNSURVETED	10A	0.90
			0.30
N I-8			2.49
110-0	VERY LIGHT		0.15
		1B/6B	1.53
		5	1.67
		6B 10A	3.36
	UNSURVETED	10A 10A	1 31
	LIGHT	6B	0.14
		10A	8.80
NJ-9		1B	1.65
	VERY LIGHT	4	0.11
		5	0.15
		6B	0.42

Segment	Degree of Oiling	ESI	Shoreline Segment Length (mi.)
		10A	22.34
	UNSURVEYED	1B	0.07
		5	0.05
		10A	0.72
NJ-10		10A/6B	0.57
Segment NJ-10	CLEAN	1B	0.16
		5	0.05
		6B	3.54
	VERY LIGHT	10A	5.47
		10A	70.46
		1B	2.06
		5	0.94
	ONCONVETED	5/10A	0.17
		6B	1.69
N.I-11		8A	1.18
		10A	104.74
		1B	2.05
	CLEAN	5	0.64
	OLLAN	6B	0.92
		8A	5.43
		8B	0.21
		10A	148.32
		10A/5	3.20
		1B	2.19
		1B/5	0.44
		1B/6B	0.24
		3	0.08
	UNSURVEYED	4	1.50
		5	17.64
		5/10A	1.13
		6A	0.35
		6B	4.12
NL12		6B/4	0.13
110-12		8B	0.40
		10A	2.05
		1B	1.13
		1B/5	0.50
		1B/6B	0.36
	CLEAN	3	0.01
		4	0.31
		5	2.66
		6A	0.11
		6B	0.76
		10A/5	0.14
	VERTLIGHT	6B/5	0.10

Segment	Degree of Oiling	ESI	Shoreline Segment Length (mi.)
		6B	0.60
	UNSURVEYED	8A	0.44
		8B	0.38
		1B	1.10
		5	0.78
PA-1	CLEAN	6A	0.15
		6B	1.38
		8A/6A	0.17
		1B	10.36
	Medium	5	0.17
		6B	2.59
		1B	11.09
PA_2		5	0.28
F A-2		6B	0.36
		8B	0.66
		1B	1.09
	UNSURVEYED	5	0.07
		6B	0.04
		10A	0.07
		1B	2.40
	CLEAN	6B	0.14
		8A	0.16
P4-3		8B	3.06
F A-3	HEAVY	1B	0.12
		1B	2.62
	LICHT	5	0.07
	LIGITI	6B	1.09
		8A	0.13
		1B	8.27
	IVIEDIOIVI	6B	0.28
	VERY LIGHT	1B	0.02
	UNSURVEYED	1B	0.07
		10A	0.11
		10A/5	0.22
	HEAVY	1B	1.62
FA-4		5	0.15
		6B	3.30
		1B	0.40
		5	0.85

Segment	Degree of Oiling	ESI	Shoreline Segment Length (mi.)
		10A	0.32
		1B	0.33
	UNSURVETED	6B	0.25
		8A	1.18
		10A	2.79
		1B/6B	0.25
	CLEAN	6B	0.44
		8A	0.54
		1B	0.05
	HEAVY	5	0.63
PA-5		6B	0.00
		1B	0.49
	LIGHT	1B/6B	0.95
		6B	0.83
		10A	0.67
	MEDIUM	6B	1.18
		10A	0.47
		1B	0.27
	VERY LIGHT	6B	0.05
		8A	0.58
		8A/6A	0.20
	UNSURVEYED	8A	0.62
		6A	0.01
	CLEAN	8A	0.77
		8B	1.27
		1B	2.22
		5	0.28
	LIGHT	6B	1.28
PA-6		6B/1B	1.90
		8A	0.05
		1B	1.21
	MEDIUM	6A	0.14
		6B	0.38
		1B	1.55
	VERY LIGHT	6A	0.04
		8A	0.19
		3	0.53
	ΠΕΑΥΥ	5	0.54
		3	0.20
PA-7	LIGHT	5	0.92
		3	1.13
	MEDIUM	5	0.94
		6A	0.08

Segment	Degree of Oiling	ESI	Shoreline Segment Length (mi.)
		1B	3.01
	LIGITI	6B	1.83
		1B	1.04
FA-0		6B	0.09
		1B	0.59
		6B	0.26

Appendix H.5.

Report to the Pennsylvania Bureau of Forestry on a Visit to Inspect Oil Damage to Tidal Marshes of Little Tinicum Island from the Athos I Oil Spill of November 26, 2004

Ann F. Rhoads, PhD Morris Arboretum of the University of Pennsylvania 100 Northwestern Ave., Philadelphia, PA 19118

On December 16, 2004 I visited Little Tinicum Island in the Delaware River in Delaware County, PA with Paul Jardel and Thomas L. Magge of the Pennsylvania Department of Environmental Protection. Our visit was timed to coincide with low tide. We walked the entire north side of Little Tinicum Island inspecting the shoreline and the exposed tidal mud flats and lagoons.

Tidal Mud Flats

We saw very little oil on the surface of the tidal flats; however, anything that protruded from the surface had oil on it, including debris and plants.

Plants that were visible on the tidal flats included dormant leaves of spatterdock (*Nuphar advena*), sweetflag (*Acorus calamus*), arrowhead (*Sagittaria rigida*), arrow-arum (*Peltandra virginica*), and dwarf spike-rush (*Eleocharis parvula*). Black deposits of oil were visible on the leaves of many, but not all, of these plants. We did see a few small (6 inch diameter or less) patches of oil on the mud and an occasional area with oil sheen on the water; but for the most part the surface of the tidal flat appeared to be free of oil. There was no evidence that the oil had penetrated into the sediments on the mud flats.

Dormant leaves of spatterdock with black coating of oil visible

Arrowhead leaves with an oily coating

My assessment is that the oil-coated leaves will almost certainly die, but the rhizomes of the plants mentioned above, all of which are perennials, will be unaffected; and that normal

growth will resume in the spring. Other perennial species that were not visible at this time but are known to be present, including strap-leaf arrowhead (*Sagittaria subulata*), Smith's bulrush (*Scirpus smithii*), and mudplantain (*Heteranthera multiflora*) should also be unaffected. The seeds of tidal flat annuals,

including long-lobed arrowhead (*Sagittaria calycina* var. *spongiosa*) and spike-rush (*Eleocharis obtusa* var. *peasii*), should also be unaffected.

ATVs and other vehicles and heavy foot traffic should not be allowed on the tidal flats, as the rhizomes of some of these plants are slender and fragile.

High Tide Line

Deposits of oil were present on vegetation, rocks, debris, and the sand along the high tide line; the intensity of the deposit varied depending on the exposure of each section of shoreline. Those areas most open to the east (upstream direction) were the most severely affected. Thick black oil coated the lower 1-3 feet of dead stems of common reed (*Phragmites australis*), purple loosestrife (*Lythrum salicaria*), swamp-mallow (*Hibiscus moschuetos*), and smartweed (*Polygonum* sp.). Stems and exposed roots of woody plants, including shrubs such as arrow-wood (*Viburnum dentatum*), groundsel-tree (*Baccharis halimifolia*), black elderberry (*Sambucus canadensis*), false indigo (*Amorpha fruticosa*), and trees also were coated to a height of about 12 inches at the base.

In a few areas near the east (upstream) end of the island, oil had soaked in to the sand and gravel surface just below the high tide line forming an asphalt-like crust.

Oil coating the lower portions of purple loosestrife and smartweed at the high tide line

I recommended that dead stems of the herbaceous species be cut as close to the base as possible and removed from the site to prevent the oil on them from being redistributed. Woody stems of shrubs may be girdled and killed by the oil, due to the toxicity of the oil to the cambium layer just below the bark; however, the bark of older stems may be thick enough to protect them. Whether the stems are cut or left in place, regrowth will likely occur from dormant buds at the base or from stolons. Similarly, exposed roots and lower stems of trees that are coated with oil may be girdled, or they may escape damage depending on the thickness of the bark. It is probably best to leave these roots and stems in place.

Several rare tidal marsh plants typically grow at or near the high tide line, wild rice (*Zizania aquatica*), waterhemp ragweed (*Amaranthus cannabinus*), Walter's barnyard grass (*Echinochloa walteri*), swamp-beggar-ticks (*Bidens bidentoides*), and marsh fleabane (*Pluchea odorata*), are all annuals and not visible at this time. Because they over-winter as seeds, they will likely escape direct impact from the oil.

Water-horehound (*Lycopus rubellus*), an herbaceous perennial that often grows right at the high tide line, may be vulnerable to damage from the oil. It frequently grows in crevices among the roots of trees right at the uppermost reach of the tide. Its over-wintering structures are stolons and tubers.

Interior Areas

In order to move people and materials from one side of the island to the other clean-up contractors have blazed several ATV trails through the island interior. These disturbances should not cause any permanent harm.

Common name	Scientific name	Growth cycle	Status
waterhemp ragweed	Amaranthus cannabinus	annual	PR
swamp beggar-ticks	Bidens bidentoides	annual	PT/PE
Walter's barnyard grass	Echinochloa walteri	annual	PE
spike-rush	Eleocharis obtusa var. peasii	annual	PE
dwarf spike-rush	Eleocharis parvula	perennial	PE
mud-plantain	Heteranthera multiflora	perennial	PE
water-horehound	Lycopus rubellus	perennial	
marsh fleabane	Pluchea odorata	annual	TU/PE
long-lobed arrowhead	Sagittaria calycina var. spongiosa	annual	PE
strap-leaf arrowhead	Sagittaria subulata	perennial	PR
Smith's bulrush	Scirpus smithii	perennial	PE
wild-rice	Zizania aquatica	annual	PR

List of PNHP-classified plants known to occur at Little Tinicum Island

APPENDIX I

Bird and Wildlife Survey Data

- I.1. Summary results of 3,428 ground surveys conducted between November 30, 2004 and January 10, 2005.
- I.2. Ratio of total birds observed during ground surveys/number of site visits by date.
- I.3. Summary of aerial survey data

Guild	Common name	Total count	Most Observed in One Day	Most Observed Oiled in One Day	No oiling	Trace	Light	Moderate	Heavy	Total oiled	Proportion of Observed Species Oiled	Proportion of Total Birds Oiled
	Wood duck	2	1	0	2	0	0	0	0	0	0.00	0.00
	Northern pintail	4938	3010	10	4915	3	19	0	1	23	0.00	0.00
	American wigeon	83	31	0	83	0	0	0	0	0	0.00	0.00
	Northern shoveler	389	176	2	386	3	0	0	0	3	0.01	0.00
cks	Green-winged teal	1116	463	0	1116	0	0	0	0	0	0.00	0.00
qu	Blue-winged teal	5	4	0	5	0	0	0	0	0	0.00	0.00
ling	Mallard	7671	802	45	7224	164	159	73	51	447	0.06	0.03
ldda	American black duck	922	217	10	881	26	11	1	3	41	0.04	0.00
Då	Black mallard hybrid	5	2	0	5	0	0	0	0	0	0.00	0.00
	Gadwall	524	111	1	521	2	0	0	1	3	0.01	0.00
	Muscovy duck	74	18	7	58	2	14	0	0	16	0.22	0.00
	Duck sp.	240	90	7	214	1	5	4	16	26	0.11	0.00
	Unknown shoveler	7	6	0	7	0	0	0	0	0	0.00	0.00
	Red-throated loon	4	1	0	4	0	0	0	0	0	0.00	0.00
rds	Double-crested cormorant	257	57	14	174	6	39	29	9	83	0.32	0.01
bi bi	Great cormorant	1	1	0	1	0	0	0	0	0	0.00	0.00
ving	Cormorant	26	10	1	24	1	0	0	1	2	0.08	0.00
Di	Horned grebe	4	3	1	1	1	1	1	0	3	0.75	0.00
	Pied-billed grebe	112	68	2	105	3	2	2	0	7	0.06	0.00

Appendix I.1. Summary results of 3,428 ground surveys conducted between November 30, 2004 and January 10, 2005.

Guild	Common name	Total count	Most Observed in One Day	Most Observed Oiled in One Day	No oiling	Trace	Light	Moderate	Heavy	Total oiled	Proportion of Observed Species Oiled	Proportion of Total Birds Oiled
	Lesser scaup	45	21	7	33	1	2	7	2	12	0.27	0.00
	Ring-necked duck	565	199	5	546	15	1	3	0	19	0.03	0.00
	Greater scaup	114	100	0	114	0	0	0	0	0	0.00	0.00
	Canvasback	59	28	4	46	1	7	5	0	13	0.22	0.00
cks	Bufflehead	856	520	15	747	35	51	23	0	109	0.13	0.01
np	Goldeneye	66	59	0	66	0	0	0	0	0	0.00	0.00
Diving	American coot	442	105	5	437	0	4	0	1	5	0.01	0.00
	Hooded merganser	36	17	0	36	0	0	0	0	0	0.00	0.00
	Black scoter	2	1	1	1	0	1	0	0	1	0.50	0.00
	Common merganser	249	47	7	232	12	4	0	1	17	0.07	0.00
	Red-breasted merganser	3	3	0	3	0	0	0	0	0	0.00	0.00
	Ruddy duck	440	170	2	437	3	0	0	0	3	0.01	0.00
	Herring gull	13451	6294	88	12536	551	242	96	26	915	0.07	0.06
	Laughing gull	118	95	21	94	2	2	20	0	24	0.20	0.00
	Yellow-legged gull	7	7	0	7	0	0	0	0	0	0.00	0.00
	Ring-billed gull	27367	3282	832	21945	2165	2183	902	172	5422	0.20	0.33
s	Lesser black-backed gull	18	3	1	17	1	0	0	0	1	0.06	0.00
Juli	Iceland gull	6	4	1	3	3	0	0	0	3	0.50	0.00
U	Glaucous gull	3	1	0	3	0	0	0	0	0	0.00	0.00
	Great black-headed gull	5	3	0	5	0	0	0	0	0	0.00	0.00
	Great black-backed gull	4256	2144	56	3787	336	92	35	6	469	0.11	0.03
	Bonaparte's gull	15	5	0	15	0	0	0	0	0	0.00	0.00
	Gull sp.	5822	1422		5557	48	115	86	16	265	0.05	0.02

Guild	Common name	Total count	Most Observed in One Day	Most Observed Oiled in One Day	No oiling	Trace	Light	Moderate	Heavy	Total oiled	Proportion of Observed Species Oiled	Proportion of Total Birds Oiled
	Belted kingfisher	118	21	3	111	3	4	0	0	7	0.06	0.00
rds	Ruddy turnstone	11	11	0	11	0	0	0	0	0	0.00	0.00
rebi	Sanderling	55	34	8	47	0	8	0	0	8	0.15	0.00
iou	Dunlin	1353	781	0	1353	0	0	0	0	0	0.00	0.00
it, S	Purple sandpiper	102	70	0	102	0	0	0	0	0	0.00	0.00
ishe	Western sandpiper	200	200	0	200	0	0	0	0	0	0.00	0.00
ngfi	Killdeer	287	146	25	262	0	0	0	25	25	0.09	0.00
Ki	Black-bellied plover	5	5	0	5	0	0	0	0	0	0.00	0.00
	Greater yellowlegs	7	7	0	7	0	0	0	0	0	0.00	0.00
	Greater white-fronted goose	357	80	0	26	1	72	243	15	331	0.93	0.02
sese	Canada goose	59724	9432	1243	51683	1948	3459	1500	1136	8041	0.13	0.49
\ ₿	Snow goose	22094	20330	2	22090	3	0	1	0	4	0.00	0.00
ans	Tundra swan	595	172	14	512	1	26	24	32	83	0.14	0.01
Swa	Mute swan	1773	558	15	1735	24	13	1	0	38	0.02	0.00
	Unknown swan	53	50	0	53	0	0	0	0	0	0.00	0.00
	Great egret	60	11	2	55	0	5	0	0	5	0.08	0.00
ng	Great blue heron	367	38	12	309	12	40	3	3	58	0.16	0.00
'adi rds	Snowy egret	4	3	0	4	0	0	0	0	0	0.00	0.00
bi 🦉	Glossy ibis	1	1	0	1	0	0	0	0	0	0.00	0.00
	Total Birds	157491	51551	2469	140959	5377	6581	3059	1517	16532		

Guild	Common name	11/30/04	12/1/04	12/2/04	12/3/04	12/4/04	12/5/04	12/6/04	12/7/04	12/8/04	12/9/04	12/10/04	12/11/04	12/12/04	12/13/04
	# DAILY SITE VISITS	29	17	198	161	232	237	162	181	276	177	91	235	258	43
	Wood duck			0.01				0.01							
	Northern pintail		0.12	0.49	0.52	1.22	0.35	1.29	0.14	2.18	1.19	0.02	12.81	0.31	1.21
	American wigeon				0.04	0.09	0.03	0.19		0.02	0.01			0.01	
	Northern shoveler		ļ	0.22		0.22	0.11	0.02		0.10		0.02	0.75	0.02	
cks	Green-winged teal			0.01				0.02	1.17	1.68	0.05		1.18	0.00	1.40
que	Blue-winged teal	0.03							ļ						
ing	Mallard	2.41	6.00	2.04	3.32	2.59	2.17	2.78	3.07	2.91	1.35	1.84	2.34	1.17	1.33
[ddi	American black duck	0.55	0.06	0.18	0.18	0.49	0.06	0.36	0.07	0.13	0.26	0.15	0.92	0.10	
Ď	Black mallard hybrid									0.01			0.01		
	Gadwall			0.02	0.35		0.17	0.12	0.04	0.40	0.63	0.22	0.09	0.34	
	Muscovy duck		ļ	0.01		0.02			0.07	0.05	0.03	0.07	0.00		
	Duck sp.			0.16	0.56	0.03		0.06	0.24	0.01	0.01	0.08			0.12
	Unknown shoveler								0.01						
	Red-throated loon					Į	Ļ	0.01	0.01	0.00			ļ	0.00	
rds	Double-crested cormorant		0.12	0.16	0.19	0.25	0.11	0.12	0.07	0.06	0.03	0.05	0.02	0.05	
id j	Great cormorant														
ving	Cormorant		0.12	0.01	0.02	0.00	0.02			0.01			0.00		
Di	Horned grebe				0.02										
	Pied-billed grebe		0.12	0.01	0.03	0.04	0.01	0.02	0.01	0.03	0.01			0.02	

Appendix I.2. Ratio of total birds observed during ground surveys/number of site visits by date.

Guild	Common name	11/30/04	12/1/04	12/2/04	12/3/04	12/4/04	12/5/04	12/6/04	12/7/04	12/8/04	12/9/04	12/10/04	12/11/04	12/12/04	12/13/04
	Lesser scaup			0.02			0.01		<u></u>	0.03	0.01		0.03		· · ·
	Ring-necked duck			0.01	0.19	0.08	0.22	0.15	0.15	0.72	0.34		0.20	0.21	0.02
	Greater scaup					0.03	0.03								
	Canvasback				0.02	0.01	0.12			0.03	0.03				
cks	Bufflehead	0.21	0.18	0.14	0.17	0.32	0.22	0.09	0.13	0.05	0.06	0.04	0.06	0.05	0.02
du	Goldeneye						0.01		0.02						
/ing	American coot			0.32	0.47	0.45	0.05	0.41	0.07	0.21	0.06		0.01	0.01	0.12
Div	Hooded merganser		0.06			0.07	0.00	0.01		0.01	0.01	0.07		0.01	
Ι	Black scoter										0.01			0.00	
	Common merganser			0.06	0.01		0.08	0.02		0.05					0.09
	Red-breasted merganser														
	Ruddy duck		0.06	0.02	0.48	0.08	0.53	0.02	0.02	0.01	0.05	0.01	0.03	0.03	0.05
	Herring gull		6.06	31.79	0.68	1.47	2.16	1.63	0.15	1.25	0.70	0.12	2.09	0.17	2.60
	Laughing gull			0.48			0.05	0.01		0.00			0.03	0.00	
	Yellow-legged gull									0.03					
	Ring-billed gull	1.97	36.24	12.60	8.30	13.93	10.68	11.06	4.72	11.89	4.58	1.01	2.56	3.79	1.91
s	Lesser black-backed gull														
Jull	Iceland gull														
	Glaucous gull												0.00		
	Great black-headed gull									0.01					
	Great black-backed gull		0.41	10.83	0.30	0.19	0.65	1.04	0.06	0.62	0.07	0.05	0.74	0.40	0.28
	Bonaparte's gull			0.03				0.03						0.02	
	Gull sp.	7.69	7.24	7.18	5.53	2.74	1.67	0.02	0.22			0.09	0.09	0.43	

Guild	Common name	11/30/04	12/1/04	12/2/04	12/3/04	12/4/04	12/5/04	12/6/04	12/7/04	12/8/04	12/9/04	12/10/04	12/11/04	12/12/04	12/13/04
	Belted kingfisher		0.18	0.11	0.02	0.05	0.05	0.06	0.03	0.01	0.02	0.02	0.05	0.02	0.02
spi	Ruddy turnstone														
ebii	Sanderling					ļ	Į	0.02	0.08	0.01					
hor	Dunlin]]				0.44			3.32		
r/ S	Purple sandpiper														
she	Western sandpiper												0.85		
ılgfi	Killdeer]	0.19	0.09	0.63	0.16					0.01	ļ		
Kii	Black-bellied plover									0.02					
	Greater yellowlegs												0.03		
	Greater white-fronted goose				0.17	0.34	0.18	0.25	0.23	0.17		0.04	0.00	0.00	0.19
sese	Canada goose	0.55	82.53	12.65	34.74	20.29	13.97	13.83	8.20	26.38	13.93	11.87	40.14	7.71	15.56
/ gç	Snow goose			1.02		2.59	0.02		ç	3.39			86.51		
ans	Tundra swan			0.30	0.09	0.44	0.02	0.14	0.04	0.20	0.19	0.07	0.18	0.67	0.44
Sw	Mute swan		0.06	0.02	3.47	0.46	0.99	0.92	0.27	0.45	0.76	0.26	0.35	0.24	0.09
	Unknown swan	0.03						0.31				0.01			
rds	Great egret	0.07		0.01		0.05	0.01	0.01		0.01	0.01	0.01	0.02	0.02	
g bi	Great blue heron	0.21	0.35	0.16	0.09	0.14	0.11	0.12	0.16	0.06	0.08	0.14	0.09	0.07	0.02
din	Snowy egret					0.01		0.01							
Wa	Glossy ibis														

Guild	Common name	12/14/04	12/15/04	12/16/04	12/17/04	12/19/04	12/21/04	12/22/04	12/23/04	12/28/04	12/30/04	1/4/05	1/5/05	1/6/05	1/10/05
	# DAILY SITE VISITS	202	122	97	205	2	114	84	29	96	58	48	6	49	19
	Wood duck													ļ	
	Northern pintail	0.20	0.25	0.02	0.58		0.02				0.02	0.06		0.02	
	American wigeon		0.04									0.04		0.02	
	Northern shoveler		0.43			ļ		ļ							
cks	Green-winged teal	0.36	0.13		0.00										
que	Blue-winged teal		0.03												
ing	Mallard	1.76	2.48	4.72	1.97		1.64	1.36	1.90	0.86	2.41	0.63	12.17	1.06	2.74
lddi	American black duck	0.49	0.37	0.52	0.20	<u> </u>	0.26	ļ	ļ	0.30	0.09	0.04		ļ	
D_{3}	Black mallard hybrid				0.00										
	Gadwall	0.08	0.06		0.09						0.07				
	Muscovy duck		0.15		0.05	ļ		ļ							
	Duck sp.	0.03		0.05	0.07		0.12				0.09				
	Unknown shoveler										0.10				
	Red-throated loon														
ls	Double-crested														
birc	cormorant	0.10			0.00	ļ	0.10					ļ			
ng	Great cormorant									0.01					
Jivi	Cormorant		0.08	0.01		ļ				ļ					
	Horned grebe				ļ	ļ		0.01			ļ			ļ	
	Pied-billed grebe		0.56		0.00			0.02		0.01					

uild	Common name	/14/04	/15/04	/16/04	/17/04	/19/04	/21/04	/22/04	/23/04	/28/04	/30/04	/4/05	/5/05	/6/05	10/05
0		12,	12,	12,	12,	12,	12,	12,	12,	12,	12,	1	1,	1,	1/
	Lesser scaup				0.01						0.36				
	Ring-necked duck	0.12	0.01		0.11			0.01							
	Greater scaup			1.03											
	Canvasback	0.01	0.04		0.01					0.02					
cks	Bufflehead	0.03	0.02	5.36	0.13		0.03	0.11		0.04	0.02				
np 3	Goldeneye			0.61	0.00										
ving	American coot	0.00	0.02	0.03		ļ	0.16	0.01		0.01	0.02	0.04			<u></u>
Div	Hooded merganser			0.02	0.00										
	Black scoter														
	Common merganser	0.01	0.02	0.26	0.04		0.23	0.46		0.49	0.10	0.40		0.39	
	Red-breasted merganser			0.03											
	Ruddy duck	0.01	0.03	1.75											
	Herring gull	0.88	4.26	1.20	0.58		0.54	8.74	0.03	9.04	0.93	22.75		0.20	48.58
	Laughing gull		0.01												
	Yellow-legged gull											ļ			
	Ring-billed gull	4.66	12.85	12.14	4.89	46.50	7.49	5.98	0.38	7.32	5.02	3.54	17.50	11.24	33.53
s	Lesser black-backed gull		0.02					0.02				0.06			0.58
Jull	Iceland gull	ļ						0.01				0.08			0.05
	Glaucous gull							0.01							0.05
	Great black-headed gull	0.01													
	Great black-backed gull	0.16	1.70	0.73	0.28	1.00	0.82	2.98	0.24	0.66	0.50	4.06		0.63	8.58
	Bonaparte's gull				0.00										
	Gull sp.	3.12	2.59	0.02	3.06		0.78		9.86						

Guild	Common name	12/14/04	12/15/04	12/16/04	12/17/04	12/19/04	12/21/04	12/22/04	12/23/04	12/28/04	12/30/04	1/4/05	1/5/05	1/6/05	1/10/05
	Belted kingfisher	0.04	0.02	0.05	0.02		0.02	0.01	0.03		0.03	0.02			
rds	Ruddy turnstone		0.09	ļ											
ebi	Sanderling		0.28	0.02											
hoi	Dunlin			4.64											ĺ
sr/ S	Purple sandpiper	0.16	0.57										<u>.</u>		
ishe	Western sandpiper			Į									Į		ļ
ngfi	Killdeer	0.05		0.01	0.18		ļ	0.01						l	ĺ
Ki	Black-bellied plover														
	Greater yellowlegs														
	Greater white-fronted														
se	goose	ļ	0.02		0.12		0.11	0.02		0.15	0.19			ļ	ļ
gee	Canada goose	18.21	12.34	16.69	16.36		18.58	3.42	13.90	2.21	6.93	2.63	68.00	10.80	45.11
s / 8	Snow goose	0.08	0.01				0.02								l
van	Tundra swan	0.05			0.09		0.04				0.17			0.14	ĺ
Sv	Mute swan	0.32			0.64		0.09	0.15		0.14	0.14				
	Unknown swan				0.00										
rds	Great egret	0.04		0.03	0.02		0.05		0.07	0.01		0.06			
g bi	Great blue heron	0.11	0.07	0.14	0.19		0.14	0.05	0.03	0.05	0.10	0.02		0.04	
ndin	Snowy egret														
Wa	Glossy ibis	0.00													

Appendix I.3. Summary of aerial survey data. "P" indicates that not all survey segments in an area (e.g., "New Jersey-North") were flown; "F" indicates that all shoreline survey segments in an area were flown.

Guild Common name		11/28/2004	11/29/2004	11/30/2004	12/2/2004	12/3/2004	12/5/2004	12/9/2004	12/13/2004	12/15/2004	12/16/2004	12/21/2004
NUM. SEGMENTS	FLOWN (of 23 total)	4	3	8	19	5	23	10	12	11	4	12
	Delaware				F		F			F	Р	
COVERAGE BY	New Jersey - North	Ρ	Ρ	Ρ	F		F	Р	F			F
AREA	New Jersey - South			Ρ	F		F			F	Р	
	Pennsylvania			Р		F	F	Р	F			F
	American black duck	261	109	135	8147	70	3656	1199	1252	3519	4710	2895
	American wigeon	0	0	0	0	0	61	0	0	45	0	0
	Blue-winged teal	0	0	0	0	0	0	0	0	1	0	0
	Gadwall	35	0	20	15	0	423	35	0	0	4	10
Dabbling ducks	Green-winged teal	15	25	30	595	0	895	195	540	998	390	0
	Mallard	413	86	130	2262	257	3375	2191	2169	967	4442	3490
	Northern pintail	10	0	0	20	0	1075	1455	2320	38	1246	115
	Northern shoveler	0	0	0	0	0	0	0	0	0	40	0
	Unknown dabbling duck	0	0	0	5	0	333	0	0	140	0	0
	Common loon	0	0	0	0	0	3	0	0	0	0	0
	Cormorant sp.	2	5	4	30	21	46	40	54	0	0	65
Diving birds	Double-crested cormorant	0	0	0	9	0	1	0	0	47	1	0
	Red-throated loon	0	0	0	0	0	5	0	0	0	0	0
	American coot	70	0	70	50	0	90	0	50	0	0	30

Guild	Common name	11/28/2004	11/29/2004	11/30/2004	12/2/2004	12/3/2004	12/5/2004	12/9/2004	12/13/2004	12/15/2004	12/16/2004	12/21/2004
NUM. SEGMENTS FLOWN (of 23 total)			3	8	19	5	23	10	12	11	4	12
	Black scoter	0	0	0	2	0	0	0	0	0	0	0
	Bufflehead	100	0	70	63	5	110	15	62	14	10	25
	Canvasback		0	5	5	0	45	5	35	16	0	155
	Common merganser		0	0	14	0	6	0	0	0	0	135
	Greater scaup		0	0	9	0	0	0	0	0	0	0
	Hooded merganser		0	0	10	0	7	5	0	0	4	60
Diving ducks	Long-tailed duck	0	0	0	1	0	0	0	0	13	0	0
	Red-breasted merganser	27	2	5	5	0	10	0	5	1	0	17
	Ring-necked duck	5	0	0	0	0	0	95	90	0	0	50
	Ruddy duck	90	0	100	213	0	218	130	0	48	0	25
	Lesser scaup	75	0	50	83	0	265	95	10	12	0	10
	Scoter sp.	0	0	0	5	0	0	0	0	0	0	0
	Surf scoter	0	0	0	0	0	3	0	0	0	0	0
	Unkown diving duck	0	0	0	1	0	2	0	0	9	0	0
	Great black-backed gull	0	0	0	108	0	238	0	0	18	3	0
	Gull sp.	1015	235	1980	3295	1155	7662	1897	4899	1160	200	4140
Gulls	Herring gull	0	0	0	57	0	1157	0	0	88	26	0
	Northern gannet	0	0	0	10	0	102	0	0	0	0	0
	Ring-billed gull	0	0	0	1114	0	1149	0	0	844	0	0
Shorebirds	Unknown shorebird	0	0	0	1448	0	355	0	0	297	0	5
	Canada goose	1271	277	2422	6911	1068	12373	5313	6308	4468	3915	8250
	Goose sp.	0	0	0	0	0	0	0	0	20	0	0
	Mute swan	1	0	0	35	1	45	9	8	133	35	4
Swane / gooso	Greater white-fronted goose	0	0	0	0	0	0	0	0	0	0	0
Swans / yeese	Snow goose	0	0	0	3438 0	0	64260	0	0	57220	36002	0
	Swan sp.	0	0	0	0	0	152	0	0	89	0	0
	Tundra swan	0	11	9	178	0	90	29	20	0	64	30
Wading birda	Great blue heron	2	1	0	29	0	32	8	2	4	3	5
	Great egret	0	4	0	14	0	1	0	1	0	1	