U.S. Fish and Wildlife Service

Evaluation of Portland Harbor Superfund Area Restoration: Larval Pacific Lamprey

2014 Annual Report

Jeffrey C. Jolley, Gregory S. Silver, and Timothy A. Whitesel

U.S. Fish and Wildlife Service Columbia River Fisheries Program Office Vancouver, WA 98683 **On the cover:** Deepwater electrofisher/dredge sampling at Alder Point Restoration Site at head of the Multnomah Channel of the Willamette River. Photo taken in September 2014 by Jeff Jolley.

The correct citation for this report is:

Jolley, J.C., G.S. Silver, and T.A. Whitesel. 2015. Evaluation of Portland Harbor Superfund area restoration: larval Pacific lamprey, 2014 Annual Report. U.S. Fish and Wildlife Service, Columbia River Fisheries Program Office, Vancouver, WA. 16 pp.

Evaluation of Portland Harbor Superfund Area Restoration: Larval Pacific Lamprey

Study funded by

Portland Harbor Holdings II, LLC

and authored by

Jeffrey C. Jolley Gregory S. Silver Timothy A. Whitesel

U.S. Fish and Wildlife Service Columbia River Fisheries Program Office 1211 SE Cardinal Court, Suite 100 Vancouver, WA 98683

> Final May 12, 2015

Disclaimers

The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the U.S. Fish and Wildlife Service.

The mention of trade names or commercial products in this report does not constitute endorsement or recommendation for use by the federal government.

Evaluation of Portland Harbor Superfund Area Restoration: Larval Pacific Lamprey

Jeffrey C. Jolley, Gregory S. Silver, and Timothy A. Whitesel

U.S. Fish and Wildlife Service Columbia River Fishery Program Office 1211 SE Cardinal Court, Suite 100 Vancouver, WA 98683

Abstract – Pacific lamprey *Entosphenus tridentatus* are declining in the Columbia River Basin. Numerous conservation efforts, including habitat restoration, are now being implemented. Larval lamprey use of restored habitats is understudied. To understand their effectiveness, actions to restore habitats associated with the Portland Harbor Superfund area remediation (focused on juvenile Chinook salmon *Oncorhynchus tshawytscha*) necessitate evaluation of Pacific lamprey before and after project implementations. We used a unique deepwater electrofisher to explore occupancy, detection, and habitat use of larval Pacific lamprey and *Lampetra* spp. at the Alder Point restoration site and Ross Island reference site in the Willamette River. We used a generalized randomized tessellation stratified (GRTS) approach to select sampling quadrats in a random, spatially-balanced order. Lamprey larvae occupied the shoreline areas of the Alder Point restoration site and the Ross Island reference site. Reachspecific detection probabilities ranged from 0.07 to 0.19. Page intentionally left blank

Table of Contents

List of Tables	iv
List of Figures	iv
Introduction	
Methods	6
Results	
Conclusions	9
Acknowledgements	
Literature Cited	
Appendix 1	End of report

List of Tables

Table 1.	Total	number o	of quadrats	delineated,	visited,	sampled,	and occupi	ed and larva	l species
present in	2014	. Unider	ntified lamp	rey are not	ed as "l	Jnid"			

List of Figures

Figure 1. Proposed sample design for the restoration site, shoreline (100 m band) sample	
quadrats (yellow points), confluence sample quadrats (blue points) and slough sample reaches	
(red points)	. 6
Figure 2. Proposed sample design for the reference site on the south point of Ross Island,	
shoreline (100 m band) sample quadrats (yellow points).	. 7
Figure 3. Length-frequency histogram of larval lamprey detected at Alder Point and Ross	
Island. Lamprey smaller than 60 mm were unidentified species and lamprey 60 mm or larger	
were Lampetra spp	, 9

Introduction

Pacific lamprey *Entosphenus tridentatus* in the Columbia River Basin (CRB) and other areas have experienced a great decline in abundance (Close et al. 2002) and have been given protected status within Oregon (Kostow 2002). Lamprey are culturally important to Native American tribes, are ecologically important within the food web, and are an indicator species whose decline provides further insight into the impact of human actions on ecological function (Close et al. 2002). Much information is lacking on the basic biology, ecology, and population dynamics that is required for effective conservation and management.

Pacific lampreys have a complex life history that includes a multiple year larval (ammocoete), migratory juvenile, and adult marine phase (Scott and Crossman 1973). Larvae and juveniles are strongly associated with stream and river sediments. Larvae live burrowed in stream and river sediments for multiple years after hatching, where they filter feed detritus and organic material (Sutton and Bowen 1994). Larvae metamorphose into juveniles from July to December (McGree et al. 2008) and major migrations are made downstream to the Pacific Ocean in the spring and fall (Beamish and Levings 1991). The sympatric western brook lamprey *Lampetra richardsoni* does not have a major migratory or marine life stage although adults may locally migrate upstream before spawning (Renaud 1997). For both species, the majority of the information on habitat preference of larvae comes from CRB tributary systems (Moser and Close 2003; Torgersen and Close 2004; Stone and Barndt 2005; Stone 2006) and coastal systems (Farlinger and Beamish 1984; Russell et al. 1987; Gunckel et al. 2009).

Larval lamprey are known to occur in sediments of low-gradient streams (<5th order [1:100 scale]; Torgersen and Close 2004) but their use of larger river habitats in relatively deeper areas is not well understood. Downstream movement of larvae, whether passive or active, is observed year-round (Nursall and Buchwald 1972; Gadomski and Barfoot 1998; White and Harvey 2003). Anecdotal observations exist regarding larval lamprey occurrence in large river habitats mainly at hydropower facilities (Moursund et al. 2003; CRITFC 2008), impinged on downstream screens, in juvenile bypass facilities, or through observation during dewatering events. These occurrences are thought to be associated with downstream migration and specific collections of supposedly migrating ammocoetes have been made in large river habitats (Beamish and Youson 1987; Beamish and Levings 1991). Sea lamprey *Petromyzon marinus* ammocoetes have been documented in deepwater habitats in tributaries of the Great Lakes, in proximity to river mouths (Hansen and Hayne 1962; Wagner and Stauffer 1962; Lee and Weise 1989; Bergstedt and Genovese 1994; Fodale et al. 2003), and in the large, connecting St. Marys River (Young et al. 1996). References to other species occurring in deepwater or lacustrine habitats are scarce (American brook lamprey *Lampetra appendix*; Hansen and Hayne 1962).

In 2000, the U.S. Environmental Protection Agency declared the Portland Harbor area of the Willamette River as a Superfund site. The Superfund study area (Figure 1) extends from river kilometer 3.2 to river kilometer 18.9 and has a broader focus area (Figure 1) extending from the Columbia River to Willamette Falls. To mitigate for environmental damage that has been done, these areas are subject to various restoration activities as well as assessments of the effectiveness of any restoration. Presently, restoration activities are focused on restoration of juvenile Chinook salmon *Oncorhynchus tshawytscha* habitat. However, these activities provide an opportunity to understand how juvenile lampreys are affected by habitat restoration. It is unclear whether any of the proposed aquatic restoration activities, which are primarily focused on salmonids, will improve conditions for Pacific lamprey. As such, there is interest in monitoring the effectiveness of the restoration, in part, relative to larval Pacific lamprey.

A lamprey monitoring plan (LMP) was developed based on a set of monitoring goals and

objectives that were identified by the Trustee Council and lamprey experts over two workshops held in the fall of 2011. This LMP was developed to simultaneously monitor the impact of restoration actions on juvenile lamprey populations and health in Portland Harbor, and gather information about juvenile lamprey life history, biology, and habitat requirements that may be used by the Trustee Council in the future to design and evaluate lamprey restoration projects. Since lampreys are very different from other biota, the overlap between the LMP and the general restoration monitoring and stewardship plan is not extensive. The LMP differs from the general restoration monitoring and stewardship plan, in part, because the lamprey monitoring is proposed to continue for a period of 20 years. In most cases, the metrics proposed for collection as part of the lamprey monitoring effort need to be co-located with lamprey sampling. To maximize efficiencies, the Trustee Council will use the data collected as part of the lamprey monitoring plan for the general restoration monitoring and stewardship effort as much as possible. The experts recommended monitoring lamprey for 20 years, with the goal of capturing data for 1 to 2 complete generations. Pre-implementation monitoring will be conducted to the extent practical at each restoration site. Lampreys are expected to colonize habitats rapidly. Therefore, monitoring will be conducted on a yearly basis for the first five years, and every five years thereafter.

We began to investigate and document patterns of larval lamprey occupancy and habitat use in or near restoration areas. Obtaining the information on whether lampreys use the areas in and adjacent to restoration sites is critical to understanding the effectiveness of the restoration. At present, little specific information is available on whether and how larvae will use restored areas, how quickly and which life stage colonizes these areas, and how long they use these areas. In general, the proposed work is guided by the LMP. However, due to site specific conditions and constraints, the specific metrics and timing of monitoring proposed for any given site may differ slightly from those outlined in the LMP. Our specific objectives for this phase of Superfund restoration follows:

- 1. Determine whether lampreys occupy restoration and reference sites.
- 2. Determine the types of habitat available and in which types lamprey are detected.
- 3. Characterize species and life history stage that occupy a site.
- 4. Evaluate the health of lamprey detected at each site.

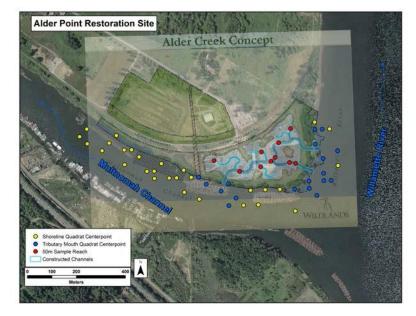


Figure 1. Proposed sample design for the restoration site, shoreline (100 m band) sample quadrats (yellow points), confluence sample quadrats (blue points) and slough sample reaches (red points).

Methods

The Alder Point restoration site is located near the mouth of the Multnomah Channel distributary of the Willamette River (Rkm 5; Figure 1). Pre-restoration monitoring consisted of sampling shoreline sites. Slough and stream habitat did not exist pre-restoration and therefore aquatic sampling in this non-existent habitat did not occur. The Ross Island reference site is located in the Willamette River (Rkm 25; Figure 2) and shoreline sites were at the upstream tip of the island.



Figure 2. Proposed sample design for the reference site on the south point of Ross Island, shoreline (100 m band) sample quadrats (yellow points).

We estimated occupancy of larval lamprey in the restoration and reference sites by adapting an approach that was applied to studies of larval lamprey in the Willamette and Columbia rivers (Jolley et al. 2012, 2013a; 2013b). The approach has several requirements: 1) a site- and gear-specific detection probability (assumed or estimated); 2) the probability of presence at a predetermined acceptably low level (given no detection); and 3) random identification of spatiallybalanced sample sites that allow estimation of presence and refinement of detection probabilities. A reach-specific

probability of detection, d_{reach} , was calculated as the proportion of quadrats (i.e., 30 m x 30 m sampling quadrat) occupied (i.e., larvae captured) by larval lamprey in the Lower Willamette River, an area known to be occupied. The posterior probability of reach occupancy, given a larval lamprey was not detected, was estimated as:

(1)
$$\mathbf{P}(F|C_o) = \frac{\mathbf{P}(C_o|F) \cdot \mathbf{P}(F)}{\mathbf{P}(C_o|F) \cdot \mathbf{P}(F) + \mathbf{P}(C_o|\sim F) \cdot \mathbf{P}(\sim F)},$$

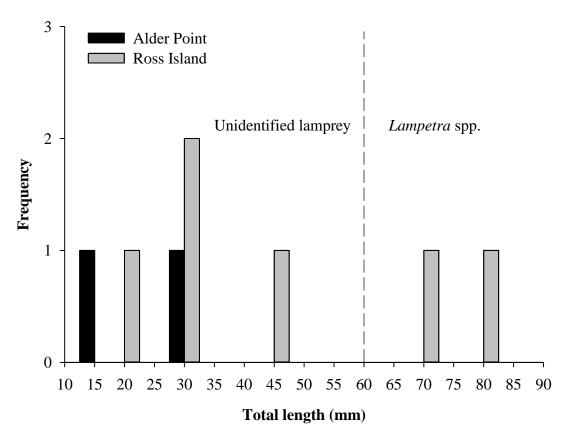
where P(F) is the prior probability of larval lamprey presence. Although we knew the Lower Willamette River was occupied with larval lamprey, P(F) of 0.5 (uninformed) was used for future study design (i.e., $P[F|C_o]$) in areas where larval lamprey presence is unknown. $P(\sim F)$, or 1 - P(F), is the prior probability of species absence, and $P(C_o/F)$, or 1 - d, is the probability of not detecting a species when it occurs (C_0 = no detection; Peterson and Dunham 2003). Patterns of occupancy by site were compared using the Chi-square test for differences in probabilities (Conover 1999).

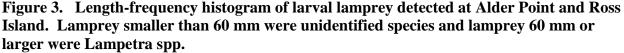
A sampling event consisted of using a deepwater electrofisher (Bergstedt and Genovese 1994) in a 30 m x 30 m quadrat. This quadrat size was selected based on our previous experience surveying for lamprey in the Willamette River (Jolley et al. 2012). A description of the complete configuration of the deepwater electrofisher is given by Bergstedt and Genovese

(1994). The bell of the deepwater electrofisher (0.61 cm^2) was lowered from a boat to the river bottom. The electrofisher delivered three pulses DC per second at 10% duty cycle, with a 2:2 pulse train (i.e., two pulses on, two pulses off). Output voltage was adjusted at each quadrat to maintain a peak voltage gradient between 0.6 and 0.8 V/cm across the electrodes. Suction was produced by directing the flow from a pump through a hydraulic eductor, prohibiting larvae from passing through the pump. Suction began approximately 5 seconds prior to shocking to purge air from the suction hose. Shocking was conducted for 60 seconds, and the suction pump remained on for an additional 60 seconds after shocking to ensure collected larvae passed through the hose and emptied into a collection basket (27 x 62 x 25 cm; 2 mm wire mesh). The sampling techniques are described in detail by Bergstedt and Genovese (1994) and were similar to those used in the Great Lakes region (Fodale et al. 2003) and the Willamette River (Jolley et al. 2012).

Results

We sampled 29 of 30 visited quadrats at the Alder Point Restoration Site and sampled 25 of 28 visited quadrats at the Ross Island Reference Site (Table 1). The feasibility of being able to sample a quadrat in each stratum was 89% to 97%. Some quadrats were not sampled because they were not feasible (dewatered conditions). Larval lampreys were detected at both the restoration site and the reference site (Table 1); no other life stages were detected. Only lamprey larger than 60 mm TL can be confidently identified and tissue samples from those less than 60 mm TL were archived for potential genetic analysis to confirm identification. Three unidentified lamprey larvae were detected at Alder Point (TL: 14, 17, and 30 mm). At Ross Island, two larger larval *Lampetra* spp. were detected (TL: 71, 83 mm) and four unidentified lamprey larvae were detected (TL: 24, 32, 34, 45 mm; Figure 3). Larvae less than 40 mm TL are likely age-0 or age 1 while larger fish are likely older, although definitive estimates of age based on size are difficult (Meeuwig and Bayer 2005). Confirmed Pacific lampreys were not detected at either site. Detection probability was highest at Ross Island (*d*=0.19) compared to Alder Point (*d*=0.07). Detection probabilities did not differ among reaches (Fisher's Exact Test multivariate permutation technique, Brown and Fears 1981, *P*>0.05).


Quadrats										
							Pacific L	ampetra		
Site	Date	Total	Visited	Sampled	Occupied	d	lamprey	spp.	Unid	Total
Alder										
Point	9/24	117	30	29	2	0.07	0	0	3	3
Ross										
Island	9/25	95	28	26	5	0.19	0	2	4	6


 Table 1. Total number of quadrats delineated, visited, sampled, and occupied and larval species present in 2014. Unidentified lampreys are noted as "Unid".

At Alder Point, depths sampled ranged from 0.3 to 16.8 m and larvae were detected in depths from 0.9 to 3.0 m. At Ross Island, depths sampled ranged from 0.3 to 9.8 m and larvae were detected in depths from 1.2 to 7.6 m. The total number of larvae occupying any individual quadrat ranged from 0 to 2. Sediment descriptions including grain size, grain type, and organic content are summarized in Appendix 1. Mean water temperature was 19.3°C at Alder Point and

18.5°C at Ross Island. Mean conductivity was 89.2 μ S/cm at Alder Point and 82.2 μ S /cm at Ross Island. Shoreline areas were in relatively deep water and visual assessments of Type I, II, and III habitat could not be conducted.

All sampled fish were in good condition as no external abnormalities were observed.

Conclusions

Larval lampreys occupied shoreline areas of both the restoration and reference sites. These larvae likely came from spawning areas located upstream, dispersed into the Willamette River, and are using these mainstem habitats for rearing. The presence of larvae in the vicinity of the Alder Point restoration site suggests a source of fish is available to colonize newly created habitats. It is unclear if Pacific lampreys occupy either site although the small, unidentified fish could be Pacific lamprey. Previous work on larval lamprey in the lower Willamette River (Jolley et al. 2012) reported that Pacific lamprey accounted for 22-42% of the larvae while *Lampetra* spp. accounted for 50-59% of the larvae. Data contained in this report will serve as the baseline

for before and after monitoring of the Alder Point restoration site paired with the Ross Island Reference site.

Acknowledgements

Funding for this project was provided by Portland Harbor Holdings II, LLC. We are grateful to all those who have been involved in developing this project. Unfortunately, it is impractical to acknowledge the large number of people and organizations by name. However, we would like to specifically thank C. Uh for field assistance; R. Haverkate, C. Wang and H. Schaller for administrative support, J. Harris for analytical guidance; J. Kassakian for project oversight and integration as well as; H. Holmes and J. Buck for assistance with sediment sampling.

Literature Cited

- Beamish, R.J., and C.D. Levings. 1991. Abundance and freshwater migrations of the anadromous parasitic lamprey, *Lampetra tridentata*, in a tributary of the Fraser River, British Columbia. Canadian Journal of Fisheries and Aquatic Sciences 48:1250-1263.
- Beamish, R.J., and J.H. Youson. 1987. Life history and abundance of young adult *Lampetra ayresi* in the Fraser River and their possible impact on salmon and herring stocks in the Strait of Georgia. Canadian Journal of Fisheries and Aquatic Sciences 44:525-537.
- Bergstedt, R.A., and J.H. Genovese. 1994. New technique for sampling sea lamprey larvae in deepwater habitats. North American Journal of Fisheries Management 14:449-452.
- Brown, C. C., and T.R. Fears. 1981. Exact significance levels for multiple binomial testing with application to carcinogenicity screens. Biometrics 37:763-774.
- Close, D.A., M.S. Fitzpatrick, and H.W. Li. 2002. The ecological and cultural importance of a species at risk of extinction, Pacific lamprey. Fisheries 27:19-25.
- Conover, W.J. 1999. Practical nonparametric statistics, 3rd ed. John Wiley & Sons, Inc.
- CRITFC (Columbia River Inter-Tribal Fish Commission). 2008. Tribal Pacific Lamprey Restoration Plan for the Columbia River Basin. Formal draft available: www.critfc.org/text/lamprey/restor_plan.pdf. (February 2010).
- Farlinger, S.P., and R.J. Beamish. 1984. Recent colonization of a major salmon-producing lake in British Columbia by the Pacific lamprey (*Lampetra tridentata*). Canadian Journal of Fisheries and Aquatic Sciences. 41:278-285.
- Fodale, M.F., C.R. Bronte, R.A. Bergstedt, D.W. Cuddy, and J.V. Adams. 2003. Classification of lentic habitat for sea lamprey (*Petromyzon marinus*) larvae using a remote seabed classification device. Journal of Great Lakes Research 29 (Supplement 1):190–203.
- Gadomski, D. M., and C. A. Barfoot. 1998. Diel and distributional abundance patterns of fish embryos and larvae in the lower Columbia and Deschutes rivers. Environmental Biology of Fishes 51:353-368.
- Gunckel, S.L., K.K. Jones, and S.E. Jacobs. 2009. Spawning distribution and habitat use of adult Pacific and western brook lampreys in Smith River, Oregon. Pages 173-189 *in* L.R. Brown, S.D. Chase, M.G. Mesa, R.J. Beamish, and P.B. Moyle, editors. Biology, management, and conservation of lampreys in North America. American Fisheries Society, Symposium 72, Bethesda, Maryland pp. 173-189.
- Hansen, M.J., and D.W. Hayne. 1962. Sea lamprey larvae in Ogontz Bay and Ogontz River, Michigan. Journal of Wildlife Management 26:237-247.

- Jolley, J.C., G.S. Silver, and T.A. Whitesel. 2012. Occupancy and detection of larval Pacific lampreys and *Lampetra* spp. in a large river: the Lower Willamette River. Transactions of the American Fisheries Society 141:305-312.
- Jolley, J.C., G.S. Silver, and T.A. Whitesel. 2013a. Occurrence, detection, and habitat use of larval lamprey in Columbia River mainstem environments: The Dalles Pool and Deschutes River mouth. U.S. Fish and Wildlife Service, Columbia River Fisheries Program Office, Vancouver, WA, 2012 Annual Report.
- Jolley, J.C., G.S. Silver, and T.A. Whitesel. 2013b. Occurrence, detection, and habitat use of larval lamprey in the Lower White Salmon River and mouth: Post-Condit Dam removal U.S. Fish and Wildlife Service, Columbia River Fisheries Program Office, Vancouver, WA, 2012 Annual Report.
- Kostow, K. 2002. Oregon lampreys: natural history status and problem analysis. Oregon Department of Fish and Wildlife, Portland.
- Lee, D.S., and J.G. Weise. 1989. Habitat selection of lentic larval lampreys: preliminary analysis based on research with a manned submersible. Journal of Great Lakes Research 15:156-163.
- McGree, M., T.A. Whitesel, and J. Stone. 2008. Larval metamorphosis of individual Pacific lampreys reared in captivity. Transactions of the American Fisheries Society 137:1866-1878.
- Meeuwig, M.H. and J.M. Bayer. 2005. Morphology and aging precision of statoliths from larvae of Columbia River Basin lampreys. North American Journal of Fisheries Management 25:38-48.
- Moser, M.L., and D.A. Close. 2003. Assessing Pacific lamprey status in the Columbia River basin. Northwest Science 77:116-125.
- Moursund, R. A., D. D. Dauble, and M. J. Langeslay. 2003. Turbine intake diversion screens: investigating effects on Pacific lamprey. Hydro Review 22:40-46.
- Nursall, J. R., and D. Buchwald. 1972. Life history and distribution of the arctic lamprey (*Lethenteron japonicum* (Martens)) of Great Slave Lake, N.W.T. Fisheries Research Board of Canada Technical Report 304.
- Peterson, J.T., and J. Dunham. 2003. Combining inferences from models of capture efficiency, detectability, and suitable habitat to classify landscapes for conservation of threatened bull trout. Conservation Biology 17:1070-1077.
- Renaud, C. B. 1997. Conservation status of northern hemisphere lampreys (Petromyzontidae). Journal of Applied Ichthyology 13:143-148.

- Russell, J. E., F. W. H. Beamish, and R. J. Beamish. 1987. Lentic spawning by the Pacific lamprey, *Lampetra tridentata*. Canadian Journal of Fisheries and Aquatic Sciences 44:476-478.
- Scott, W.B., and E.J. Crossman. 1973. Freshwater fishes of Canada. Fisheries Research Board of Canada, Ottawa.
- Stone, J. 2006. Observations on nest characteristics, spawning habitat, and spawning behavior of Pacific and western brook lamprey in a Washington stream. Northwestern Naturalist 87:225-232.
- Stone, J., and S. Barndt. 2005. Spatial distribution and habitat use of Pacific lamprey (*Lampetra tridentata*) ammocoetes in a western Washington stream. Journal of Freshwater Ecology 20:171-185.
- Sutton, T.M., and S.H. Bowen. 1994. Significance of organic detritus in the diet of larval lamprey in the Great Lakes Basin. Canadian Journal of Fisheries and Aquatic Sciences 51:2380-2387.
- Torgersen, C.E., and D.A. Close. 2004. Influence of habitat heterogeneity on the distribution of larval Pacific lamprey *Lampetra tridentata* at two spatial scales. Freshwater Biology 49:614-630.
- Wagner, W.C., and T.M. Stauffer. 1962. Sea lamprey larvae in lentic environments. Transactions of the American Fisheries Society 91:384-387.
- White, J. L., and B. C. Harvey. 2003. Basin-scale patterns in the drift of embryonic and larval fishes and lamprey ammocoetes in two coastal rivers. Environmental Biology of Fishes 67:369-378.
- Young, R. J., G.C. Christie, R.B. McDonald, D.W. Cuddy, T.J Morse, and N.R. Payne. 1996. Effects of habitat change in the St. Marys River and northern Lake Huron on sea lamprey (*Petromyzon marinus*) populations. Canadian Journal of Fisheries and Aquatic Sciences 53:99-104.

Appendix 1. Sediment descriptions from Alder Point and Ross Island.

U.S. Fish and Wildlife Service Columbia River Fisheries Program Office 1211 SE Cardinal Court, Suite 100 Vancouver, WA 98683

May 2015

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626 **T:** 1-360-577-7222 **F:** 1-360-636-1068 www.alsglobal.com

Analytical Report for Service Request No: K1413105

January 13, 2015

Rachel DelVecchio Industrial Economics, Inc. 2067 Massachusetts Ave. Cambridge, MA 02140

RE: Portland Harbor 2014/Alder

Dear Rachel:

Enclosed are the results of the sample(s) submitted to our laboratory on November 3, 2014. For your reference, these analyses have been assigned our service request number **K1413105**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3364. You may also contact me via email at howard.holmes@alsglobal.com.

Respectfully submitted,

ALS Group USA Corp. dba ALS Environmental

Howard B. Holman

Howard Holmes Project Manager

Page 1 of _____

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
LUFT	Leaking Underground Fuel Tank
M MCL	Modified Maximum Contaminant Level is the highest permissible concentration of a substance
	allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- $i \,$ $\,$ The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- ${f F}$ The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEC UST	http://dec.alaska.gov/applications/eh/ehllabreports/USTLabs.aspx	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L14-51
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	Not available	-
Idaho DHW	http://www.healthandwelfare.idaho.gov/Health/Labs/CertificationDrinkingWaterLabs/tabid/1833/Default.aspx	_
ISO 17025	http://www.pjlabs.com/	L14-50
Louisiana DEQ	http://www.deq.louisiana.gov/portal/DIVISIONS/PublicParticipationandPer mitSupport/LouisianaLaboratoryAccreditationProgram.aspx	03016
Maine DHS	Not available	WA01276
Michigan DEQ	http://www.michigan.gov/deq/0,1607,7-135-3307_4131_4156,00.html	9949
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Montana DPHHS	http://www.dphhs.mt.gov/publichealth/	CERT0047
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/oqa/	WA005
North Carolina DWQ	http://www.dwqlab.org/	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator yAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/envserv/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wisconsin DNR	http://dnr.wi.gov/	998386840
Wyoming (EPA Region 8)	http://www.epa.gov/region8/water/dwhome/wyomingdi.html	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Case Narrative

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

ALS ENVIRONMENTAL

Client: Industrial Economics, Inc. **Project:** Portland Harbor 2014/ Alder Sample Matrix: Sediment

Service Request No.: K1413105 Date Received: 11/03/14

Case Narrative

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier IV validation deliverables including summary forms and all of the associated raw data for each of the analyses. When appropriate to the method, method blank results have been reported with each analytical test.

Sample Receipt

Twenty-eight sediment samples were received for analysis at ALS Environmental on 11/03/14. The samples were received in good condition and consistent with the accompanying chain of custody form, except where noted on the cooler receipt and preservation form included in this report. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

General Chemistry Parameters

Carbon Organic (TOC) by Method 9060:

Samples were analyzed past holding time. The analysis was performed as soon as possible after receipt by the laboratory. The data was flagged to indicate the holding time violation.

Particle Size by PSEP:

Batch QC-Percent of total weight recovered was outside ALS acceptance limits due to possible heterogeneous character of the sample. No Trip analysis for Batch QC due to limited sample.

No other anomalies associated with the analysis of these samples were observed.

Howard B. Holman Approved by

Chain of Custody

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Rachel DelVecchio Industrial Economics, Inc Portland Harbor 2014

K1413105

Tests Requested PSEP Particle Size 9060 TOC Total Solids Archive

Alder	8 oz	4 oz	PS	тос	TS	Archive	Date
254	6oz	NA	Y	Y	Y	Ν	9/24
455	1	NA	Ν	Y	Y	Ν	9/24
579	4	NA	Y	Υ	Υ	Ν	9/24
958	6	NA	Y	Υ	Y	Ν	9/24
1982	4	NA	Y	Y	Y	Ν	9/24
2046	4	NA	Y	Y	Y	Ν	9/24
2302	6	NA	Y	Y	Y	Ν	9/24
2563	4	NA	Y	Υ	Y	Ν	9/24
2695	4	NA	Y	Y	Y	Ν	9/24
3015	6	NA	Y	Y	Y	Ν	9/24
3207	0*	NA	Ν	Ν	Ν	Ν	9/24
3271	2	NA	Ν	Y	Y	Ν	9/24
3395	6	NA	Y	Y	Y	Ν	9/24
3463	4	NA	Ν	Ν	N	Ν	9/24
3774	1	NA	Ν	Y	Y	Ν	9/24
3838	2	NA	Ν	Y	Y	Ν	9/24
4094	4	NA	Y	Y	Y	Ν	9/24
4611	6	NA	Y	Y	Y	Ν	9/24
5054	6	NA	Y	Y	Y	Ν	9/24
5118	3	NA	Ν	Y	Y	Ν	9/24
6142	1	NA	Ν	Y	Y	Ν	9/24
5635	6	NA	Y	Υ	Y	Ν	9/24
5719	6	NA	Y	Y	Y	Ν	9/24
6078	2	NA	Ν	Y	Y	Ν	9/24
6279	Rocks	NA	Ν	Ν	Ν	Ν	9/24
6743	6	NA	Y	Y	Y	Ν	9/24
7166	2	NA	Ν	Y	Y	Ν	9/24
7367	6	NA	Y	Y	Y	N	9/24

* Jar contained a rusty metal bolt

Page 2/2

Read 11/3/2014

ALS											PC	HM
€r/cranear		A 13	8. 4	r Ree	ceipt a	and P	reser	vation Forn	n	n n		· /
Client / Project:	by of his	ng wit	allte				Ser	vice Request A	1	3105		
Received: <u>11-3</u>	-14	Opened:_	11-3-	14]	By:	AW	Unload	led: 1	<u>3-14</u> B	y: <u>6(</u>))
1. Samples were	received via?	Mail	Fed Ex	τ	U PS	DH	L.	PDX Cour	ier Ha	nd Delivered		
-	received in: (cir	cle)	Cooler) _B	ox	Enve		Other			NA	
-	seals on coolers	(domainson	NA	Y	N		-	ow many and w	where?		_	
If present, were	e custody seals	intact?		үζ	N		If pre	sent, were they	signed ar	d dated?	Y	N
Raw Correct	ed. Raw	Corrected	Corr.	Th	nermom	eter	Cool	er/COC ID		Tracking Num	iber	
Cooler Temp Cooler T	emp Temp Blank	Temp Blank	Factor	<u></u>	<u>ID</u> 276							NA File
D4 05		36	<u>-01</u> +01		<u>539</u> 341)							
		$\odot \propto$	101				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
				·····								
					and the second second	Marrison and Marrison and						
4. Packing mater	ial: Inserts	Baggies 7	Bubble V	Vrap(Gel P	acks	Wet 1	ce Dry Ice	Sleeves			
5. Were custody	papers properly	filled out ((ink, sign	ed, etc	:.)?	******	****			(N	IA) Y	N
6. Did all bottles	arrive in good o	condition (u	unbroken)? Inc	dicate i	n the t	able be	elow.		N	IA Y	(N
7. Were all sample	e labels comple	te (i.e anal	ysis, pres	ervatio	on, etc.))?				Ν	IA Y	3 N
8. Did all sample	-						ijor dis	crepancies in t	he table o	n page 2. 🔿	IA) Y	N
_	ate bottles/conta	-		-			-	-			XA Y	Ν
10. Were the pH-									te in the ta	>	IA Y	N
11. Were VOA vi						•	• •			and the second se	XA Y	Ν
12. Was C12/Res			^							(N	A VA	N
Sample	ID on Bottle			Samj	ple ID o	n COC				Identified by:		
										<u>,</u>		
	····											
		Bottle	Count	Out of	Head-				Volume	Reagent Lot		
Sampl		Bottle	Туре	Temp	space	Broke	рH	Reagent	added	Number	Initials	Time
ALD 38:	55	1				X			1			

Notes, Discrepancies, & Resolutions: ALD 3838 CONTRIMED IN A YOZ JAR.

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Analytical Report

Client:Industrial Economics, Inc.Project:Portland Harbor 2014/AlderSample Matrix:SedimentAnalysis Method:160.3 ModifiedPrep Method:None

 Service Request:
 K1413105

 Date Collected:
 09/24/14

 Date Received:
 11/3/14

Units: Percent Basis: As Received

Solids, Total

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Q
254	K1413105-001	76.0	-	1	11/21/14 12:24	
455	K1413105-002	74.5	-	1	11/21/14 12:24	
579	K1413105-003	64.0	-	1	11/21/14 12:24	
958	K1413105-004	52.5	-	1	11/21/14 12:24	
1982	K1413105-005	51.7	-	1	11/21/14 12:24	
2046	K1413105-006	71.3	-	1	11/21/14 12:24	
2302	K1413105-007	73.3	-	1	11/21/14 12:24	
2563	K1413105-008	68.7	-	1	11/21/14 12:24	
2695	K1413105-009	72.2	-	1	11/21/14 12:24	
3015	K1413105-010	70.5	-	1	11/21/14 12:24	
3271	K1413105-012	62.0	-	1	11/21/14 12:24	
3395	K1413105-013	59.6	-	1	11/21/14 12:24	
3774	K1413105-015	86.0	-	1	11/21/14 12:24	
3838	K1413105-016	58.9	-	1	11/21/14 12:24	
4094	K1413105-017	51.4	-	1	11/21/14 12:24	
4611	K1413105-018	70.9	-	1	11/21/14 12:24	
5054	K1413105-019	67.1	-	1	11/21/14 12:24	
5118	K1413105-020	52.0	-	1	11/21/14 12:24	
6142	K1413105-021	72.6	-	1	11/21/14 12:24	
5635	K1413105-022	76.5	-	1	11/21/14 12:24	
5719	K1413105-023	57.2	-	1	11/21/14 15:21	
6078	K1413105-024	60.1	-	1	11/21/14 15:21	
6743	K1413105-026	74.2	-	1	11/21/14 15:21	
7166	K1413105-027	46.8	-	1	11/21/14 15:21	
7367	K1413105-028	73.9	-	1	11/21/14 15:21	

Analytical Report

Carbon Organic (TOC)

Client:Industrial Economics, Inc.Project:Portland Harbor 2014/AlderSample Matrix:SedimentAnalysis Method:9060Prep Method:Method

Service Request: K1413105 Date Collected: 09/24/14 Date Received: 11/3/14

> Units: Percent Basis: Dry, per Method

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
254	K1413105-001	0.38	0.10	1	12/18/14 11:16	12/15/14	*
455	K1413105-002	0.18	0.10	1	12/18/14 11:16	12/15/14	*
579	K1413105-003	1.30	0.10	1	12/18/14 11:16	12/15/14	*
958	K1413105-004	3.63	0.10	1	12/18/14 11:16	12/15/14	*
1982	K1413105-005	2.54	0.10	1	12/18/14 11:16	12/15/14	*
2046	K1413105-006	0.40	0.10	1	12/18/14 11:16	12/15/14	*
2302	K1413105-007	0.24	0.10	1	12/18/14 11:16	12/15/14	*
2563	K1413105-008	0.47	0.10	1	12/18/14 11:16	12/15/14	*
2695	K1413105-009	0.36	0.10	1	12/18/14 11:16	12/15/14	*
3015	K1413105-010	0.48	0.10	1	12/18/14 11:16	12/15/14	*
3271	K1413105-012	2.94	0.10	1	12/18/14 11:16	12/15/14	*
3395	K1413105-013	1.92	0.10	1	12/18/14 11:16	12/15/14	*
3774	K1413105-015	0.15	0.10	1	12/18/14 11:16	12/15/14	*
3838	K1413105-016	4.08	0.10	1	12/18/14 11:16	12/15/14	*
4094	K1413105-017	4.39	0.10	1	12/18/14 11:16	12/15/14	*
4611	K1413105-018	0.18	0.10	1	12/19/14 10:06	12/18/14	*
5054	K1413105-019	0.73	0.10	1	12/19/14 10:06	12/18/14	*
5118	K1413105-020	2.65	0.10	1	12/19/14 10:06	12/18/14	*
6142	K1413105-021	0.20	0.10	1	12/19/14 10:06	12/18/14	*
5635	K1413105-022	0.12	0.10	1	12/19/14 10:06	12/18/14	*
5719	K1413105-023	1.44	0.10	1	12/19/14 10:06	12/18/14	*
6078	K1413105-024	3.61	0.10	1	12/19/14 10:06	12/18/14	*
6743	K1413105-026	0.19	0.10	1	12/19/14 10:06	12/18/14	*
7166	K1413105-027	14.2	0.10	1	12/19/14 10:06	12/18/14	*
7367	K1413105-028	0.13	0.10	1	12/19/14 10:06	12/18/14	*
Method Blank	K1413105-MB1	ND U	0.10	1	12/18/14 11:16	12/15/14	
Method Blank	K1413105-MB2	ND U	0.10	1	12/19/14 10:06	12/18/14	

QA/QC Report

Client:	Industrial Economics, Inc.	Service Request:K1413105			
Project	Portland Harbor 2014/Alder	Date Collected:09/24/14			
Sample Matrix:	Sediment	Date Received: 11/03/14			
Analysis Method:	9060	Units:Percent			
Prep Method:	Method	Basis:Dry, per Method			
	Replicate Sample Summar	ry			

Carbon Organic (TOC)

Sample Name:	Lab Code:	MRL	Sample Result	Duplicate Result	Average	RPD	RPD Limit	Date Analyzed
254	K1413105-001DUP	0.10	0.38	0.35	0.365	8	20	12/18/14
4611	K1413105-018DUP	0.10	0.18	0.18	0.180	<1	20	12/19/14

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

13

QA/QC Report

Client:	Industrial Economics, Inc				Servio	ce Request	: K14	13105	
Project:	Portland Harbor 2014/Ald	ler			Date	Collected:	09/2	4/14	
Sample Matrix:	Sediment				Date]	Received:	11/0	3/14	
					Date .	Analyzed:	12/1	8/14	
					Date]	Extracted:	12/1	5/14	
		Duplicate N	Iatrix Spil	ke Summai	ry				
		-	n Organic		·				
Sample Name:	254					Units:	Perc	ent	
Lab Code:	K1413105-001					Basis:	Dry,	per Meth	nod
Analysis Method:	9060								
Prep Method:	Method								
			Matrix Spike K1413105-001MS		Duplicate Matrix Spike K1413105-001DMS				
	Sample	Spike			Spike		% Rec		RPD
Analyte Name	Result Resu	lt Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Carbon Organic (TO	C) 0.38 2.85	2.37	104	2.80	2.37	102	70-122	2	20

Results flagged with an asterisk (\ast) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Project: Sample Matrix:	Industrial Economics, In Portland Harbor 2014/A Sediment				Date Date D	ce Request Collected: Received: Analyzed:	09/2 11/0	13105 4/14 3/14 9/14	
					Date 1	Extracted:	12/1	8/14	
	Duplicate Matrix Spike Summary								
		Carbo	on Organic	(TOC)					
Sample Name:	4611					Units:	Perc	ent	
Lab Code:	K1413105-018					Basis:	Dry,	per Meth	od
Analysis Method:	9060								
Prep Method:	Method								
			Matrix Spike K1413105-018MS		Duplicate Matrix Spike K1413105-018DMS				
	Sample	Spike			Spike		% Rec		RPD
Analyte Name	Result Res		% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Carbon Organic (TO	C) 0.18 2.7	7 2.40	108	2.56	2.39	100	70-122	8	20

Results flagged with an asterisk (\ast) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:	Industrial Economics, Inc.		Service Reque	st:	K1413105			
Project:	Portland Harbor 2014/Alder		Date Analyzed	l:	12/18/14			
Sample Matrix:	Sediment	Date Extracted	d:	12/15/14				
Lab Control Sample Summary								
Carbon Organic (TOC)								
Analysis Method:	9060		Units:		Percent			
Prep Method:	Method		Basis:		Dry, per Method			
			Analysis Lot:		426762			
			Spike		% Rec			
Sample Name	Lab Code	Result	Amount	% Rec	Limits			
Lab Control Sample	K1413105-LCS1	0.280	0.28	102	72-122			

ALS Group USA, Corp. dba ALS Environmental

QA/QC Report

Client:	Industrial Economics, Inc.		Service Requ	iest:	K1413105
Project:	Portland Harbor 2014/Alder		Date Analyze	ed:	12/19/14
Sample Matrix:	Sediment		Date Extract	ed:	12/18/14
	Ι	Lab Control Sample Summary			
		Carbon Organic (TOC)			
Analysis Method:	9060		Units:		Percent
Prep Method:	Method		Basis:		Dry, per Method
			Analysis Lot:	:	426764
			Spike		% Rec
Sample Name	Lab Code	Result	Amount	% Rec	Limits
Lab Control Sample	K1413105-LCS2	2 0.240	0.28	87	72-122

ALS Group USA, Corp. dba ALS Environmental

QA/QC Report

Client:Industrial Economics, Inc.Project:Portland Harbor 2014/Alder

Service Request: K1413105

Continuing Calibration Verification (CCV) Summary

Carbon Organic (TOC)

Analysis Method:	: 9060					Units: 1	Percent
	Analysis Lot	Lab Code	Date Analyzed	True Value	Measured Value	Percent Recovery	Acceptance Limits
CCV1	426762	KQ1416755-01	12/18/14 11:16	12.0	12.7	106	85-115
CCV2	426762	KQ1416755-02	12/18/14 11:16	12.0	12.4	103	85-115
CCV3	426762	KQ1416755-03	12/18/14 11:16	12.0	12.3	103	85-115
CCV4	426764	KQ1416757-01	12/19/14 10:06	12.0	12.9	107	85-115
CCV5	426764	KQ1416757-02	12/19/14 10:06	12.0	13.0	109	85-115
CCV6	426764	KQ1416757-03	12/19/14 10:06	12.0	12.8	106	85-115

ALS Group USA, Corp. dba ALS Environmental

QA/QC Report

Client:Industrial Economics, Inc.Project:Portland Harbor 2014/Alder

Continuing Calibration Blank (CCB) Summary

Carbon Organic (TOC)

Analysis Method: 9060

Units:Percent

	Analysis		Date			
	Lot	Lab Code	Analyzed	MRL	Result	Q
CCB1	426762	KQ1416755-04	12/18/14 11:16	0.10	ND	U
CCB2	426762	KQ1416755-05	12/18/14 11:16	0.10	ND	U
CCB3	426762	KQ1416755-06	12/18/14 11:16	0.10	ND	U
CCB4	426764	KQ1416757-04	12/19/14 10:06	0.10	ND	U
CCB5	426764	KQ1416757-05	12/19/14 10:06	0.10	ND	U
CCB6	426764	KQ1416757-06	12/19/14 10:06	0.10	ND	U

Client:Industrial Economics, Inc.Project:Portland Harbor 2014/AlderSample Matrix:Sediment

Service Request:	K1413105
Date Collected:	9/24/2014
Date Received:	11/3/2014
Date Analyzed:	11/26/2014

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: 254 Lab Code: K1413105-001

Sand Fraction: Dry Weight (Grams)	75.5810
Sand Fraction: Weight Recovered (Grams)	75.1870
Sand Fraction: Percent Recovery	99.48

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel	<-1 Ø	4.6810	6.12
Very Coarse Sand	-1 to 0 Ø	6.8433	8.94
Coarse Sand	0 to 1 Ø	24.5842	32.13
Medium Sand	1 to 2 Ø	33.1548	43.34
Fine Sand	2 to 3 Ø	4.3851	5.73
Very Fine Sand	3 to 4 Ø	1.4134	1.85
62.5 μm	4 to 5 Ø	0.4550	0.59
31.3 µm	5 to 6 Ø	0.5100	0.67
15.6 μm	6 to 7 Ø	0.0050	0.01
7.8 μm	7 to 8 Ø	0.1650	0.22
3.9 µm	8 to 9 Ø	0.2500	0.33
1.95 μm	9 to 10 Ø	-0.0250	0.00
0.98 μm	> 10 Ø	0.1650	0.22
		76.5868	100.14

Client:Industrial Economics, Inc.Project:Portland Harbor 2014/AlderSample Matrix:Sediment

Service Request:	K1413105
Date Collected:	9/24/2014
Date Received:	11/3/2014
Date Analyzed:	11/26/2014

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: 579 Lab Code: K1413105-003

Sand Fraction: Dry Weight (Grams)35.4671Sand Fraction: Weight Recovered (Grams)35.2773Sand Fraction: Percent Recovery99.46

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel	<-1 Ø	0.0000	0.00
Very Coarse Sand	-1 to 0 Ø	0.0234	0.05
Coarse Sand	0 to 1 Ø	0.0938	0.21
Medium Sand	1 to 2 Ø	6.3644	14.59
Fine Sand	2 to 3 Ø	17.5704	40.27
Very Fine Sand	3 to 4 Ø	9.6327	22.08
62.5 μm	4 to 5 Ø	4.0550	9.29
31.3 μm	5 to 6 Ø	2.1850	5.01
15.6 μm	6 to 7 Ø	1.9700	4.52
7.8 μm	7 to 8 Ø	1.0200	2.34
3.9 µm	8 to 9 Ø	0.7850	1.80
1.95 μm	9 to 10 Ø	0.6950	1.59
0.98 μm	> 10 Ø	0.7450	1.71
· · ·		45.1397	103.46

Client:Industrial Economics, Inc.Project:Portland Harbor 2014/AlderSample Matrix:Sediment

Service Request:	K1413105
Date Collected:	9/24/2014
Date Received:	11/3/2014
Date Analyzed:	11/26/2014

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: Lab Code:

me: 958 K1413105-004

Sand Fraction: Dry Weight (Grams)	24.7356
Sand Fraction: Weight Recovered (Grams)	24.6978
Sand Fraction: Percent Recovery	99.85

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel	<-1 Ø	0.4500	1.39
Very Coarse Sand	-1 to 0 Ø	0.1576	0.49
Coarse Sand	0 to 1 Ø	0.1391	0.43
Medium Sand	1 to 2 Ø	1.0093	3.11
Fine Sand	2 to 3 Ø	5.6392	17.40
Very Fine Sand	3 to 4 Ø	15.0840	46.55
62.5 μm	4 to 5 Ø	4.8600	15.00
31.3 μm	5 to 6 Ø	1.6800	5.18
15.6 μm	6 to 7 Ø	0.6650	2.05
7.8 μm	7 to 8 Ø	0.6200	1.91
3.9 μm	8 to 9 Ø	0.5200	1.60
1.95 μm	9 to 10 Ø	0.2400	0.74
0.98 μm	> 10 Ø	0.3400	1.05
		31.4042	96.92

Client:Industrial Economics, Inc.Project:Portland Harbor 2014Sample Matrix:Sediment

Service Request:	K1413105
Date Collected:	9/24/2014
Date Received:	11/3/2014
Date Analyzed:	1/5/2015

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: Lab Code:

ame: 1982 K1413105-005

Sand Fraction:	Dry Weight (Grams)	17.0945
Sand Fraction:	Weight Recovered (Grams)	16.8177
Sand Fraction:	Percent Recovery	98.38

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel	<-1 Ø	0.0072	0.03
Very Coarse Sand	-1 to 0 Ø	0.0060	0.03
Coarse Sand	0 to 1 Ø	0.0695	0.30
Medium Sand	1 to 2 Ø	2.5618	10.97
Fine Sand	2 to 3 Ø	3.6253	15.53
Very Fine Sand	3 to 4 Ø	7.8278	33.53
62.5 μm	4 to 5 Ø	4.0300	17.26
31.3 µm	5 to 6 Ø	1.6000	6.85
15.6 μm	6 to 7 Ø	1.0550	4.52
7.8 μm	7 to 8 Ø	0.7300	3.13
3.9 µm	8 to 9 Ø	0.6000	2.57
1.95 μm	9 to 10 Ø	0.4950	2.12
0.98 µm	> 10 Ø	0.5750	2.46
		23.1826	99.30

Client:Industrial Economics, Inc.Project:Portland Harbor 2014/AlderSample Matrix:Sediment

Service Request:	K1413105
Date Collected:	9/24/2014
Date Received:	11/3/2014
Date Analyzed:	11/26/2014

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: Lab Code:

me: 2046 K1413105-006

Sand Fraction: Dry Weight (Grams)	67.0128
Sand Fraction: Weight Recovered (Grams)	66.8366
Sand Fraction: Percent Recovery	99.74

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel	<-1 Ø	0.4781	0.67
Very Coarse Sand	-1 to 0 Ø	0.5095	0.71
Coarse Sand	0 to 1 Ø	16.2162	22.61
Medium Sand	1 to 2 Ø	43.1404	60.15
Fine Sand	2 to 3 Ø	5.6423	7.87
Very Fine Sand	3 to 4 Ø	0.7256	1.01
62.5 μm	4 to 5 Ø	-0.0450	0.00
31.3 µm	5 to 6 Ø	0.2350	0.33
15.6 μm	6 to 7 Ø	0.3450	0.48
7.8 μm	7 to 8 Ø	0.3750	0.52
3.9 µm	8 to 9 Ø	-0.0150	0.00
1.95 μm	9 to 10 Ø	-0.0300	0.00
0.98 µm	> 10 Ø	0.0850	0.12
		67.6621	94.47

Client:Industrial Economics, Inc.Project:Portland Harbor 2014/AlderSample Matrix:Sediment

Service Request:	K1413105
Date Collected:	9/24/2014
Date Received:	11/3/2014
Date Analyzed:	11/26/2014

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: 2302 Lab Code: K1413105-007

Sand Fraction: Dry Weight (Grams)72.4746Sand Fraction: Weight Recovered (Grams)72.4518Sand Fraction: Percent Recovery99.97

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel	<-1 Ø	0.9741	1.35
Very Coarse Sand	-1 to 0 Ø	1.9125	2.65
Coarse Sand	0 to 1 Ø	18.2824	25.33
Medium Sand	1 to 2 Ø	43.6502	60.48
Fine Sand	2 to 3 Ø	5.8292	8.08
Very Fine Sand	3 to 4 Ø	1.6394	2.27
62.5 μm	4 to 5 Ø	0.4100	0.57
31.3 µm	5 to 6 Ø	0.4050	0.56
15.6 μm	6 to 7 Ø	0.2800	0.39
7.8 μm	7 to 8 Ø	0.3300	0.46
3.9 µm	8 to 9 Ø	0.2750	0.38
1.95 μm	9 to 10 Ø	0.1250	0.17
0.98 μm	$> 10 \emptyset$	0.1000	0.14
· ·		74.2128	102.82

Client:Industrial Economics, Inc.Project:Portland Harbor 2014/AlderSample Matrix:Sediment

Service Request:	K1413105
Date Collected:	9/24/2014
Date Received:	11/3/2014
Date Analyzed:	11/26/2014

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: 2563 Lab Code: K1413105-008

Sand Fraction: Dry Weight (Grams)68.3103Sand Fraction: Weight Recovered (Grams)68.4622Sand Fraction: Percent Recovery100.22

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel	<-1 Ø	0.1342	0.20
Very Coarse Sand	-1 to 0 Ø	0.1218	0.18
Coarse Sand	0 to 1 Ø	0.3973	0.58
Medium Sand	1 to 2 Ø	21.2996	30.95
Fine Sand	2 to 3 Ø	40.4328	58.75
Very Fine Sand	3 to 4 Ø	5.5851	8.12
62.5 μm	4 to 5 Ø	0.8700	1.26
31.3 µm	5 to 6 Ø	1.0350	1.50
15.6 µm	6 to 7 Ø	0.3900	0.57
7.8 μm	7 to 8 Ø	0.5900	0.86
3.9 µm	8 to 9 Ø	0.3400	0.49
1.95 μm	9 to 10 Ø	0.5100	0.74
0.98 µm	> 10 Ø	-0.0500	0.00
· ·		71.6558	104.19

Client:Industrial Economics, Inc.Project:Portland Harbor 2014/AlderSample Matrix:Sediment

Service Request:	K1413105
Date Collected:	9/24/2014
Date Received:	11/3/2014
Date Analyzed:	11/26/2014

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: Lab Code:

me: 2695 K1413105-009

Sand Fraction: Dry Weight (Grams)	66.2727
Sand Fraction: Weight Recovered (Grams)	92.0988
Sand Fraction: Percent Recovery	99.79

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel	<-1 Ø	5.1857	7.80
Very Coarse Sand	-1 to 0 Ø	3.0321	4.56
Coarse Sand	0 to 1 Ø	14.2091	21.37
Medium Sand	1 to 2 Ø	33.3133	50.10
Fine Sand	2 to 3 Ø	8.7448	13.15
Very Fine Sand	3 to 4 Ø	1.5315	2.30
62.5 μm	4 to 5 Ø	0.2550	0.38
31.3 μm	5 to 6 Ø	0.1850	0.28
15.6 μm	6 to 7 Ø	0.5100	0.77
7.8 μm	7 to 8 Ø	-0.0350	0.00
3.9 µm	8 to 9 Ø	0.3100	0.47
1.95 μm	9 to 10 Ø	-0.0500	0.00
0.98 µm	> 10 Ø	0.1450	0.22
		67.3365	101.39

Client:Industrial Economics, Inc.Project:Portland Harbor 2014/AlderSample Matrix:Sediment

Service Request:	K1413105
Date Collected:	9/24/2014
Date Received:	11/3/2014
Date Analyzed:	11/26/2014

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: 3015 Lab Code: K1413105-010

Sand Fraction: Dry Weight (Grams)	69.5391
Sand Fraction: Weight Recovered (Grams)	100.1737
Sand Fraction: Percent Recovery	99.99

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel	<-1 Ø	0.1414	0.20
Very Coarse Sand	-1 to 0 Ø	0.4129	0.58
Coarse Sand	0 to 1 Ø	5.3868	7.58
Medium Sand	1 to 2 Ø	31.5012	44.36
Fine Sand	2 to 3 Ø	22.9961	32.38
Very Fine Sand	3 to 4 Ø	8.2756	11.65
62.5 μm	4 to 5 Ø	1.4950	2.11
31.3 µm	5 to 6 Ø	0.8350	1.18
15.6 µm	6 to 7 Ø	0.8650	1.22
7.8 μm	7 to 8 Ø	0.4900	0.69
3.9 µm	8 to 9 Ø	0.1650	0.23
1.95 μm	9 to 10 Ø	0.3350	0.47
0.98 µm	> 10 Ø	0.2600	0.37
• • •		73.1590	103.01

Client:Industrial Economics, Inc.Project:Portland Harbor 2014/AlderSample Matrix:Sediment

Service Request:	K1413105
Date Collected:	9/24/2014
Date Received:	11/3/2014
Date Analyzed:	11/26/2014

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: 3395 Lab Code: K1413105-013

Sand Fraction: Dry Weight (Grams)30.5222Sand Fraction: Weight Recovered (Grams)30.7150Sand Fraction: Percent Recovery100.63

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel	<-1 Ø	0.0965	0.26
Very Coarse Sand	-1 to 0 Ø	0.1103	0.30
Coarse Sand	0 to 1 Ø	0.2036	0.55
Medium Sand	1 to 2 Ø	4.7362	12.71
Fine Sand	2 to 3 Ø	10.5238	28.25
Very Fine Sand	3 to 4 Ø	12.8143	34.40
62.5 μm	4 to 5 Ø	4.2450	11.40
31.3 μm	5 to 6 Ø	1.2300	3.30
15.6 μm	6 to 7 Ø	0.8500	2.28
7.8 μm	7 to 8 Ø	0.6200	1.66
3.9 µm	8 to 9 Ø	0.6000	1.61
1.95 μm	9 to 10 Ø	0.4350	1.17
0.98 μm	> 10 Ø	0.3000	0.81
		36.7647	98.70

Client: Industrial Economics, Inc. **Project:** Portland Harbor 2014/Alder Sample Matrix: Sediment

Service Request:	K1413105
Date Collected:	9/24/2014
Date Received:	11/3/2014
Date Analyzed:	11/26/2014

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: Lab Code:

4094 K1413105-017

Sand Fraction:	Dry Weight (Grams)	20.1846
Sand Fraction:	Weight Recovered (Grams)	20.1980
Sand Fraction:	Percent Recovery	100.07

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel	<-1 Ø	0.3648	1.30
Very Coarse Sand	-1 to 0 Ø	0.1776	0.64
Coarse Sand	0 to 1 Ø	0.1804	0.65
Medium Sand	1 to 2 Ø	0.4221	1.51
Fine Sand	2 to 3 Ø	3.5305	12.63
Very Fine Sand	3 to 4 Ø	12.2111	43.67
62.5 μm	4 to 5 Ø	5.3950	19.29
31.3 µm	5 to 6 Ø	2.0250	7.24
15.6 μm	6 to 7 Ø	0.8450	3.02
7.8 μm	7 to 8 Ø	0.4600	1.65
3.9 µm	8 to 9 Ø	0.4550	1.63
1.95 μm	9 to 10 Ø	0.2950	1.06
0.98 μm	> 10 Ø	0.1200	0.43
		26.4815	94.71

Client:Industrial Economics, Inc.Project:Portland Harbor 2014/AlderSample Matrix:Sediment

Service Request:	K1413105
Date Collected:	9/24/2014
Date Received:	11/3/2014
Date Analyzed:	11/26/2014

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: 4611 Lab Code: K1413105-018

Sand Fraction:	Dry Weight (Grams)	67.5920
Sand Fraction:	Weight Recovered (Grams)	67.7601
Sand Fraction:	Percent Recovery	100.25

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel	<-1 Ø	1.6538	2.46
Very Coarse Sand	-1 to 0 Ø	0.5657	0.84
Coarse Sand	0 to 1 Ø	17.1045	25.41
Medium Sand	1 to 2 Ø	40.4760	60.13
Fine Sand	2 to 3 Ø	6.0886	9.05
Very Fine Sand	3 to 4 Ø	1.6380	2.43
62.5 μm	4 to 5 Ø	0.1550	0.23
31.3 µm	5 to 6 Ø	0.4350	0.65
15.6 μm	6 to 7 Ø	0.0900	0.13
7.8 μm	7 to 8 Ø	0.0050	0.01
3.9 µm	8 to 9 Ø	0.0900	0.13
1.95 μm	9 to 10 Ø	-0.0450	0.00
0.98 µm	> 10 Ø	0.1350	0.20
		68.3916	101.67

Client:Industrial Economics, Inc.Project:Portland Harbor 2014/AlderSample Matrix:Sediment

Service Request:	K1413105
Date Collected:	9/24/2014
Date Received:	11/3/2014
Date Analyzed:	11/26/2014

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: Lab Code:

Name: 5054 e: K1413105-019

Sand Fraction: Dry Weight (Grams)	33.4308
Sand Fraction: Weight Recovered (Grams)	33.1980
Sand Fraction: Percent Recovery	99.30

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel	<-1 Ø	0.3937	1.00
Very Coarse Sand	-1 to 0 Ø	0.0745	0.19
Coarse Sand	0 to 1 Ø	0.2766	0.70
Medium Sand	1 to 2 Ø	8.9689	22.85
Fine Sand	2 to 3 Ø	13.5875	34.62
Very Fine Sand	3 to 4 Ø	8.6871	22.14
62.5 μm	4 to 5 Ø	2.2100	5.63
31.3 µm	5 to 6 Ø	0.5100	1.30
15.6 µm	6 to 7 Ø	0.2650	0.68
7.8 μm	7 to 8 Ø	0.3550	0.90
3.9 µm	8 to 9 Ø	0.4950	1.26
1.95 μm	9 to 10 Ø	-0.0500	0.00
0.98 µm	> 10 Ø	0.1600	0.41
		35.9333	91.69

Client:Industrial Economics, Inc.Project:Portland Harbor 2014/AlderSample Matrix:Sediment

Service Request:	K1413105
Date Collected:	9/24/2014
Date Received:	11/3/2014
Date Analyzed:	11/26/2014

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: Lab Code:

ne: 5635 K1413105-022

Sand Fraction: Dry Weight (Grams)	75.8104
Sand Fraction: Weight Recovered (Grams)	75.7895
Sand Fraction: Percent Recovery	99.97

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel	<-1 Ø	0.6292	0.83
Very Coarse Sand	-1 to 0 Ø	1.4043	1.86
Coarse Sand	0 to 1 Ø	21.6254	28.59
Medium Sand	1 to 2 Ø	44.1288	58.34
Fine Sand	2 to 3 Ø	6.5803	8.70
Very Fine Sand	3 to 4 Ø	1.2964	1.71
62.5 μm	4 to 5 Ø	-0.0700	0.00
31.3 μm	5 to 6 Ø	0.2900	0.38
15.6 μm	6 to 7 Ø	0.1000	0.13
7.8 μm	7 to 8 Ø	0.0900	0.12
3.9 µm	8 to 9 Ø	0.1050	0.14
1.95 μm	9 to 10 Ø	-0.0100	0.00
0.98 µm	> 10 Ø	0.1650	0.22
		76.3344	101.03

Client:Industrial Economics, Inc.Project:Portland Harbor 2014/AlderSample Matrix:Sediment

Service Request:	K1413105
Date Collected:	9/24/2014
Date Received:	11/3/2014
Date Analyzed:	11/26/2014

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: 5719 Lab Code: K1413105-023

Sand Fraction: Dry Weight (Grams)	21.4187
Sand Fraction: Weight Recovered (Grams)	21.6253
Sand Fraction: Percent Recovery	100.96

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel	<-1 Ø	0.2217	0.65
Very Coarse Sand	-1 to 0 Ø	0.0713	0.21
Coarse Sand	0 to 1 Ø	0.4400	1.30
Medium Sand	1 to 2 Ø	1.5841	4.67
Fine Sand	2 to 3 Ø	5.6938	16.78
Very Fine Sand	3 to 4 Ø	11.7841	34.73
62.5 μm	4 to 5 Ø	7.0400	20.75
31.3 μm	5 to 6 Ø	4.1550	12.25
15.6 µm	6 to 7 Ø	1.1250	3.32
7.8 μm	7 to 8 Ø	0.9400	2.77
3.9 µm	8 to 9 Ø	0.2650	0.78
1.95 μm	9 to 10 Ø	0.5550	1.64
0.98 μm	> 10 Ø	0.2150	0.63
		34.0900	100.48

Client:Industrial Economics, Inc.Project:Portland Harbor 2014/AlderSample Matrix:Sediment

Service Request:	K1413105
Date Collected:	9/24/2014
Date Received:	11/3/2014
Date Analyzed:	11/26/2014

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: 6743 Lab Code: K1413105-026

Sand Fraction: Dry Weight (Grams)73.1891Sand Fraction: Weight Recovered (Grams)73.3616Sand Fraction: Percent Recovery100.24

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel	<-1 Ø	3.8364	5.16
Very Coarse Sand	-1 to 0 Ø	1.2497	1.68
Coarse Sand	0 to 1 Ø	10.9978	14.80
Medium Sand	1 to 2 Ø	43.3117	58.27
Fine Sand	2 to 3 Ø	7.5099	10.10
Very Fine Sand	3 to 4 Ø	5.7138	7.69
62.5 μm	4 to 5 Ø	1.6800	2.26
31.3 µm	5 to 6 Ø	0.4300	0.58
15.6 µm	6 to 7 Ø	0.3450	0.46
7.8 μm	7 to 8 Ø	0.4300	0.58
3.9 µm	8 to 9 Ø	0.3800	0.51
1.95 μm	9 to 10 Ø	-0.0050	0.00
0.98 µm	> 10 Ø	0.1850	0.25
		76.0643	102.34

Client:Industrial Economics, Inc.Project:Portland Harbor 2014/AlderSample Matrix:Sediment

Service Request:	K1413105
Date Collected:	9/24/2014
Date Received:	11/3/2014
Date Analyzed:	11/26/2014

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: 7367 Lab Code: K141

K1413105-028

Sand Fraction: Dry Weight (Grams)	60.9902
Sand Fraction: Weight Recovered (Grams)	61.0542
Sand Fraction: Percent Recovery	100.10

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel	<-1 Ø	1.0715	1.80
Very Coarse Sand	-1 to 0 Ø	4.5839	7.71
Coarse Sand	0 to 1 Ø	24.5149	41.24
Medium Sand	1 to 2 Ø	27.4706	46.21
Fine Sand	2 to 3 Ø	2.4571	4.13
Very Fine Sand	3 to 4 Ø	0.7974	1.34
62.5 μm	4 to 5 Ø	0.0800	0.13
31.3 µm	5 to 6 Ø	0.1400	0.24
15.6 µm	6 to 7 Ø	0.1000	0.17
7.8 μm	7 to 8 Ø	0.1850	0.31
3.9 µm	8 to 9 Ø	0.1600	0.27
1.95 μm	9 to 10 Ø	-0.1550	0.00
0.98 μm	> 10 Ø	0.1400	0.24
		61.5454	103.79

Client:Industrial Economics, Inc.Project:Portland Harbor 2014/AlderSample Matrix:Sediment

 Service Request:
 K1413105

 Date Collected:
 9/24/2014

 Date Received:
 11/3/2014

 Date Analyzed:
 11/26/2014

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: 7367 Lab Code: K1413105-028 DUP

Sand Fraction: Dry Weight (Grams)	62.0154
Sand Fraction: Weight Recovered (Grams)	61.7221
Sand Fraction: Percent Recovery	99.53

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel	<-1 Ø	0.8171	1.37
Very Coarse Sand	-1 to 0 Ø	4.0992	6.86
Coarse Sand	0 to 1 Ø	24.5293	41.03
Medium Sand	1 to 2 Ø	28.6891	47.99
Fine Sand	2 to 3 Ø	2.8176	4.71
Very Fine Sand	3 to 4 Ø	0.6515	1.09
62.5 μm	4 to 5 Ø	0.1900	0.32
31.3 µm	5 to 6 Ø	0.1200	0.20
15.6 µm	6 to 7 Ø	0.1750	0.29
7.8 μm	7 to 8 Ø	-0.0350	0.00
3.9 µm	8 to 9 Ø	0.2900	0.49
1.95 µm	9 to 10 Ø	-0.2150	0.00
0.98 µm	> 10 Ø	0.0600	0.10
		62.1888	104.45

Client:Industrial Economics, Inc.Project:Portland Harbor 2014/AlderSample Matrix:Sediment

 Service Request:
 K1413105

 Date Collected:
 9/24/2014

 Date Received:
 11/3/2014

 Date Analyzed:
 11/26/2014

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: 7367 Lab Code: K1413105-028 TRP

Sand Fraction: Dry Weight (Grams)	61.1487
Sand Fraction: Weight Recovered (Grams)	61.1409
Sand Fraction: Percent Recovery	99.99

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel	<-1 Ø	0.6661	1.12
Very Coarse Sand	-1 to 0 Ø	4.2802	7.20
Coarse Sand	0 to 1 Ø	24.7307	41.61
Medium Sand	1 to 2 Ø	27.8971	46.94
Fine Sand	2 to 3 Ø	2.8122	4.73
Very Fine Sand	3 to 4 Ø	0.6695	1.13
62.5 μm	4 to 5 Ø	0.1500	0.25
31.3 µm	5 to 6 Ø	0.0950	0.16
15.6 µm	6 to 7 Ø	0.1000	0.17
7.8 µm	7 to 8 Ø	0.1050	0.18
3.9 µm	8 to 9 Ø	0.0400	0.07
1.95 μm	9 to 10 Ø	0.0450	0.08
0.98 μm	> 10 Ø	0.0100	0.02
		61.6008	103.64

Raw Data

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Benchsheet

Service Request #:	K1413105, KQ1415325	Run #:	422506
Test:	TS	Balance ID:	K-Balance-16
Method:	160.3 Modified		

Pan ID:	Lab Code:	Tare (g)	Wet Wt. (g)	Tare + Dry Wt. (g)	Dry Weight (g)	% Total Solids	RPD
	K1413105-001	1.32	10.74	9.48	8.16	76.0	
	K1413105-001DUP	1.33	9.72	8.82	7.49	77.1	1
	K1413105-002	1.31	8.74	7.82	6.51	74.5	
	K1413105-003	1.32	14.24	10.44	9.12	64.0	
	K1413105-004	1.32	12.12	7.68	6.36	52.5	
	K1413105-005	1.33	10.67	6.85	5.52	51.7	
	K1413105-006	1.33	10.45	8.78	7.45	71.3	
	K1413105-007	1.33	13.32	11.10	9.77	73.3	1
	K1413105-008	1.32	11.27	9.06	7.74	68.7	
	K1413105-009	1.32	14.58	11.85	10.5	72.2	
·	K1413105-010	1.33	14.98	11.89	10.6	70.5	
	K1413105-012	1.32	11.48	8.44	7.12	62.0	
	K1413105-013	1.32	12.39	8.70	7.38	59.6	
	K1413105-015	1.34	10.41	10.29	8.95	86.0	
	K1413105-016	1.33	10.53	7.53	6.20	58.9	
	K1413105-017	1.32	11.12	7.04	5.72	51.4	Ι
	K1413105-018	1.33	10.20	8.56	7.23	70.9	Ţ
	K1413105-018DUP	1.33	10.50	9.13	7.80	74.3	5
	K1413105-019	1.33	11.00	8.71	7.38	67.1	
	K1413105-020	1.33	12.89	8.03	6.70	52.0	
	K1413105-021	1.32	11.57	9.72	8.40	72.6	
	K1413105-022	1.32	11.85	10.38	9.06	76.5	

Oven1	Oven ID K-OVEN 07	Temp In 105	•	Date in 11/21/2014	Time In 12:24	Date Out 11/24/2014	Time Out 08:02		Thermometer ID
	Cal E	QID	Cal Start Value	Cal End Value	e Start Dat	e Start Time	End Date	End Time	

	Cal EQID	Cal Start Value	Cal End Value	Start Date	Start Time	End Date	End Time
Calibration1	K-Balance-16	1.00, 99.99	1.00, 99.99	11/21/2014	11:58	11/21/2014	12:24
Calibration2	K-Balance-16	1.00, 99.99	1.00, 99.99	11/24/2014	08:24	11/24/2014	08:29

et a/24/64

Comments: ZR

\geq	a .
nal	2
ytical	•
	ui
Kesults	
ns Si	
Imma	
jongi	
<	

Instrument Name:	
K-Balance-16	

j¥~

 $\mathcal{L}_{\mathcal{M}}(\mathcal{L})$

N IV	11/21/14 12:24	J,	74.3 Percent 1	10.50 g	74.30 Percent	Sediment	K1413105-018	DUP	Solids, Total	KQ1415325-02
M N	11/21/14 12:24		77.1 Percent 1	9.72 g	77.10 Percent	Sediment	K1413105-001	DUP	Solids, Total	KQ1415325-01
AI N	11/21/14 12:24		76.5 Percent 1	11.85 g	76,50 Percent	Sediment		N/A	Solids, Total	K1413105-022
AI N	11/21/14 12:24		72.6 Percent 1	11.57 g	72.60 Percent	Sediment		N/A	Solids, Total	K1413105-021
N 4 IV	11/21/14 12:24		52.0 Percent I	12.89 g	52.00 Percent	Sediment		N/A	Solids, Total	K1413105-020
N 2 IV			67.1 Percent 1	11.00 g	67.10 Percent	Sediment		N/A	Solids, Total	K1413105-019
M N			70.9 Percent 1	$10.20~{ m g}$	70.90 Percent	Sediment		N/A	Solids, Total	K1413105-018
N IV	11/21/14 12:24		51.4 Percent 1	11.12 g	51.40 Percent	Sediment		N/A	Solids, Total	K1413105-017
N IV	11/21/14 12:24		58.9 Percent 1	10.53 g	58.90 Percent	Sediment		N/A	Solids, Total	K1413105-016
N IV	11/21/14 12:24		86.0 Percent 1	10.41 g	86.00 Percent	Sediment		N/A	Solids, Total	K1413105-015
N IV	11/21/14 12:24		59.6 Percent 1	12.39 g	59,60 Percent	Sediment		N/A	Solids, Total	K1413105-013
N N	11/21/14 12:24		62.0 Percent 1	11.48 g	62,00 Percent	Sediment		N/A	Solids, Total	K1413105-012
N IV	11/21/14 12:24		70.5 Percent 1	14.98 g	70.50 Percent	Sediment		N/A	Solids, Total	K1413105-010
N IV	11/21/14 12:24		72.2 Percent 1	14.58 g	72.20 Percent	Sediment		N/A	Solids, Total	K1413105-009
N IV	11/21/14 12:24		68.7 Percent 1	11.27 g	68.70 Percent	Sediment		N/A	Solids, Total	K1413105-008
N IV	11/21/14 12:24		73.3 Percent 1	13.32 g	73.30 Percent	Sediment		N/A	Solids, Total	K1413105-007
N IV	11/21/14 12:24		71.3 Percent 1	10.45 g	71.30 Percent	Sediment		N/A	Solids, Total	K1413105-006
M IV	11/21/14 12:24		51.7 Percent 1	$10.67~{ m g}$	51.70 Percent	Sediment		N/A	Solids, Total	K1413105-005
N IV	11/21/14 12:24		52.5 Percent 1	12.12 g	52.50 Percent	Sediment		N/A	Solids, Total	K1413105-004
N IV	11/21/14 12:24		64,0 Percent 1	14.24 g	64,00 Percent	Sediment		N/A	Solids, Total	K1413105-003
NI N	11/21/14 12:24		74.5 Percent 1	8.74 g	74.50 Percent	Sediment		N/A	Solids, Total	K1413105-002
N IV				10.74 g	nt			N/A	Solids, Total	K1413105-001
QC? Tier	Date Analyzed (MDL PQL % Rec % RSD	Final Result Dil	Sample Amt.	Raw Result	Matrix	Parent Sample	00	Target Analytes	Lab Code
	d/TS	Method/Testcode: 160.3 Modified/TS	422506	Analysis Lot:		IADDEN	Analyst: DMADDEN		Instrument Name: K-Balance-16	Instrument Na

Printed 11/24/14 9:28

indicates Final Result is not yet adjusted for Solids because it has not yet been determined.

Results Summary

Page 1 of

Benchsneet

Service Request #:	K1413105, KQ1415336, K1413106, K1413085	Run #:	422563
Test:	TS	Balance ID:	K-Balance-16
Method:	160.3 Modified		

Pan ID:	Lab Code:	Tare (g)	Wet Wt. (g)	Tare + Dry Wt. (g)	Dry Weight (g)	% Total Solids	RPD
	K1413105-023	1.33	11.07	7.66	6.33	57.2	
	K1413105-023DUP	1.32	10.74	7.53	6.21	57.8	1
	K1413105-024	1.32	13.22	9.27	7.95	60.1	
	K1413105-026	1.33	10.03	8.77	7.44	74.2	
	K1413105-027	1.32	11.88	6.88	5.56	46.8	
	K1413105-028	1.33	10.67	9.22	7.89	73.9	
	K1413106-023	1.32	9.99	8.47	7.15	71.6	
	K1413106-024	1.32	11.55	9.08	7.76	67.2	
	K1413085-001	1.33	11.17	11.68	10.4	92.7	
	K1413085-001DUP	1.32	9.92	10.44	9.12	91.9	<1
	K1413085-002	1.33	10.92	11.49	10.2	93.0	
	K1413085-003	1.33	11.29	11.68	10.4	91.7	
	K1413085-004	1.33	9.55	10.06	8.73	91.4	
	K1413085-005	1.31	13.07	11.30	9.99	76.4	
	K1413085-006	1.32	10.69	10.37	9.05	84.7	
	K1413085-007	1.33	10.81	11.20	9.87	91.3	
	K1413085-008	1.33	11.39	11.54	10.2	89.6	
	K1413085-009	1.33	11.07	9.93	8.60	77.7	
	K1413085-010	1.33	10.80	11.22	9.89	91.6	
	K1413085-011	1.34	10.77	11.28	9.94	92.3	
	K1413085-012	1.32	11.58	12.08	10.8	92.9	
	K1413085-013	1.32	10.66	10.78	9.46	88.7	

Oven1	Oven ID K-OVEN 07	Temp In 105	Temp Out 105			ate Out /24/2014	Time Out 08:05		Thermometer ID
Calibratior	Cal E 11 K-Balan		Cal Start Value 1.00, 99.99	Cal End Value 1.00, 99.99	Start Date 11/21/2014	Start Time 14:30	End Date 11/21/2014	End Time 15:21	
Calibration	n2 K-Balan	ice-16	1.00, 99.99	1.00, 99.99	11/24/2014	08:33	11/24/2014	08:36	

Kapellel

Comments: ZR

: :

Anal
ytical
Results
Summa
ury

Z,

`.

. 4.3 .

nstrument Name: K-Balance-16

Analyst: DMADDEN

Analysis Lot:

422563 Method/Testcode: 160.3 Modified/TS

.

•

II	Z	11/21/14 15:21	[>		91.9 Percent 1	9.92 g	91.90 Percent	Soil	K1413085-001	DUP	Solids, Total	21415336-02
	z	11/21/14 15:21	,		57.8 Percent 1	10.74 g	57,80 Percent	Sediment	K1413105-023	DUP	Solids, Total	21415336-01
	Z	11/21/14 15:21			67.2 Percent	11.55 g	67.20 Percent	Sediment		N/A	Solids, Total	413106-024
N	z	11/21/14 15:21			71.6 Percent 1	9.99 g	71.60 Percent	Sediment		N/A	Solids, Total	413106-023
	z	11/21/14 15:21			73.9 Percent 1	10.67 g	73.90 Percent	Sediment		N/A	Solids, Total	413105-028
	z	11/21/14 15:21			46.8 Percent 1	11.88 g	46.80 Percent	Sediment		N/A	Solids, Total	413105-027
	z	11/21/14 15:21			74.2 Percent 1	10.03 g	74.20 Percent	Sediment		N/A	Solids, Total	413105-026
	Z	11/21/14 15:21			60.1 Percent 1	13.22 g	60.10 Percent	Sediment		N/A	Solids, Total	413105-024
	Z	11/21/14 15:21			57.2 Percent 1	11.07 g	57.20 Percent	Sediment		N/A	Solids, Total	413105-023
	z	11/21/14 15:21			88.7 Percent 1	10.66 g	88,70 Percent	Soil		N/A	Solids, Total	413085-013
	z	11/21/14 15:21			92.9 Percent I	11.58 g	92.90 Percent	Soil		N/A	Solids, Total	413085-012
	Z	11/21/14 15:21			92.3 Percent 1	10.77 g	92.30 Percent	Soil		N/A	Solids, Total	413085-011
	z	11/21/14 15:21			91.6 Percent 1	10.80 g	91.60 Percent	Soil		N/A	Solids, Total	413085-010
	Z	11/21/14 15:21			77.7 Percent 1	11.07 g	77.70 Percent	Soil		N/A	Solids, Total	413085-009
	Z	11/21/14 15:21			89.6 Percent 1	11.39 g	89.60 Percent	Soil		N/A	Solids, Total	413085-008
	z	11/21/14 15:21			91.3 Percent 1	10.81 g	91.30 Percent	Soil		N/A	Solids, Total	413085-007
	Z	11/21/14 15:21			84.7 Percent 1	10.69 g	84.70 Percent	Soil		N/A	Solids, Total	413085-006
	Z	11/21/14 15:21			76.4 Percent 1	13.07 g	76,40 Percent	Soil		N/A	Solids, Total	413085-005
	z	11/21/14 15:21			91.4 Percent 1	9.55 g	91.40 Percent	Soil		N/A	Solids, Total	413085-004
	Z	11/21/14 15:21			91.7 Percent 1	11.29 g	91.70 Percent	Soil		N/A	Solids, Total	413085-003
	Z	11/21/14 15:21			93.0 Percent 1	10.92 g	93,00 Percent	Soil		N/A	Solids, Total	413085-002
<u>i Lier</u>	z <mark>k</mark>	Date Analyzed	<u>POL % Kec % KSD</u>	MDL	92.7 Percent 1	<u>Sample Amt.</u> 11.17 g	92.70 Percent	<u>Matrix</u> Soil	Farent Sample	NA	Larget Analytes Solids, Total	<u>b Code</u> 413085-001
2	S		non / non	MM		Comple A mt		Mature	Dawant Cample	2	Taunat & malertas	F Codo

ndicates Final Result is not yet adjusted for Solids because it has not yet been determined.

nted 11/24/14 9:33

Results Summary

Page 1 of 1

Benchsheet

Service Request #:	K1413105, K1414241, KQ1500004	Run #:	427774
Test:	TS	Balance ID:	K-Balance-16
Method:	160.3 Modified		

Pan ID:	Lab Code:	Tare (g)	Wet Wt. (g)	Tare + Dry Wt. (g)	Dry Weight (g)	% Total Solids	RPD
	K1413105-005	1.29	18.20	10.62	9.33	51.3	
	K1414241-001	1.33	4,99	5.21	3.88	77.8	
	K1414241-001DUP	1.31	4.90	5.18	3.87	79.0	2
	K1414241-002	1.30	4.81	4.79	3.49	72.6	
	K1414241-003	1.30	4.91	4.90	3.60	73.3	
	K1414241-004	1.30	4.97	5.80	4.50	90.5	
	K1414241-005	1.30	5.05	5.82	4.52	89.5	
	K1414241-006	1.31	5.00	5.77	4.46	89.2	

Oven1	Oven ID K-OVEN-07	Temp In 105	Temp Out 105	Date In 1/2/2015		Date Out 1/2/2015	Time Out 13:10		Thermometer ID
Calibration	Cal E 1 K-Balan		Cal Start Value 0.99, 99.99	Cai End Value 1.00, 99.99	Start Date 1/2/2015	Start Time 08:43	End Date 1/2/2015	End Time 08:50	
Calibration	12 K-Balar	ice-16	1.00, 99.98	1.00, 99.99	1/2/2015	13:29	1/2/2015	13:31	

Comments: DJM Put in oven again at 13:34 and pulled back out at 13:51 to confirm weights.

Analytical Results Summary

. z

а

					inter and the most	l				1		
Target Analytes	QC	Parent Sample	Matrix	Raw Result	Sample Amt.	Final Result Dil	MDL	POL % Rec			<u>0C;</u>]	Tier
Solids, Total	N/A	S	Sediment	51.30 Percent	18.20 g	51.3 Percent 1					Z	IV
ls, Total	N/A	S	Soil	77.80 Percent	4.99 g	77.8 Percent I				1/2/15 08:50	Z	<
Solids, Total	N/A	S	Soil	72.60 Percent	4.81 g	72.6 Percent 1				1/2/15 08:50	Z	V
Solids, Total	N/A	S	Soil	73.30 Percent	4.91 g	73.3 Percent 1				1/2/15 08:50	z	<
ls, Total	N/A	S	Soil	90.50 Percent	4.97 g	90.5 Percent 1				1/2/15 08:50	Z	V
Solids, Total	N/A	S	3oil	89.50 Percent	5.05 g	89.5 Percent 1				1/2/15 08:50	Z	V
ls, Total	N/A	S	Soil	89,20 Percent	5.00 g	89.2 Percent 1				1/2/15 08:50	Z	<
	DUP	K1414241-001 S	Soil	79.00 Percent	4.90 g	79.0 Percent 1			2	1/2/15 08:50	Z	<
		<u>e</u> N/A N/A N/A N/A N/A DUP	<u>e</u> <u>OC</u> <u>Parent Sample</u> N/A N/A N/A N/A N/A N/A N/A DUP K1414241-001	<u>e</u> N/A N/A N/A N/A N/A N/A DUP	OC Parent Sample Matrix Raw Result N/A N/A Sediment 51.30 Percent N/A Soil 77.80 Percent N/A Soil 72.60 Percent N/A Soil 73.30 Percent N/A Soil 73.30 Percent N/A Soil 90.50 Percent N/A Soil 90.50 Percent N/A Soil 89.20 Percent	OC Parent Sample Matrix Raw Result Sa N/A N/A Sediment 51.30 Percent 51.30 Percent 51.30 Percent N/A Soil 77.80 Percent Soil 72.60 Percent 73.30 Percent N/A Soil 73.30 Percent Soil 73.30 Percent 90.50 Percent N/A Soil Soil 90.50 Percent 90.50 Percent 90.50 Percent N/A Soil 89.20 Percent Soil 89.20 Percent 90.50 Percent N/A Soil Soil 89.20 Percent 79.00 Percent 79.00 Percent	OC Parent Sample Matrix Raw Result Sample Amt. Final N/A N/A Sediment \$1.30 Percent \$8.20 g \$1.3 N/A N/A Soil 77.80 Percent \$8.20 g \$1.3 N/A N/A Soil 77.80 Percent \$4.99 g \$77.8 N/A N/A Soil 72.60 Percent \$4.91 g \$72.6 N/A N/A Soil 73.30 Percent \$4.91 g \$73.3 N/A N/A Soil \$90.50 Percent \$4.91 g \$90.5 N/A N/A Soil \$90.50 Percent \$4.97 g \$90.5 N/A N/A Soil \$9.20 Percent \$5.05 g \$89.5 N/A N/A Soil \$9.20 Percent \$5.00 g \$89.2 N/A DUP K1414241-001 Soil \$9.00 Percent \$5.00 g \$79.0 N/A		OC Parent Sample Matrix Raw Result Sample Amt. Final N/A N/A Sediment \$1.30 Percent \$8.20 g \$1.3 N/A N/A Soil 77.80 Percent \$8.20 g \$1.3 N/A N/A Soil 77.80 Percent \$4.99 g \$77.8 N/A N/A Soil 72.60 Percent \$4.91 g \$72.6 N/A N/A Soil 73.30 Percent \$4.91 g \$73.3 N/A N/A Soil \$90.50 Percent \$4.91 g \$90.5 N/A N/A Soil \$90.50 Percent \$4.97 g \$90.5 N/A N/A Soil \$9.20 Percent \$5.05 g \$89.5 N/A N/A Soil \$9.20 Percent \$5.00 g \$89.2 N/A DUP K1414241-001 Soil \$9.00 Percent \$5.00 g \$79.0 N/A	OC Parent Sample Matrix Raw Result Sample Amt. Final N/A N/A Sediment \$1.30 Percent \$1.30 Percent<	$ \frac{\mathbf{OC}}{\mathbf{N/A}} \frac{\mathbf{Parent Sample}}{\mathbf{N/A}} \frac{\mathbf{Matrix}}{\mathbf{Sediment}} \frac{\mathbf{Raw Result}}{\mathbf{Sediment}} \frac{\mathbf{Sample Amt.}}{\mathbf{S130 Percent}} \frac{\mathbf{Final Result}}{\mathbf{1820 g}} \frac{\mathbf{Dl}}{\mathbf{51.3 Percent}} \frac{\mathbf{MDL}}{\mathbf{12715 08:50}} \frac{\mathbf{POL}}{\mathbf{12715 08:50}} \frac{\mathbf{N} \mathbf{Rec}}{\mathbf{12715 08:50}} \frac{\mathbf{Rec}}{\mathbf{12715 08:50}} \frac{\mathbf{Rec}}{\mathbf$	$ \frac{\mathbf{P}}{\mathbf{N}} \frac{\mathbf{P}_{\mathbf{n}} \mathbf{rent} \mathbf{Sample}}{\mathbf{N}} \frac{\mathbf{M}_{\mathbf{n}} \mathbf{rr}}{\mathbf{Sediment}} \frac{\mathbf{Raw}}{\mathbf{Sediment}} \frac{\mathbf{Raw}}{11, \mathbf{S}, 0, \mathbf{P} \mathbf{recent}} \frac{\mathbf{F}_{\mathbf{n}} \mathbf{n}}{18, 20 \text{ g}} \frac{\mathbf{M} \mathbf{D} \mathbf{L}}{51, 3, \mathbf{P} \mathbf{rccnt}} \frac{\mathbf{D} \mathbf{I}}{1} \frac{\mathbf{M} \mathbf{D} \mathbf{L}}{\mathbf{N}} \frac{\mathbf{N} \mathbf{Rec}}{\mathbf{N}} \frac{\mathbf{N} \mathbf{N} \mathbf{Rec}}{\mathbf{N}} \frac{\mathbf{N} \mathbf{N} \mathbf{N}} \mathbf{N} \frac{\mathbf{N} \mathbf{N} \mathbf{N}} \frac{\mathbf{N} \mathbf{N} \mathbf{N}}{\mathbf{N}} \frac{\mathbf{N} \mathbf{N} \mathbf{N}}{\mathbf{N}} \frac{\mathbf{N} \mathbf{N} \mathbf{N} \mathbf{N}} \frac{\mathbf{N} \mathbf{N} \mathbf{N} \frac{\mathbf{N} \mathbf{N} \mathbf{N}}{\mathbf{N}} \frac{\mathbf{N} \mathbf{N} \mathbf{N}} \frac{\mathbf{N} \mathbf{N} \mathbf{N}} \frac{\mathbf{N} \mathbf{N} \mathbf{N}} \frac{\mathbf{N} \mathbf{N}$

46

indicates Final Result is not yet adjusted for Solids because it has not yet been determined.

Benchsheet

Service Request #:	K1413105, K1414241, KQ1500004	Run #:	427774
Test:	TS	Balance ID:	K-Balance-16
Method:	160.3 Modified		

Pan ID:	Lab Code:	Tare (g)	Wet Wt. (g)	Tare + Dry Wt. (g)	Dry Weight (g)	% Total Solids	RPD
	K1413105-005	1.29	18.20	10.63	9.34	51.3	
	K1414241-001	1.33	4.99	5.22	3.89	78.0	
	K1414241-001DUP	1.31	4.90	5.18	3.87	79.0	1
	K1414241-002	1.30	4.81	4.80	3.50	72.8	
	K1414241-003	1.30	4.91	4.90	3.60	73.3	
	K1414241-004	1.30	4.97	5.80	4.50	90.5	
	K1414241-005	1.30	5.05	5.82	4.52	89.5	
	K1414241-006	1.31	5.00	5.76	4.45	89.0	

Oven1	Oven ID K-OVEN-07	Temp In 105	Temp Out 105			Date Out 1/2/2015	Time Out 13:10		Thermometer ID
Calibration	Cal E 1 K-Balar		Cal Start Value 0.99, 99.99	Cal End Value 1.00, 99.99	Start Date 1/2/2015	Start Time 08:43	End Date 1/2/2015	End Time 08:50	
Calibration	2 K-Balar	nce-16	1.00, 99.98	1.00, 99.99	1/2/2015	13:29	1/2/2015	13:31	

Work Request #	Original K1413103	4 mm ²¹
Tier:	II.	
Date Analyzed:	12/18/14	
Analyst:	AP	Run # 426762
Analysis:	Toc Soil / 9080	Aun + 100100

DATA QUALITY REPORT INORGANICS

Explain any "no" responses to questions below, and any corrective actions in the comments section below.

1.	Is the method name and number correct and appropriate?	(yes/no/NA
2.	Holding times met for all analyses and for all samples?	ves/no/NA
3.	Are calculations correct?	ves/no/NA
4.	Is the reporting basis correct? (Dry Weight)	/yes/no/NA
5.	All quality control criteria met?	ves/no
6.	Is the calibration curve correlation coefficient ≥ 0.995 ?	/yes/no/NA
7.	MBs, CCVs, CCBs, LCSs, Dups, and Spikes, analyzed at proper frequency?	(ves/no/NA
8.	Are ICVs, CCVs, and CCBs all within acceptance limits?	(yes/no/NA
9.	Are results for methods blanks all ND?	(yes/no/NA
10,	Are all QC samples within acceptance criteria? (LCS % rec, MS/DMS % rec, DUP or MS/DMS RPDs, etc.)	yes/no/NA
11.	Are all exceptions explained?	yes/no(NA)
12.	Have all applicable service requests been reviewed?	(yes/no/NA
13.	Are all samples labeled correctly?	ves/ho/NA
14.	Have all instructions on the service request been followed? (e.g. Special MRLs, QC on a specific sample, Form V)	ves/no/NA
15.	Are detection limits and units reported correctly?	ves/no/NA
16.	Is the unused space on the benchsheet crossed out?	ves/no/NA
17.	Was analysis turned in by the due date? (n-2) (If not record SR#)	yes/10/NA Late

COMMENTS:

Final Approved by:_____

Analytical Kesults Summary

Instrument Name: K-TOC-04	ne: K-TOC-04	Analyst: DBRADBURY	ADBURY		Analysis Lot:	426762	Metho	d/Test	Method/Testcode: 9060/TOC	0/TOC		
ab Code 1413105_001	Target Analytes OC	Parent Sample	<u>Matrix</u> Sediment	Raw Result Si	<u>Sample Amt.</u>	Final Result Dil	0.02		POL <u>% Rec</u>	% Rec % RSD	D Date Analyzed OC?	<u>?</u> Tier IV
1413105-002			Sediment	0.18 Percent		0.18 Percent	0.02		0.10			N
1413105-003	Carbon Organic (TOC) N/A		Sediment	1.30 Percent		1.30 Percent	0.02		0.10		12/18/14 11:16:00 N	IV
1413105-004	Carbon Organic (TOC) N/A		Sediment	3.63 Percent		3.63 Percent	0.02		0,10	-	12/18/14 11:16:00 N	IV
1413105-005	Carbon Organic (TOC) N/A		Sediment	2.54 Percent		2.54 Percent	0.02		0.10		12/18/14 11:16:00 N	IV
1413105-006	Carbon Organic (TOC) N/A		Sediment	0.40 Percent		0.40 Percent	0.02		0.10		12/18/14 11:16:00 N	W
1413105-007	Carbon Organic (TOC) N/A		Sediment	0.24 Percent		0.24 Percent	0.02		0.10		12/18/14 11:16:00 N	\mathbf{N}
1413105-008	Carbon Organic (TOC) N/A		Sediment	0.47 Percent		0.47 Percent	0.02		0.10		12/18/14 11:16:00 N	N
1413105-009	Carbon Organic (TOC) N/A		Sediment	0.36 Percent		0.36 Percent	0.02		0.10		12/18/14 11:16:00 N	N
1413105-010	Carbon Organic (TOC) N/A		Sediment	0.48 Percent		0.48 Percent	0.02		0.10		12/18/14 11:16:00 N	IV
1413105-012	Carbon Organic (TOC) N/A		Sediment	2.94 Percent		2.94 Percent	0.02		0.10		12/18/14 11:16:00 N	N
1413105-013	Carbon Organic (TOC) N/A		Sediment	1.92 Percent		1.92 Percent	0.02		0.10		12/18/14 11:16:00 N	N
1413105-015	Carbon Organic (TOC) N/A		Sediment	0.15 Percent		0.15 Percent	. 0.02		0.10		12/18/14 11:16:00 N	N
1413105-016	Carbon Organic (TOC) N/A		Sediment	4.08 Percent		4.08 Percent	0.02		0.10		12/18/14 11:16:00 N	Ν
1413105-017	Carbon Organic (TOC) N/A		Sediment	4.39 Percent		4.39 Percent	0.02		0.10		12/18/14 11:16:00 N	VI
Q1416754-01	Carbon Organic (TOC) DUP	K1413105-001	Sediment	0.35 Percent		0.35 Percent	0.02		0.10	8		IV
Q1416754-02	Carbon Organic (TOC) MS	K1413105-001	Sediment	2.85 Percent		2.85 Percent	0.02		0.10 104		12/18/14 11:16:00 N	19 7
Q1416754-03	Carbon Organic (TOC) DMS	K1413105-001	Sediment	2.80 Percent		2.80 Percent	0.02		0.10 102	2	12/18/14 11:16:00 N	V
Q1416754-04	Carbon Organic (TOC) LCS		Sediment	0.28 Percent		0.280 Percent	0.02		0.10 102			N
Q1416754-05	Carbon Organic (TOC) MB		Sediment	0.02 Percent	0.	10 Percent U	0.02		0.10		12/18/14 11:16:00 N	Ν
Q1416755-01	Carbon Organic (TOC) CCV		Sediment	12.70 Percent		12.7 Percent			106		12/18/14 11:16:00 N	M
Q1416755-02	Carbon Organic (TOC) CCV		Sediment	12.36 Percent		12.4 Percent			103		12/18/14 11:16:00 N	N
Q1416755-03	Carbon Organic (TOC) CCV		Sediment	12.32 Percent		12.3 Percent			103		12/18/14 11:16:00 N	W
Q1416755-04	Carbon Organic (TOC) CCB		Sediment	0.01 Percent	0.	10 Percent U	0.02		0.10		12/18/14 11:16:00 N	N
Q1416755-05	Carbon Organic (TOC) CCB		Sediment	0.01 Percent	0.	10 Percent U	0.02		0.10		12/18/14 11:16:00 N	IV
Q1416755-06	Carbon Organic (TOC) CCB		Sediment	0.01 Percent	0_	10 Percent U	0.02	02 0.10	10		12/18/14 11:16:00 N	N

hyrefer an

inted 12/23/14 11:51

indicates Final Result is not yet adjusted for Solids because it has not yet been determined.

Results Summary

Page 1 of 1

aj-analyzer multi EA 4000; multiWin 5.2; Serial number: N4-138/M % TOTAL ORGANIC CARBON

AnalysisGroup

AnalysisGroup:	% TOC
Remark:	% Total Organic Carbon
Created on: Last modification: State:	3/16/2013 11:53:50 AM 12/18/2014 4:13:13 PM solid

Analysis name	Result (average)	Sample quantity	Time of analysis
CCV	TC: 12.70%	25.300mg 2 REC = 106	12/18/2014 11:16:03 AM
CCB	TC: 0.012%	250.000mg	12/18/2014 11:29:16 AM
LCS	TC: 0.28%	251.400mg 7. KE<= /02	
MB	ТС: 0.016%	250.000mg	12/18/2014 11:47:33 AM
K1413105-001	TC: 0.38%	251.500mg	12/18/2014 11:55:52 AM
K1413105-001d	TC: 0.35%	251.100mg	12/18/2014 12:06:10 PM
K1413105-001ms	TC: 2.85%	127.200mg	12/18/2014 12:16:19 PM
K1413105-001msd	TC: 2.80%	127.300mg	12/18/2014 12:31:53 PM
K1413105-002	TC: 0.18%	252.200mg	12/18/2014 12:45:31 PM
K1413105-003	TC: 1.30%	252.200mg	12/18/2014 12:55:34 PM
K1413105-004	TC: 3.63%	251.400mg	12/18/2014 1:06:58 PM
K1413105-005	TC: 2.54%	252.100mg	12/18/2014 1:21:27 PM
CCV	TC: 12.36%		12/18/2014 1:33:33 PM
CCB	TC: 0.012%	250.000mg	12/18/2014 1:46:16 PM
K1413105-006	TC: 0.40%	252,000mg	12/18/2014 1:54:29 PM
K1413105-007	ПС: 0.24%	251.600mg	12/18/2014 2:04:34 PM
K1413105-008	TC: 0.47%	251.700mg	12/18/2014 2:14:36 PM
K1413105-009	ТС: 0.36%	252.500mg	12/18/2014 2:25:01 PM
K1413105-010	TC 0.48%	251.300mg	12/18/2014 2:35:09 PM
K1413105-012	TC: 2,94%	252.500mg	12/18/2014 2:45:33 PM
K1413105-013	TC: 1.92%	251.200mg	12/18/2014 2:59:32 PM
K1413105-015	TC: 0.15%	252.400mg	12/18/2014 3:11:17 PM
K1413105-016	TC: 4.08%	251,100mg	12/18/2014 3:21:28 PM
K1413105-017	TC: 4.39%	251.800mg	12/18/2014 3:38:14 PM
CCV	TC: 12.32%	25.100mg 7 REC= 103	12/18/2014 3:52:35 PM
ССВ	TC: 0.012%	250.000mg	12/18/2014 4:05:31 PM

Run # 426762

Service Request: K1413105

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Date Weighed: 12/15/14

Analyst: AB

Sample Position Sample ID 1 Clean 2 CCV

CCB

LCS MB

K1413105-001

K1413105-001d

K1413105-001ms

K1413105-001msd

K1413105-002

K1413105-003

K1413105-004

K1413105-005

CCV

CCB

K1413105-006

K1413105-007

K1413105-008

K1413105-009

K1413105-010

K1413105-012

K1413105-013

K1413105-015

K1413105-016

Weight (mg)

NA

251.4

250.0

257.5

251.1

127.2

127.3

252.2

2522

751.4

252.1

25.3

252.0 251,6

251.7

252.5

251.3

252.5

251.2

252.4

751.1

250.0

25.3 250.0

Krap	井 2200+1
Run	# 426762

Method: EPA 9060

Analysis: Total Organic Carbon in Soil

Reviewed By:

Sample Position	Sample ID	Weight (mg)
25	K1413105-017	251.8
26	CCV	25.1
27	ССВ	250.0
28	and the second secon	
29		
30		
31		
32		
33		
34		
35		
36		/
37	/	
38	/	
39	/	
40		
41	/	
42		
43		
44		
45		
46		
47	/	
48		na sense na sense (monor i a de la como se a de la como se se como s

MS CaCO3 (mg)	K1413105-001ms	25.1
MSD CaCO3 (mg)	K1413105-001msd	25.1

Balance ID: K-BALANCE-38 HCL ID: TOC/2-81-C

Oven ID: K-OVEN-01 Thermometer ID: K31316

CCV: CaCO3, Alfa Aesar, ID: 13-TOC-01-1C, Lot # J05X011, TV = 12.0% LCS: Nutrients in Soil, ERA, ID: TOCS/1-17-D, Lot # D076-542, TV = 0.275%

MS: (mg CCV)(% TV CCV) / (mg sample) = (55.1)(12)/(127.2 = 2.37) % REC = /04 **MSD:** (mg CCV)(% TV CCV) / (mg sample) = (25.1)(12)/(127.3 = 2.37) % REC = /02

% REC = $\frac{106}{103}$, $\frac{103}{103}$ % REC = $\frac{102}{102}$

Work Request #	Original K1413105	13106
Tier:	Ī	I
Date Analyzed:	12/19/14	
Analyst:	AB	13 million and the second second
Analysis:	Toc Soil / 9000	Run # 426764

DATA QUALITY REPORT INORGANICS

Explain any "no" responses to questions below, and any corrective actions in the comments section below.

		2°	
1.	Is the method name and number correct and appropriate?	(yes/no/NA	
2.	Holding times met for all analyses and for all samples?	(yes/no/NA	
3.	Are calculations correct?	ves/no/NA	
4.	Is the reporting basis correct? (Dry Weight)	(yes/no/NA	
5.	All quality control criteria met?	(yes/no	
6.	Is the calibration curve correlation coefficient ≥ 0.995 ?	/yes/no/NA	
7.	MBs, CCVs, CCBs, LCSs, Dups, and Spikes, analyzed at proper frequency?	yes/no/NA	
8.	Are ICVs, CCVs, and CCBs all within acceptance limits?	yes/no/NA	
9.	Are results for methods blanks all ND?	(yes/no/NA	
10.	Are all QC samples within acceptance criteria? (LCS % rec, MS/DMS % rec, DUP or MS/DMS RPDs, etc.)	(yes/no/NA	
11.	Are all exceptions explained?	yes/no/NA	
12.	Have all applicable service requests been reviewed?	yes/no/NA	
13.	Are all samples labeled correctly?	/yes/no/NA	
14.	Have all instructions on the service request been followed? (e.g. Special MRLs, QC on a specific sample, Form V)	yes/no/NA	
15.	Are detection limits and units reported correctly?	yes/no/NA	
16.	Is the unused space on the benchsheet crossed out?	(yes/no/NA	ě
17.	Was analysis turned in by the due date? (n-2) (If not record SR#)	yes/no/NA	Late

COMMENTS:

Date: 12/23/14 Final Approved by:_____

Analytical Kesults Summary

N N	06:00 N	12/19/14 10:06:00 12/19/14 10:06:00			0.10 0.10	0.02 0.02	0.10 Percent U 1 0.10 Percent U 1	0.01 Percent 0.01 Percent	Sediment Sediment	Carbon Organic (TOC) CCB Carbon Organic (TOC) CCB	Q1416757-05 Q1416757-06
N	06:00 N	12/19/14 10:06:00			0.10	0.02	0.10 Percent U 1	0.01 Percent	Sediment	Carbon Organic (TOC) CCB	Q1416757-04
N	-	12/19/14 10:06:00		201			12.8 Percent 1	12.77 Percent	Sediment	Carbon Organic (TOC) CCV	Q1416757-03
N		12/19/14 10:06:00		107			13.0 Percent 1	13.04 Percent	Sediment	Carbon Organic (TOC) CCV	Q1416757-02
N	06:00 N	12/19/14 10:06:00		107			12.9 Percent 1	12.85 Percent	Sediment	Carbon Organic (TOC) CCV	Q1416757-01
N		12/19/14 10:06:00			0.10	0.02	0.10 Percent U 1	0.01 Percent	Sediment	Carbon Organic (TOC) MB	Q1416756-05
N	-	12/19/14 10:06:00		87	0.10	0.02	0.240 Percent 1	0.24 Percent	Sediment	Carbon Organic (TOC) LCS	Q1416756-04
Į.	06:00 N	12/19/14 10:06:00	8	100	0.10	0.02	2.56 Percent 1	2.56 Percent	K1413105-018 Sediment	Carbon Organic (TOC) DMS	Q1416756-03
33		12/19/14 10:06:00)	108	0.10	0.02	2.77 Percent 1	2.77 Percent	K1413105-018 Sediment	Carbon Organic (TOC) MS	Q1416756-02
W	0	12/19/14 10:06:00	^		0.10	0.02	0.18 Percent 1	0.18 Percent	K1413105-018 Sediment	Carbon Organic (TOC) DUP	Q1416756-01
N	06:00 N	12/19/14 10:06:00			0.10	0.02	2.33 Percent 1	2.33 Percent	Sediment	Carbon Organic (TOC) N/A	1413106-007
W	-	12/19/14 10:06:00			0.10	0.02	0.27 Percent 1	0.27 Percent	Sediment	Carbon Organic (TOC) N/A	1413106-004
N		12/19/14 10:06:00			0.10	0.02	0.39 Percent 1	0.39 Percent	Sediment	Carbon Organic (TOC) N/A	1413106-003
N	06:00 N	12/19/14 10:06:00			0.10	0.02	0.27 Percent 1	0.27 Percent	Sediment	Carbon Organic (TOC) N/A	1413106-002
Ν	-	12/19/14 10:06:00			0.10	0.02	2.56 Percent 1	2.56 Percent	Sediment	Carbon Organic (TOC) N/A	1413106-001
N	06:00 N	12/19/14 10:06:00			0.10	0.02	0.13 Percent 1	0.13 Percent	Sediment	Carbon Organic (TOC) N/A	1413105-028
N	06:00 N	12/19/14 10:06:00			0.10	0.02	14.2 Percent 1	14.23 Percent	Sediment	Carbon Organic (TOC) N/A	1413105-027
N		12/19/14 10:06:00			0.10	0.02	0.19 Percent 1	0.19 Percent	Sediment	Carbon Organic (TOC) N/A	1413105-026
Ν	-	12/19/14 10:06:00			0.10	0.02	3.61 Percent 1	3.61 Percent	Sediment	Carbon Organic (TOC) N/A	1413105-024
V	06:00 N	12/19/14 10:06:00			0.10	0.02	1.44 Percent 1	1.44 Percent	Sediment	Carbon Organic (TOC) N/A	1413105-023
Ν	06:00 N	12/19/14 10:06:00			0.10	0.02	0.12 Percent 1	0.12 Percent	Sediment	Carbon Organic (TOC) N/A	1413105-022
N	-	12/19/14 10:06:00			0.10	0.02	0.20 Percent 1	0.20 Percent	Sediment	Carbon Organic (TOC) N/A	1413105-021
W	06:00 N	12/19/14 10:06:00			0.10	0.02	2.65 Percent	2.65 Percent	Sediment	Carbon Organic (TOC) N/A	1413105-020
N	06:00 N	12/19/14 10:06:00			0.10	0.02	0.73 Percent 1	0.73 Percent	Sediment		1413105-019
<u>P</u> Tier N	06:00 N	Date Analyzed 12/19/14 10:06:00	<u>s % RSD</u>	% Rec	0.10	0.02	Final Result Dil 0.18 Percent 1	Raw Result Sample Amt. 0.18 Percent	Parent Sample Matrix Sediment	Target AnalytesOCCarbon Organic (TOC)N/A	<u>ab Code</u> 1413105-018
			60/TOC	1e: 90,	Festcod	Method/Testcode: 9060/TOC	426764	Analysis Lot:	Analyst: DBRADBURY	me: K-TOC-04	Instrument Name: K-TOC-04

hlecks an

inted 12/23/14 11:58

indicates Final Result is not yet adjusted for Solids because it has not yet been determined.

Results Summary

Page 1 of 1

aj-analyzer multi EA 4000; multiWin 5.2; Serial number: N4-138/M % TOTAL ORGANIC CARBON

AnalysisGroup

AnalysisGroup:	% TOC
Remark:	% Total Organic Carbon
Created on: Last modification:	3/16/2013 11:53:50 AM 12/19/2014 3:06:57 PM
State:	solid

Analysis name	Result (average)	Sample quantity	Time of analysis
CCV	TC: 12.85%		12/19/2014 10:06:38 AM
ССВ	TC: 0.012%	250.000mg	12/19/2014 10:20:20 AM
LCS	TC: 0,24%	252.100mg 2 RE= \$7	12/19/2014 10:28:32 AM
MB	TC: 0.012%	250.000mg	12/19/2014 10:38:34 AM
K1413105-018	TC: 0.18%	250.700mg	12/19/2014 10:46:46 AM
K1413105-018d	TC: 0.18%	251.100mg	12/19/2014 10:56:54 AM
K1413105-018ms	TC: 2.77%	127.100mg	12/19/2014 11:07:04 AM
K1413105-018msd	TC: 2.56%	127.700mg	12/19/2014 11:24:11 AM
K1413105-019	TC: 0.73%	252.700mg	12/19/2014 11:38:12 AM
K1413105-020	TC: 2.65%	251.600mg	12/19/2014 11:48:42 AM
K1413105-021	TC: 0.20%	251.800mg	12/19/2014 12:02:15 PM
K1413105-022	TC: 0.12%	251.900mg	12/19/2014 12:12:21 PM
CCV	TC: 13.04%	25.100mg 2 KEc = 107	12/19/2014 12:22:37 PM
ССВ	TC: 0.012%	250.000mg	12/19/2014 12:37:31 PM
K1413105-023	TC: 1.44%	251.800mg	12/19/2014 12:45:47 PM
K1413105-024	TC: 3.61%	250.900mg	12/19/2014 12:57:32 PM
K1413105-026	TC: 0.19%	251.700mg	12/19/2014 1:13:36 PM
K1413105-027	TC: 14.23%	251.800mg	12/19/2014 1:23:42 PM
K1413105-028	TC: 0.13%	251.900mg	12/19/2014 1:40:22 PM
К1413106-001	TC: 2.56%	250.900mg	12/19/2014 1:50:40 PM
K1413106-002	TC: 0.27%	252.500mg	12/19/2014 2:01:56 PM
K1413106-003	TC: 0.39%	251.600mg	12/19/2014 2:12:01 PM
K1413106-004	TC: 0.27%	252,900mg	12/19/2014 2:22:04 PM
K1413106-007	TC: 2.33%	252.500mg	12/19/2014 2:32:07 PM
CCV	TC: 12.77%	25.100mg % RE== /06	12/19/2014 2:45:15 PM
ССВ	TC: 0.012%	250.000mg	12/19/2014 2:59:11 PM

Run # 426764

Service Request: K1413105, K1413106

Date Weighed: 12/18/14

Analyst: AB

Sample Position	Sample ID	Weight (mg)
1	Clean	NA
2	CCV	25.2
3	CCB	250.0
4	LCS	252.1
5	MB	250.0
6	K1413105-018	250.7
7	K1413105-018d	251,1
8	K1413105-018ms	127.1
9	K1413105-018msd	127.7
10	K1413105-019	252.7
11	K1413105-020	251.6
12	K1413105-021	251.8
13	K1413105-022	251.9
14	CCV	25.1
15	ССВ	250.0
16	K1413105-023	257.8
17	K1413105-024	250,9
18	K1413105-026	251.7
19	K1413105-027	751.8
20	K1413105-028	751.9
21	K1413106-001	250,9
22	K1413106-002	252.5
23	K1413106-003	251.6
24	K1413106-004	252.9

Prop # + + + + 1 / 1 / Run # 42-6764

Method: EPA 9060

Analysis: Total Organic Carbon in Soil

Reviewed By:

Sample Position	Sample ID	Weight (mg)
25	K1413106-007	252.5
26	CCV	25.1
27	ССВ	250.0
28	and the second	2011-101-1 2011-101-101-101-101-101-101-101-101-101
29		
30		
31		
32		
33		
34		
35		
36		
37	/	/
38	/	· · · · · · · · · · · · · · · · · · ·
39		
40	/	
41		
42		
43	/	
44		
45		
46		
47		
48		

MS CaCO3 (mg)	K1413105-018ms	25.4
MSD CaCO3 (mg)	K1413105-018msd	25.4

Balance ID: K-BALANCE-38 HCL ID: TOC/2-81-C

Oven ID: K-OVEN-01 Thermometer ID: K31316

CCV: CaCO3, Alfa Aesar, ID: 13-TOC-01-1C, Lot # J05X011, TV = 12.0% LCS: Nutrients in Soil, ERA, ID: TOCS/1-17-D, Lot # D076-542, TV = 0.275%

MS: $(mg CCV)(\% TV CCV) / (mg sample) = \frac{(1)(35.4)}{(137.1 = 2.40)}$ % REC = $\frac{108}{\%}$ MSD: $(mg CCV)(\% TV CCV) / (mg sample) = \frac{(1)(35.4)}{(137.7 = 2.37)}$ % REC = $\frac{108}{\%}$

% REC = <u>107</u>, <u>109</u>, <u>106</u> % REC = <u>87</u>

Work Request #	Original /3/05	
Tier:		
Date Analyzed:	11/26 - 1/5/15	10000
Analyst:	ER/cc/cs	423900
Analysis:	6.5.	

DATA QUALITY REPORT INORGANICS

Explain any "no" responses to questions below, and any corrective actions in the comments section below.

1.	Is the method name and number correct and appropriate?	Vesno/NA.
2.	Holding times met for all analyses and for all samples?	yes/no/(A)
3.	Are calculations correct?	(yeyno/NA
4.	Is the reporting basis correct? (Dry Weight)	vesno/NA
5.	All quality control criteria met?	yes no
6.	Is the calibration curve correlation coefficient $\ge 0.995?$	yes/no(NA)
7.	MBs, CCVs, CCBs, LCSs, Dups, and Spikes, analyzed at proper frequency?	yesmo/NA.
8.	Are ICVs, CCVs, and CCBs all within acceptance limits?	yes/no/NA
9.	Are results for methods blanks all ND?	yes/no/
10.	Are all QC samples within acceptance criteria? (LCS % rec, MS/DMS % rec, DUP or MS/DMS RPDs, etc.)	CO 16/DA
11.	Are all exceptions explained?	Jesho/NA
12.	Have all applicable service requests been reviewed?	yes/ho/NA
13.	Are all samples labeled correctly?	(yes)no/NA
14.	Have all instructions on the service request been followed? (e.g. Special MRLs, QC on a specific sample, Form V)	Jesno/NA
15.	Are detection limits and units reported correctly?	yey/no/NA
16.	Is the unused space on the benchsheet crossed out?	(ye)no/NA
17.	Was analysis turned in by the due date? (n-2) (If not record SR#)	yes/no/NA
COM Bar	MENTS: th QC - ?. of total wit. Lecon the acceptance linuits due of charocker of the sample. for batch QC due to linuited	vered was outsoch to possible bet. No et mip analyzes sompele.

______Date:____//12/15 Final Approved by:____ DOREPORT

1317 South 13th Avenue

Kelso, Wa 98626

Service Request #: K1413105 Sample #: K1413105-001

Method: PSEP Particle Size Puget Sound Protocol

Client:	Industrial Economics, Inc.
Project:	Portland Harbor 2014/Alder
Sample Matrix:	Sediment

Sample Name:	254
Date Collected:	9/24/2014
Date Received:	11/3/2014
Date Analyzed:	11/26/2014

423900

I. Sieving Operation	Sieve #
Gravel 2.00 mm (g)	10
V.C. Sand, 1.00 mm (g)	18
C. Sand, 0.500 mm (g)	35
M. Sand, 0.250 mm (g)	60
F. Sand, 0.125 mm (g)	120
V.F. Sand, 0.0625 mm (g)	230
S/C <0.0625 mm (g)	Pan

Weight (g)	As Rec'd (g)
4.6810	N/A
6.8433	N/A
24.5842	N/A
33.1548	N/A
4.3851	N/A
1.4134	N/A
0.1252	N/A

75.1870 II. Dry Sieving of Gravel/Sand

Grams Gravel/Sand & Beaker	173.4152		
Grams Beakei(Tare)	97,8342		
GramsGravel/Sand	75.5810		

I. Sample Preparation

Total (g) Recov'd

Total (%) Recov'd

Grams As Received Sample	100.6653
Percent (%) Solids	76.0
Grams Oven Dried Sample	76.5056

99.5

III. Determination of Silt/Clay Fraction

21

Temperature:

Thermometer IE C65669

	4	5	6	7	8	9	10
Total Volume of Sample (mls)	1000	1000	1000	1000	1000	1000	1000
Amount of Dispersant	10	10	10	10	10	10	10
Volume of Aliquot (mls)	20	20	20	20	20	20	20
Grams Sample, Dispersant & Tare	30.6724	39.8520	40.8967	31.6554	31,6205	34.7454	30.4555
Grams of Tare	30,6397	39.8284	40,8833	31,6421	31,6105	34.7404	30.4500
Grams of Dispersant Correction	0.0022	0.0022	0.0022	0.0022	0.0022	0.0022	0,0022
Grams of Sample	0.0305	0.0214	0.0112	0.0111	0.0078	0.0028	0.0033
Total Grams Sample X 50	0.4550	0.5100	0.0050	0.1650	0.2500	-0.0250	0.1650

Analyst:	ER	Date:	11/26/2014
Reviewed by:	EL	Date:	12/31/2014

1317 South 13th Avenue

Kelso, Wa 98626

579

9/24/2014 11/3/2014

11/26/2014

Service Request	#:	K1413105
Sample #:	K1413105	5-003

Client:	Industrial Economics, Inc.	Sample Name:
Project:	Portland Harbor 2014/Alder	Date Collected:
Sample Matrix:	Sediment	Date Received:
		Date Analyzed:

I. Sieving Operation	Sieve #
Gravel 2.00 mm (g)	10
V.C. Sand, 1.00 mm (g)	18
C. Sand, 0.500 mm (g)	35
M. Sand, 0.250 mm (g)	60
F. Sand, 0.125 mm (g)	120
V.F. Sand, 0.0625 mm (g)	230
S/C <0.0625 mm (g)	Pan

Method: PSEP Particle Size

Puget Sound Protocol

Weight (g)	As Rec'd (g)
0.0000	N/A
0.0234	N/A
0.0938	N/A
6.3644	N/A
17.5704	N/A
9.6327	N/A
1.5926	N/A

Total (g) Recov'd	35.2773	
Total (%) Recov'd	99.5	

II. Dry Sieving of Gravel/Sand

Grams Gravel/Sand & Beaker	138.5490
Grams Beaker(Tare)	103.0819
GramsGravel/Sand	35.4671

I, Sample Preparation

Grams As Received Sample	68.1743
Percent (%) Solids	64.0
Grams Oven Dried Sample	43.6316

III D 4 . - 41 A Cill/Class Exection

III. Determination of Silt/Clay Fra-	ction					
Temperature: 21	Thermometer II	C65669				
	4	5	6	7	8	9
Total Volume of Sample (mls)	1000	1000	1000	1000	1000	1000
Amount of Dispersant	10	10	10	10	10	10
Volume of Aliquot (mls)	20	20	20	20	20	20
Grams Sample, Dispersant & Tare	32,4328	40.8084	31.5333	32.2016	31.8596	29.8487
Grams of Tare	32.2015	40.6582	31.4268	32.1345	31.8129	29.8177
Grams of Dispersant Correction	0.0022	0.0022	0.0022	0.0022	0,0022	0.0022
Grams of Sample	0.2291	0.1480	0.1043	0.0649	0.0445	0.0288
Total Grams Sample X 50	4.0550	2.1850	1.9700	1.0200	0.7850	0.6950

Analyst:	ER	Date:	11/26/2014	-
Reviewed by:	EL	Date:	12/31/2014	-

10 1000

> 10 20

28.1675

28.1504

0.0022

0.0149

0.7450

1317 South 13th Avenue

Kelso, Wa 98626

958

9/24/2014

11/3/2014

11/26/2014

Service Reques	t #:	K1413105
Sample #:	K14 ⁻	13105-004

Sample Name:

Date Collected:

Date Received:

Date Analyzed:

Client:	Industrial Economics, Inc.
Project:	Portland Harbor 2014/Alder
Sample Matrix:	Sediment

Puget Sound Protocol

Method: PSEP Particle Size

I. Sieving Operation	Sieve #
Gravel 2.00 mm (g)	10
V.C. Sand, 1.00 mm (g)	18
C. Sand, 0.500 mm (g)	35
M. Sand, 0.250 mm (g)	60
F. Sand, 0.125 mm (g)	120
V.F. Sand, 0.0625 mm (g)	230
S/C <0.0625 mm (g)	Pan

Weight (g)	As Rec'd (g)
0.4500	N/A
0.1576	N/A
0.1391	N/A
1.0093	N/A
5.6392	N/A
15.0840	N/A
2.2186	N/A

Total (g) Recov'd	24.6978	
Total (%) Recov'd	99.8	

II. Dry Sieving of Gravel/Sand

Grams Gravel/Sand & Beaker	152.9762
Grams Beaker(Tare)	128.2406
GramsGravel/Sand	24.7356

I. Sample Preparation

Grams As Received Sample	61,7183
Percent (%) Solids	52.5
Grams Oven Dried Sample	32.4021

Temperature: 21	Thermometer I	C65669					
	4	5	6	7	8	9	10
Total Volume of Sample (mls)	1000	1000	1000	1000	1000	1000	1000
Amount of Dispersant	10	10	10	10	10	10	10
Volume of Aliquot (mls)	20	20	20	20	20	20	20
Grams Sample, Dispersant & Tare	28.8105	31,5204	28.0843	30.9418	31.1397	30,9435	34.3865
Grams of Tare	28.6298	31.4369	28.0344	30.9052	31,1155	30,9297	34.3775
Grams of Dispersant Correction	0.0022	0.0022	0.0022	0,0022	0.0022	0.0022	0.0022
Grams of Sample	0.1785	0.0813	0.0477	0.0344	0.0220	0.0116	0.0068
Total Grams Sample X 50	4.8600	1.6800	0.6650	0.6200	0.5200	0.2400	0.3400

Analyst:	ER	Date:	11/26/2014
 Reviewed by:	EL	Date:	12/31/2014

1317 South 13th Avenue

K1413105

Kelso, Wa 98626

Method:	PSEP	Particle Size
	Pug	et Sound Protocol

Client:	Industrial Economics, Inc.
Project:	Portland Harbor 2014
Sample Matrix:	Sediment

Sample Name:	1982
Date Collected:	9/24/2014
Date Received:	11/3/2014
Date Analyzed:	1/5/2015

Sample #: K1413105-005

I. Sieving Operation	Sieve #
Gravel 2.00 mm (g)	10
V.C. Sand, 1.00 mm (g)	18
C. Sand, 0.500 mm (g)	35
M. Sand, 0.250 mm (g)	60
F. Sand, 0.125 mm (g)	120
V.F. Sand, 0.0625 mm (g)	230
S/C <0.0625 mm (g)	Pan

Weight (g)	As Rec'd (g)
0.0072	N/A
0.0060	N/A
0.0695	N/A
2.5618	N/A
3.6253	N/A
7.8278	N/A
2.7201	N/A

Total (g) Recov'd	16.8177
Total (%) Recov'd	98.4

II. Dry Sieving of Gravel/Sand

Service Request #:

Grams Gravel/Sand & Beaker	118.3230
Grams Beake(Tare)	101.2285
GramsGravel/Sand	17.0945

I. Sample Preparation

Grams As Received Sample	45.5086
Percent (%) Solids	51.3
Grams Oven Dried Sample	23.3459

III. Determination of Silt/Clay Fraction

Temperature: 21	Thermometer II	C65669					
	4	5	6	7	8	9	10
Total Volume of Sample (mls)	1000	1000	1000	1000	1000	1000	1000
Amount of Dispersant	10	10	10	10	10	10	10
Volume of Aliquot (mls)	20	20	20	20	20	20	20
Grams Sample, Dispersant & Tare	42.2051	29,9183	34.1806	40.9645	41,6508	31.5414	29.5856
Grams of Tare	42.0213	29.8151	34.1094	40.9144	41.6153	31.5179	29.5720
Grams of Dispersant Correction	0.0021	0.0021	0.0021	0.0021	0.0021	0.0021	0.0021
Grams of Sample	0.1817	0.1011	0.0691	0.0480	0.0334	0.0214	0.0115
Total Grams Sample X 50	4.0300	1.6000	1.0550	0.7300	0.6000	0.4950	0.5750

Analyst:	СС
Reviewed by:	EL

Date: 1/5/2015

Date: _____

1/12/2015

1317 South 13th Avenue

Kelso, Wa 98626

Method: PSEP Parti	cle Size	Service Request_#:	K1413105
Puget So	und Protocol	Sample #: K14131	05-005
Client: I	ndustrial Economic	s, Inc. Sample Name:	1982
Project: F	ortland Harbor 201	4/Alder Date Collected:	9/24/2014
Sample Matrix: S	ediment	Date Received:	11/3/2014
		Date Analyzed:	11/26/2014
I. Sieving Operation	Sieve #	Weight (g)	As Rec'd (g)
Gravel 2.00 mm (g)	10	0.2809	N/A
V.C. Sand, 1.00 mm (g) 18	0.1801	N/A
C. Sand, 0.500 mm (g) 35	0.1181	N/A
M. Sand, 0.250 mm (g) 60	1.7769	N/A
F. Sand, 0.125 mm (g) 120	3.2504	N/A
V.F. Sand, 0.0625 mn	n (g) 230	8.8724	N/A
S/C <0.0625 mm (g)	Pan	1.9112	N/A

<u>3)</u>	
_	and a start of the
	and the second se
7	

Total (g) Recov'd	16.3900
Total (%) Recov'd	100.0

ll. Dry	Sieving	of Gravel/Sa	and

Grams Gravel/Sand & Beaker	136.4381	
Grams Beaker(Tare)	120.0403	
GramsGravel/Sand	16.3978	
/		116

I. Sample Preparation

Grams As Received Sample	60.7665
Percent (%) Solids	51.7
Grams Oven Dried Sample	31,4163

	4	5	6	7	8	9	10
Total Volume of Sample (mls)	1000	/ 1000	1000	1000	1000	1000	1000
Amount of Dispersant	10	/ 10	10	10	10	10	10
Volume of Aliquot (mls)	20 /	20	20	20	20	20	20
Grams Sample, Dispersant & Tare	31.7562	31.2264	27.2404	34.2282	34.6039	30,4290	31,5873
Grams of Tare	31.5821	31.1283	27.1775	34.1860	34.5781	30.4138	31,5779
Grams of Dispersant Correction	0,0022	0.0022	0.0022	0.0022	0.0022	0.0022	0.0022
Grams of Sample	0.1719	0.0959	0.0607	0.0400	0,0236	0,0130	0.0072
Total Grams Sample X 50	3.8000	1.7600	1.0350	0,8200	0.5300	0.2900	0.3600
	/						
Analyst: ER		Date:		11/26/2014			
Reviewed by: EL		Date:		12/31/2014			

1317 South 13th Avenue

Kelso, Wa 98626

K1413105

2046 9/24/2014

11/3/2014

11/26/2014

Method:	PSEP	Particle	Size	;	

Puget	Sound	Protocol
-------	-------	----------

Client:	Industrial Economics, Inc.
Project:	Portland Harbor 2014/Alder
Sample Matrix:	Sediment

I. Sieving Operation	Sieve #
Gravel 2.00 mm (g)	10
V.C. Sand, 1.00 mm (g)	18
C. Sand, 0.500 mm (g)	35
M. Sand, 0.250 mm (g)	60
F. Sand, 0.125 mm (g)	120
V.F. Sand, 0.0625 mm (g)	230
S/C <0.0625 mm (g)	Pan

Weight (g)	As Rec'd (g)
0.4781	N/A
0.5095	N/A
16.2162	N/A
43.1404	N/A
5.6423	N/A
0.7256	N/A
0.1245	N/A

Total (g) Recov'd	66.8366
Total (%) Recov'd	99.7

II, Dry Sieving of Gravel/Sand

Service Request #:

Sample Name:

Date Collected:

Date Received: Date Analyzed:

Sample #: K1413105-006

Grams Gravel/Sand & Beaker	160.7691
Grams Beakei(Tare)	93.7563
GramsGravel/Sand	67.0128

I. Sample Preparation

Grams As Received Sample	100,5869
Percent (%) Solids	71.3
Grams Oven Dried Sample	71.7185

III. Determination of Silt/Clay Fraction

21

Tem	perature:	
- 000	portation of	

Thermometer IE C65669

	4	5	6	7	8	9	10
Total Volume of Sample (mls)	1000	1000	1000	1000	1000	1000	1000
Amount of Dispersant	10	10	10	10	10	10	10
Volume of Aliquot (mls)	20	20	20	20	20	20	20
Grams Sample, Dispersant & Tare	34.4791	40.1287	35.2898	41.7746	42.2386	27.0489	31.7651
Grams of Tare	34.4579	40.1066	35.2724	41.7641	42.2356	27,0456	31.7612
Grams of Dispersant Correction	0.0022	0.0022	0.0022	0.0022	0.0022	0.0022	0.0022
Grams of Sample	0.0190	0.0199	0.0152	0.0083	0.0008	0.0011	0.0017
Total Grams Sample X 50	-0.0450	0.2350	0.3450	0.3750	-0.0150	-0.0300	0.0850

Analyst:	ER	Date:	11/26/2014	
Reviewed by:	EL	Date:	12/31/2014	

1317 South 13th Avenue

2302

9/24/2014

11/3/2014 11/26/2014

Kelso, Wa 98626

Service Request	#:	K1413105
Sample #:	K1413105-007	

Client:	Industrial Economics, Inc.	Sample Name:
Project:	Portland Harbor 2014/Alder	Date Collected:
Sample Matrix:	Sediment	Date Received:
		Date Analyzed:

Puget Sound Protocol

Method: PSEP Particle Size

I. Sieving Operation

Gravel 2.00 mm (g) V.C. Sand, 1.00 mm (g) C. Sand, 0.500 mm (g) M. Sand, 0.250 mm (g) F. Sand, 0.125 mm (g) V.F. Sand, 0.0625 mm (g)

S/C <0.0625 mm (g)

Sieve #	Weight (g)	As Rec'd (g)
10	0.9741	N/A
18	1.9125	N/A
35	18.2824	N/A
60	43.6502	N/A
120	5.8292	N/A
230	1.6394	N/A
Pan	0.1640	N/A

Total (g) Recov'd	72.4518
Total (%) Recov'd	100.0

II. Dry Sieving of Gravel/Sand

Grams Gravel/Sand & Beaker	175.4196
Grams Beaker(Tare)	102.9450
GramsGravel/Sand	72.4746

I. Sample Preparation

Grams As Received Sample	98.4705
Percent (%) Solids	73.3
Grams Oven Dried Sample	72,1789

Temperature: 21	Thermometer I	er IEC65669					
	4	5	6	7	8	9	10
Total Volume of Sample (mls)	1000	1000	1000	1000	1000	1000	1000
Amount of Dispersant	10	10	10	10	10	10	10
Volume of Aliquot (mls)	20	20	20	20	20	20	20
Grams Sample, Dispersant & Tare	40.5342	34.2681	31.3280	28.7426	29.8319	30.1801	34,0423
Grams of Tare	40.4935	34.2356	31,3036	28.7238	29.8197	30.1734	34.0381
Grams of Dispersant Correction	0.0022	0.0022	0.0022	0.0022	0.0022	0.0022	0.0022
Grams of Sample	0.0385	0.0303	0.0222	0.0166	0.0100	0.0045	0.0020
Total Grams Sample X 50	0.4100	0.4050	0.2800	0.3300	0.2750	0.1250	0.1000

Analyst:	ER	Date:	11/26/2014
Reviewed by:	EL	Date:	12/31/2014

1317 South 13th Avenue

Kelso, Wa 98626

2563

9/24/2014

11/3/2014 11/26/2014

Service Request	#:	K1413105
Sample #:	K14	113105-008

Sample Name:

Date Collected:

Date Received:

Date Analyzed:

Client:	Industrial Economics, Inc.
Project:	Portland Harbor 2014/Alder
Sample Matrix:	Sediment

Puget Sound Protocol

Method: PSEP Particle Size

I. Sieving Operation	Sieve #	
Gravel 2.00 mm (g)	10	
V.C. Sand, 1.00 mm (g)	18	
C. Sand, 0.500 mm (g)	35	
M. Sand, 0.250 mm (g)	60	
F. Sand, 0.125 mm (g)	120	
V.F. Sand, 0.0625 mm (g)	230	
S/C <0.0625 mm (g)	Pan	

Weight (g)	As Rec'd (g)
0.1342	N/A
0.1218	N/A
0.3973	N/A
21.2996	N/A
40.4328	N/A
5.5851	N/A
0.4914	N/A

Total (g) Recov'd	68.4622
Total (%) Recov'd	100.2

II. Dry Sieving of Gravel/Sand

Grams Gravel/Sand & Beaker	180.6601
Grams Beaker(Tare)	112.3498
GramsGravel/Sand	68.3103

I. Sample Preparation

Grams As Received Sample	100.1737
Percent (%) Solids	68.7
Grams Oven Dried Sample	68.8193

III. Determination of Silt/Clay Fraction

21

Tom	noroturo
1 GUL	perature:

Thermometer IE C65669

the second s		~~~~~					
	4	5	6	7	8	9	10
Total Volume of Sample (mls)	1000	1000	1000	1000	1000	1000	1000
Amount of Dispersant	10	10	10	10	10	10	10
Volume of Aliquot (mls)	20	20	20	20	20	20	20
Grams Sample, Dispersant & Tare	32.3100	31.6754	30.5642	42.3764	30.6963	32.2150	34.5553
Grams of Tare	32.2341	31.6169	30.5264	42.3464	30,6781	32.2036	34.5541
Grams of Dispersant Correction	0.0022	0.0022	0.0022	0.0022	0.0022	0,0022	0.0022
Grams of Sample	0.0737	0.0563	0.0356	0.0278	0.0160	0.0092	-0.0010
Total Grams Sample X 50	0.8700	1.0350	0.3900	0.5900	0.3400	0.5100	-0.0500

Analyst:	ER	Date:	11/26/2014	-
Reviewed by:	EL	Date:	12/31/2014	

1317 South 13th Avenue

Kelso, Wa 98626

Service Request	#:	K1413105
Sample #:	K1413105-00	9

Puget Sound Protocol Client: Industrial Economics, Inc.

Method: PSEP Particle Size

Project:

Sample Matrix:

Industrial Economics, Inc.	Sample Name:	2695
Portland Harbor 2014/Alder	Date Collected:	9/24/2014
Sediment	Date Received:	11/3/2014
	Date Analyzed:	11/26/2014

I. Sieving Operation	Sieve #
Gravel 2.00 mm (g)	10
V.C. Sand, 1.00 mm (g)	18
C. Sand, 0.500 mm (g)	35
M. Sand, 0.250 mm (g)	60
F. Sand, 0.125 mm (g)	120
V.F. Sand, 0.0625 mm (g)	230
S/C <0.0625 mm (g)	Pan

Weight (g)	As Rec'd (g)
5,1857	N/A
3.0321	N/A
14.2091	N/A
33.3133	N/A
8.7448	N/A
1.5315	N/A
0.1152	N/A

Total (g) Recov'd	66.1317
Total (%) Recov'd	99.8

II. Dry Sieving of Gravel/Sand

Grams Gravel/Sand & Beaker	174.2355
Grams Beakei(Tare)	107.9628
GramsGravel/Sand	66.2727

I. Sample Preparation

Grams As Received Sample	92.0988
Percent (%) Solids	72.2
Grams Oven Dried Sample	66,4953

21

Temperature:

Thermometer IE C65669

	4	5	6	7	8	9	10
Total Volume of Sample (mls)	1000	1000	1000	1000	1000	1000	1000
Amount of Dispersant	10	10	10	10	10	10	10
Volume of Aliquot (mls)	20	20	20	20	20	20	20
Grams Sample, Dispersant & Tare	40.6411	27.0978	40.2977	40.1689	31.6667	33,3529	30.3432
Grams of Tare	40.6125	27.0743	40.2779	40.1593	31.6564	33.3488	30.3381
Grams of Dispersant Correction	0.0022	0.0022	0.0022	0.0022	0.0022	0.0022	0.0022
Grams of Sample	0.0264	0.0213	0.0176	0.0074	0.0081	0.0019	0.0029
Total Grams Sample X 50	0.2550	0.1850	0.5100	-0.0350	0.3100	-0.0500	0.1450

Analyst:	ER	Date:	11/26/2014
Reviewed by:	EL	Date:	12/31/2014

1317 South 13th Avenue

K1413105

3015

9/24/2014 11/3/2014

11/26/2014

Kelso, Wa 98626

Method:	PSEP	Particle Size
	Pug	et Sound Protocol

Client:	Industrial Economics, Inc.
Project:	Portland Harbor 2014/Alder
Sample Matrix:	Sediment

I. Sieving Operation	Sieve #
Gravel 2.00 mm (g)	10
V.C. Sand, 1.00 mm (g)	18
C. Sand, 0.500 mm (g)	35
M. Sand, 0.250 mm (g)	60
F. Sand, 0.125 mm (g)	120
V.F. Sand, 0.0625 mm (g)	230
S/C <0.0625 mm (g)	Pan

Weight (g)	As Rec'd (g)
0.1414	N/A
0.4129	N/A
5.3868	N/A
31.5012	N/A
22.9961	N/A
8.2756	N/A
0.8193	N/A

Total (g) Recov'd 69.5333 Total (%) Recov'd 100.0

II. Dry Sieving of Gravel/Sand

Service Request #:

Sample Name: Date Collected:

Date Received:

Date Analyzed:

Sample #: K1413105-010

Grams Gravel/Sand & Beaker	178.2709
Grams Beakei(Tare)	108.7318
GramsGravel/Sand	69.5391

I. Sample Preparation

Grams As Received Sample	100.7370
Percent (%) Solids	70.5
Grams Oven Dried Sample	71.0196

Temperature: 21	Thermometer I	C65669					
	4	5	6	7	8	9	10
Total Volume of Sample (mls)	1000	1000	1000	1000	1000	1000	1000
Amount of Dispersant	10	10	10	10	10	10	10
Volume of Aliquot (mls)	20	20	20	20	20	20	20
Grams Sample, Dispersant & Tare	34,1288	31.2485	33.6281	33.3597	40,2763	29.6698	28.8886
Grams of Tare	34.0377	31.1873	33.5836	33,3325	40.2589	29.6557	28.8812
Grams of Dispersant Correction	0.0022	0.0022	0.0022	0.0022	0.0022	0.0022	0.0022
Grams of Sample	0.0889	0.0590	0.0423	0.0250	0.0152	0.0119	0,0052
Total Grams Sample X 50	1.4950	0.8350	0.8650	0.4900	0.1650	0.3350	0.2600

Analyst:	ER	Date:	11/26/2014
Reviewed by:	EL	Date:	12/31/2014

1317 South 13th Avenue

3395

9/24/2014

11/3/2014

11/26/2014

Kelso, Wa 98626

Service Request	t #:	K1413105
Sample #:		05-013

Client:	Industrial Economics, Inc.	Sample Name:
Project:	Portland Harbor 2014/Alder	Date Collected:
Sample Matrix:	Sediment	Date Received:
		Date Analyzed:

Puget Sound Protocol

I. Sieving Operation	Sieve #
Gravel 2.00 mm (g)	10
V.C. Sand, 1.00 mm (g)	18
C. Sand, 0.500 mm (g)	35
M. Sand, 0.250 mm (g)	60
F. Sand, 0.125 mm (g)	120
V.F. Sand, 0.0625 mm (g)	230
S/C <0.0625 mm (g)	Pan

Method: PSEP Particle Size

Weight (g)	As Rec'd (g)
0.0965	N/A
0.1103	N/A
0.2036	N/A
4.7362	N/A
10.5238	N/A
12.8143	N/A
2.2303	N/A

Total (g) Recov'd	30.7150	
Total (%) Recov'd	100.6	*****

II. Dry Sieving of Gravel/Sand

Grams Gravel/Sand & Beaker	136.7209
Grams Beaker(Tare)	106.1987
GramsGravel/Sand	30.5222

I. Sample Preparation

Grams As Received Sample	62.4992
Percent (%) Solids	59,6
Grams Oven Dried Sample	37.2495

21

III. Determination of Silt/Clay Fraction

Temperature:

Thermometer IE C65669

	4	5	6	7	8	9	10
Total Volume of Sample (mls)	1000	1000	1000	1000	1000	1000	1000
Amount of Dispersant	10	10	10	10	10	10	10
Volume of Aliquot (mls)	20	20	20	20	20	20	20
Grams Sample, Dispersant & Tare	30.1967	29.3371	31.2069	28.1209	40.1996	40.7453	31.4196
Grams of Tare	30.0289	29.2542	31.1486	28.0796	40.1707	40.7284	31,4114
Grams of Dispersant Correction	0.0022	0.0022	0.0022	0.0022	0.0022	0.0022	0.0022
Grams of Sample	0.1656	0.0807	0.0561	0.0391	0.0267	0,0147	0.0060
Total Grams Sample X 50	4.2450	1.2300	0.8500	0.6200	0.6000	0.4350	0.3000

Analyst:	ER	
Reviewed by:	EL	

Date: 11/26/2014

1317 South 13th Avenue

4094 9/24/2014 11/3/2014 11/26/2014

Kelso, Wa 98626

Service Req	uest	#:	K1413105
Sample	#:		05-017

Client:	Industrial Economics, Inc.	Sample Name:
Project:	Portland Harbor 2014/Alder	Date Collected:
Sample Matrix:	Sediment	Date Received:
		Date Analyzed:

I. Sieving Operation	Sieve #
Gravel 2.00 mm (g)	10
V.C. Sand, 1,00 mm (g)	18
C. Sand, 0.500 mm (g)	35
M. Sand, 0.250 mm (g)	60
F. Sand, 0.125 mm (g)	120
V.F. Sand, 0.0625 mm (g)	230
S/C <0.0625 mm (g)	Pan

Method: PSEP Particle Size

Puget Sound Protocol

Weight (g)	As Rec'd (g)
0.3648	N/A
0.1776	N/A
0.1804	N/A
0.4221	N/A
3.5305	N/A
12.2111	N/A
3.3115	N/A

Total (g) Recov'd	20.1980
Total (%) Recov'd	100.1

II. Dry Sieving of Gravel/Sand

Grams Gravel/Sand & Beaker	116.7341
Grams Beakel(Tare)	96.5495
GramsGravel/Sand	20.1846

I. Sample Preparation

Grams As Received Sample	54.3989
Percent (%) Solids	51.4
Grams Oven Dried Sample	27.9610

III. Determination of Silt/Clay Fraction

21

Temperature:

Thermometer IE C65669

	4	5	6	7	8	9	10
Total Volume of Sample (mls)	1000	1000	1000	1000	1000	1000	1000
Amount of Dispersant	10	10	10	10	10	10	10
Volume of Aliquot (mls)	20	20	20	20	20	20	20
Grams Sample, Dispersant & Tare	31.0681	41,0843	39.8308	42.4112	42.2341	30.2136	31.9764
Grams of Tare	30.8740	40.9981	39,7851	42.3824	42.2145	30.2031	31.9718
Grams of Dispersant Correction	0.0022	0.0022	0.0022	0.0022	0.0022	0.0022	0.0022
Grams of Sample	0.1919	0.0840	0.0435	0.0266	0,0174	0.0083	0.0024
Total Grams Sample X 50	5.3950	2.0250	0.8450	0.4600	0.4550	0.2950	0.1200

Analyst:	ER	Date:	11/26/2014
Reviewed by:	EL	Date:	12/31/2014

1317 South 13th Avenue

4611 9/24/2014

11/3/2014

11/26/2014

Kelso, Wa 98626

Service Request	#:	K1413105
Sample #:	K14	13105-018

Sample Name:

Date Collected:

Date Received:

Date Analyzed:

Client:	Industrial Economics, Inc.
Project:	Portland Harbor 2014/Alder
Sample Matrix:	Sediment

Puget Sound Protocol

Method: PSEP Particle Size

I. Sieving Operation	Sieve #	
Gravel 2.00 mm (g)	10	
V.C. Sand, 1.00 mm (g)	18	
C. Sand, 0.500 mm (g)	35	
M. Sand, 0.250 mm (g)	60	
F. Sand, 0.125 mm (g)	120	
V.F. Sand, 0.0625 mm (g)	230	
S/C <0.0625 mm (g)	Pan	

Weight (g)	As Rec'd (g)
1.6538	N/A
0.5657	N/A
17.1045	N/A
40.4760	N/A
6.0886	N/A
1.6380	N/A
0.2335	N/A

Total (g) Recov'd	67.7601	
Total (%) Recov'd	100.2	

II. Dry Sieving of Gravel/Sand

Grams Gravel/Sand & Beaker	178.3241
Grams Beaker(Tare)	110.7321
GramsGravel/Sand	67.5920

I. Sample Preparation

Grams As Received Sample	94.9365
Percent (%) Solids	70.9
Grams Oven Dried Sample	67.3100

III. Determination of Silt/Clay Fraction

21

Temperature:

Thermometer IE C65669

	4	5	6	7	8	9	10
Total Volume of Sample (mls)	1000	1000	1000	1000	1000	1000	1000
Amount of Dispersant	10	10	10	10	10	10	10
Volume of Aliquot (mls)	20	20	20	20	20	20	20
Grams Sample, Dispersant & Tare	34.6782	42.4851	40.3906	30.8354	29.8002	31.5953	40.9538
Grams of Tare	34.6587	42.4687	40.3829	30,8295	29.7944	31.5913	40.9489
Grams of Dispersant Correction	0.0022	0.0022	0.0022	0.0022	0.0022	0.0022	0.0022
Grams of Sample	0.0173	0.0142	0.0055	0.0037	0.0036	0.0018	0.0027
Total Grams Sample X 50	0.1550	0.4350	0.0900	0.0050	0.0900	-0.0450	0.1350

Analyst:	ER	Date:	11/26/2014	
Reviewed by:	EL	Date:	12/31/2014	

1317 South 13th Avenue

Kelso, Wa 98626

Service Request	#:	K1413105
Sample #:	K1413105-01	9

Method: PSEP Particle Size Puget Sound Protocol

Client:	Industrial Economics, Inc.	
Project:	Portland Harbor 2014/Alder	
Sample Matrix:	Sediment	

Sample Name:	5054
Date Collected:	9/24/2014
Date Received:	11/3/2014
Date Analyzed:	11/26/2014

I. Sleving Operation	Sieve #
Gravel 2.00 mm (g)	10
V.C. Sand, 1.00 mm (g)	18
C. Sand, 0.500 mm (g)	35
M. Sand, 0.250 mm (g)	60
F. Sand, 0.125 mm (g)	120
V.F. Sand, 0.0625 mm (g)	230
S/C <0.0625 mm (g)	Pan

Weight (g)	As Rec'd (g)
0.3937	N/A
0.0745	N/A
0.2766	N/A
8.9689	N/A
13.5875	N/A
8.6871	N/A
1.2097	N/A

Total (g) Recov'd	33.1980
Total (%) Recov′d	99.3

II. Dry Sieving of Gravel/Sand

Grams Gravel/Sand & Beaker	151,3583
Grams Beakei(Tare)	117.9275
GramsGravel/Sand	33.4308

I. Sample Preparation

Grams As Received Sample	58,4876
Percent (%) Solids	67.1
Grams Oven Dried Sample	39.2452

Temperature: 21	Thermometer IE C65669						
	4	5	6	7	8	9	10
Total Volume of Sample (mls)	1000	1000	1000	1000	1000	1000	1000
Amount of Dispersant	10	10	10	10	10	10	10
Volume of Aliquot (mls)	20	20	20	20	20	20	20
Grams Sample, Dispersant & Tare	40,5636	42.1936	35,5807	40.6013	31,5293	29.2477	40.7589
Grams of Tare	40.4825	42.1567	35,5540	40,5799	31.5150	29.2433	40.7535
Grams of Dispersant Correction	0.0022	0.0022	0.0022	0.0022	0.0022	0.0022	0.0022
Grams of Sample	0,0789	0.0347	0.0245	0.0192	0.0121	0.0022	0,0032
Total Grams Sample X 50	2.2100	0.5100	0.2650	0.3550	0.4950	-0.0500	0.1600

Analyst:	ER	Date:	11/26/2014	
Reviewed by:	EL	Date:	12/31/2014	

1317 South 13th Avenue

K1413105

11/26/2014

Kelso, Wa 98626

Method: PSEP Particle Size	Service Request #: k
Puget Sound Protocol	Sample #: K1413105-022

Industrial Economics, Inc.	Sample Name:	5635
Portland Harbor 2014/Alder	Date Collected:	9/24/2014
Sediment	Date Received:	11/3/2014

I. Sieving Operation	Sieve #
Gravel 2.00 mm (g)	10
V.C. Sand, 1,00 mm (g)	18
C. Sand, 0.500 mm (g)	35
M. Sand, 0.250 mm (g)	60
F. Sand, 0.125 mm (g)	120
V.F. Sand, 0.0625 mm (g)	230
S/C <0.0625 mm (g)	Pan

Client:

Project:

Sample Matrix:

Weight (g)		As Rec'd (g)
0.6292		N/A
1.4043		N/A
21.6254		N/A
44.1288		N/A
6.5803		N/A
1.2964	:	N/A
0.1251		N/A

Total (g) Recov'd	75.7895	
Total (%) Recov'd	100.0	

II. Dry Sieving of Gravel/Sand

Date Analyzed:

Grams Gravel/Sand & Beaker	180.5825
Grams Beaker(Tare)	104,7721
GramsGravel/Sand	75.8104

I. Sample Preparation

Grams As Received Sample	98.8746
Percent (%) Solids	76.5
Grams Oven Dried Sample	75.6391

Temperature: 21	Thermometer ID	C65669					
	4	5	6	7	8	9	10
Total Volume of Sample (mls)	1000	1000	1000	1000	1000	1000	1000
Amount of Dispersant	10	10	10	10	10	10	10
Volume of Aliquot (mls)	20	20	20	20	20	20	20
Grams Sample, Dispersant & Tare	40.0187	27,4502	30.9280	30.4701	33.7961	31.8167	33.0916
Grams of Tare	40.0031	27,4332	30.9168	30.4609	33.7887	31.8114	33.0861
Grams of Dispersant Correction	0.0022	0.0022	0.0022	0.0022	0.0022	0.0022	0.0022
Grams of Sample	0.0134	0.0148	0,0090	0.0070	0.0052	0.0031	0.0033
Total Grams Sample X 50	-0,0700	0.2900	0,1000	0.0900	0.1050	-0.0100	0.1650

Analyst:	ER	Date:	11/26/2014	
Reviewed by:	EL	Date:	12/31/2014	

1317 South 13th Avenue

Kelso, Wa 98626

Method:	PSEP	Particle Size
	Pug	et Sound Protocol

Service Reques	t #:	K1413105
Sample #:	K141	13105-023

Client:	Industrial Economics, Inc.	Sample Name:	5719
Project:	Portland Harbor 2014/Alder	Date Collected:	9/24/2014
Sample Matrix:	Sediment	Date Received:	11/3/2014
••••••	· · · · · · · · · · · · · · · · · · ·	Date Analyzed:	11/26/2014

I. Sieving Operation	Sieve #
Gravel 2.00 mm (g)	10
V.C. Sand, 1.00 mm (g)	18
C. Sand, 0.500 mm (g)	35
M. Sand, 0.250 mm (g)	60
F. Sand, 0.125 mm (g)	120
V.F. Sand, 0.0625 mm (g)	230
S/C <0.0625 mm (g)	Pan

Weight (g)	As Rec'd (g)
0.2217	N/A
0.0713	N/A
0.4400	N/A
1.5841	N/A
5.6938	N/A
11.7841	N/A
1.8303	N/A

Total (g) Recov'd	21.6253
Total (%) Recov'd	101.0

II. Dry Sieving of Gravel/Sand

Grams Gravel/Sand & Beaker	118.9708
Grams Beakei(Tare)	97.5521
GramsGravel/Sand	21.4187

I. Sample Preparation

Grams As Received Sample	59.3126
Percent (%) Solids	57.2
Grams Oven Dried Sample	33.9268

III. Determination of Silt/Clay Fraction

Temperature: 21	Thermometer II	C65669					
	4	5	6	7	8	9	10
Total Volume of Sample (mls)	1000	1000	1000	1000	1000	1000	1000
Amount of Dispersant	10	10	10	10	10	10	10
Volume of Aliquot (mls)	20	20	20	20	20	20	20
Grams Sample, Dispersant & Tar	e 42.3235	31.5738	42.3782	35.4146	30,4654	27.1614	40,4104
Grams of Tare	42.0354	31.4265	42.3140	35.3729	30.4425	27.1438	40.4039
Grams of Dispersant Correction	0.0022	0.0022	0.0022	0.0022	0.0022	0.0022	0.0022
Grams of Sample	0.2859	0.1451	0.0620	0.0395	0.0207	0.0154	0.0043
Total Grams Sample X 50	7.0400	4.1550	1.1250	0.9400	0.2650	0.5550	0.2150

Analyst:	ER
Reviewed by:	EL

Date: 11/26/2014

1317 South 13th Avenue

Kelso, Wa 98626

Service Request	#:	K1413105
Sample #:)5-026

Client:	Industrial Economics, Inc.	Sample Name:	6743
Project:	Portland Harbor 2014/Alder	Date Collected:	9/24/2014
Sample Matrix:	Sediment	Date Received:	11/3/2014
<i>.</i>		Date Analyzed:	11/26/2014

I. Sleving Operation	Sieve #
Gravel 2.00 mm (g)	10
V.C. Sand, 1.00 mm (g)	18
C. Sand, 0.500 mm (g)	35
M. Sand, 0.250 mm (g)	60
F. Sand, 0.125 mm (g)	120
V.F. Sand, 0.0625 mm (g)	230
S/C <0.0625 mm (g)	Pan

Method: PSEP Particle Size

Puget Sound Protocol

Weight (g)	As Rec'd (g)
3.8364	N/A
1.2497	N/A
10.9978	N/A
43.3117	N/A
7.5099	N/A
5.7138	N/A
0.7423	N/A

Total (g) Recov'd	73,3616
Total (%) Recov'd	100.2

II. Dry Sieving of Gravel/Sand

Grams Gravel/Sand & Beaker	197.6775
Grams Beaker(Tare)	124.4884
GramsGravel/Sand	73.1891

I. Sample Preparation

Grams As Received Sample	100.1743
Percent (%) Solids	74.2
Grams Oven Dried Sample	74.3293

III. Determination of Silt/Clay Fraction

21

Temperature	
Temperature	

Thermometer IE C65669

Automatic and a second s							
	4	5	6	7	8	9	10
Total Volume of Sample (mls)	1000	1000	1000	1000	1000	1000	1000
Amount of Dispersant	10	10	10	10	10	10	10
Volume of Aliquot (mis)	20	20	20	20	20	20	20
Grams Sample, Dispersant & Tare	40.8345	34.7426	44,1116	42.0907	28.2537	32.8407	40.9620
Grams of Tare	40.7634	34.7051	44.0827	42.0687	28.2403	32.8349	40,9561
Grams of Dispersant Correction	0.0022	0.0022	0.0022	0.0022	0.0022	0.0022	0.0022
Grams of Sample	0.0689	0.0353	0.0267	0.0198	0.0112	0.0036	0.0037
Total Grams Sample X 50	1.6800	0.4300	0.3450	0.4300	0.3800	-0.0050	0.1850

Analyst:	ER	
Reviewed by:	EL	

Date: 11/26/2014

1317 South 13th Avenue

Kelso, Wa 98626

Method: PS	EP Particle Size	Service Request	#:	<1413105
F	Puget Sound Protocol	Sample #:	K1413105-028	
Client:	Industrial Economics, Inc.	Sample Name:		7367

	oumptoritaritor	
Portland Harbor 2014/Alder	Date Collected:	9/24/2014
Sediment	Date Received:	11/3/2014
	Date Analyzed:	11/26/2014

I. Sieving Operation	Sieve #
Gravel 2.00 mm (g)	10
V.C. Sand, 1.00 mm (g)	18
C. Sand, 0.500 mm (g)	35
M. Sand, 0.250 mm (g)	60
F. Sand, 0.125 mm (g)	120
V.F. Sand, 0.0625 mm (g)	230
S/C <0.0625 mm (g)	Pan

Project:

Sample Matrix:

Weight (g)	As Rec'd (g)
1.0715	N/A
4.5839	N/A
24.5149	N/A
27.4706	N/A
2.4571	N/A
0.7974	N/A
0.1588	N/A

Total (g) Recov'd	61.0542
Total (%) Recov'd	100.1

II. Dry Sieving of Gravel/Sand

Grams Gravel/Sand & Beaker	162.8240
Grams Beaker(Tare)	101.8338
GramsGravel/Sand	60.9902

I. Sample Preparation

Grams As Received Sample	80.4416
Percent (%) Solids	73.9
Grams Oven Dried Sample	59.4463

III. Determination of Silt/Clay Fraction

21

Tem	perature:

Thermometer IE C65669

	4	5	6	7	8	9	10
Total Volume of Sample (mls)	1000	1000	1000	1000	1000	1000	1000
Amount of Dispersant	10	10	10	10	10	10	10
Volume of Aliquot (mls)	20	20	20	20	20	20	20
Grams Sample, Dispersant & Tare	31.4468	34.2472	30.5829	41.2744	31,7005	28.2150	30.3586
Grams of Tare	31.4316	34.2336	30.5721	41.2656	31.6954	28.2131	30.3536
Grams of Dispersant Correction	0.0022	0.0022	0.0022	0.0022	0.0022	0.0022	0.0022
Grams of Sample	0.0130	0.0114	0.0086	0.0066	0.0029	-0.0003	0.0028
Total Grams Sample X 50	0.0800	0.1400	0.1000	0.1850	0.1600	-0.1550	0.1400

Analyst:	ER	
Reviewed by:	EL	

Date: 11/26/2014

1317 South 13th Avenue

Kelso, Wa 98626

Service Requ	Jest	#:	K1413105
Sample	#:	K1413	105-028 DUP

Client:	Industrial Economics, Inc.	Sample Name:	7367
Project:	Portland Harbor 2014/Alder	Date Collected:	9/24/2014
Sample Matrix:	Sediment	Date Received:	11/3/2014
	· · · · ·	Date Analyzed:	11/26/2014

I. Sieving Operation	Sieve #
Gravel 2.00 mm (g)	10
V.C. Sand, 1.00 mm (g)	18
C. Sand, 0.500 mm (g)	35
M. Sand, 0.250 mm (g)	60
F. Sand, 0.125 mm (g)	120
V.F. Sand, 0.0625 mm (g)	230
S/C <0.0625 mm (g)	Pan

Method: PSEP Particle Size

Puget Sound Protocol

Weight (g)	As Rec'd (g)
0.8171	N/A
4.0992	N/A
24.5293	N/A
28.6891	N/A
2.8176	N/A
0.6515	N/A
0.1183	N/A

Total (g) Recov'd	61.7221
Total (%) Recov'd	99.5

II. Dry Sieving of Gravel/Sand

Grams Gravel/Sand & Beaker	168.8785
Grams Beakei(Tare)	106.8631
GramsGravel/Sand	62.0154

I. Sample Preparation

Grams As Received Sample	80.8923
Percent (%) Solids	73.9
Grams Oven Dried Sample	59.7794

21

III. Determination of Silt/Clay Fraction

_		
Tem	perat	1110
1010		

Thermometer IE ____C65669

	4	5	6	7	8	9	10
Total Volume of Sample (mls)	1000	1000	1000	1000	1000	1000	1000
Amount of Dispersant	10	10	10	10	10	10	10
Volume of Aliquot (mls)	20	20	20	20	20	20	20
Grams Sample, Dispersant & Tare	30.7485	40.6322	41,5864	31.9216	35.7974	40.8665	33.4863
Grams of Tare	30,7346	40.6221	41.5787	31.9174	35.7925	40.8674	33.4829
Grams of Dispersant Correction	0.0022	0.0022	0.0022	0.0022	0.0022	0.0022	0.0022
Grams of Sample	0.0117	0.0079	0.0055	0.0020	0.0027	-0,0031	0.0012
Total Grams Sample X 50	0.1900	0.1200	0.1750	-0.0350	0.2900	-0.2150	0.0600

Analyst:	ER	Date:	11/26/2014
Reviewed by:	EL	Date:	12/31/2014

1317 South 13th Avenue

Kelso, Wa 98626

Service Request	#:	K1413105
Sample #:	K14	413105-028 TRP

Client: Industrial Economics, I Project: Portland Harbor 2014/A

Puget Sound Protocol

Sediment

Method: PSEP Particle Size

Sample Matrix;

s, Inc.	Sample Name:	7367
14/Alder	Date Collected:	9/24/2014
	Date Received:	11/3/2014
	Date Analyzed:	11/26/2014

I. Sieving Operation	Sieve #
Gravel 2.00 mm (g)	10
V.C. Sand, 1.00 mm (g)	18
C. Sand, 0.500 mm (g)	35
M. Sand, 0.250 mm (g)	60
F. Sand, 0,125 mm (g)	120
V.F. Sand, 0.0625 mm (g)	230
S/C <0.0625 mm (g)	Pan

Weight (g)	As Rec'd (g)
0.6661	N/A
4.2802	N/A
24.7307	N/A
27.8971	N/A
2.8122	N/A
0.6695	N/A
0.0851	N/A

Total (g) Recov'd	61.1409
Total (%) Recov'd	100

II. Dry Sieving of Gravel/Sand

Grams Gravel/Sand & Beaker	162.1036
Grams Beakei(Tare)	100.9549
GramsGravel/Sand	61.1487

I. Sample Preparation

Grams As Received Sample	80.4283
Percent (%) Solids	73.9
Grams Oven Dried Sample	59.4365

III. Determination of Silt/Clay Fraction

Total Grams Sample X 50

in, betermination of Shirolay Hac					
Temperature: 21	Thermometer I				
	4	5	6	7	8
Total Volume of Sample (mls)	1000	1000	1000	1000	1000
Amount of Dispersant	10	10	10	10	10
Volume of Aliquot (mls)	20	20	20	20	20
Grams Sample, Dispersant & Tare	33.9698	30.5231	33.5874	27.3640	40.5724
Grams of Tare	33,9567	30.5130	33,5792	27.3578	40.5683
Grams of Dispersant Correction	0.0022	0.0022	0.0022	0.0022	0.0022
Grams of Sample	0.0109	0.0079	0.0060	0.0040	0.0019
		********			1

0.1500

0.0950

Analyst:	ER	Date:	11/26/2014	
Reviewed by:	EL	Date:	12/31/2014	

0.1000

0.1050

10

1000

10

20

30,7046

30.7022

0.0022

0.0002

0.0100

9

1000

10

20

29.4341

29.4308

0.0022

0.0011

0.0450

0.0400

1317 South 13th Avenue

Batch OC

Kelso, Wa 98626

Method: PSEP Particle Size	Method:	PSEP	Particle	Size
----------------------------	---------	------	----------	------

Puget Sound Protocol

Service Request	#:	K1413105
Sample #:	K14	13106-014

Client:	Industrial Economics, Inc.
Project:	Portland Harbor 2014
Sample Matrix:	Sediment

NA		
NA		
1/5/2015		
As Rec'd (g)		

I. Sieving Operation	Sieve #
Gravel 2.00 mm (g)	10
V.C. Sand, 1.00 mm (g)	18
C. Sand, 0.500 mm (g)	35
M. Sand, 0.250 mm (g)	60
F. Sand, 0.125 mm (g)	120
V.F. Sand, 0.0625 mm (g)	230
S/C <0.0625 mm (g)	Pan

 Weight (g)	 As Rec'd (g)
0.2871	N/A
0.0252	N/A
0.1367	N/A
10.0132	N/A
22,2367	N/A
8.7247	N/A
2.8655	N/A

Total (g) Recov'd	44.2891
Total (%) Recov'd	99.7

II. Dry Sieving of Gravel/Sand

Sample Name:

Grams Gravel/Sand & Beaker	150.0059
Grams Beake(Tare)	105.5919
GramsGravel/Sand	44.4140

I. Sample Preparation

Grams As Received Sample	93.8945
Percent (%) Solids	49.1
Grams Oven Dried Sample	46.1022

III. Determination of Silt/Clay Fraction

21

Temperature:

Thermometer IC C65669

	4	5	6	7	8	9	10
Total Volume of Sample (mls)	1000	1000	1000	1000	1000	1000	1000
Amount of Dispersant	10	10	10	10	10	10	10
Volume of Aliquot (mls)	20	20	20	20	20	20	20
Grams Sample, Dispersant & Tare	29.7911	31.9162	31.4044	31.1490	28.0432	30.7517	31.3358
Grams of Tare	29.5268	31.7915	31.3389	31,1065	28.0169	30.7354	31.3244
Grams of Dispersant Correction	0.0021	0.0021	0.0021	0.0021	0.0021	0.0021	0.0021
Grams of Sample	0.2622	0.1226	0.0634	0.0404	0.0242	0.0142	0.0093
Total Grams Sample X 50	6.9800	2.9600	1.1500	0.8100	0.5000	0.2450	0.4650

Analyst: CC	Date:	1/5/2015
Reviewed by: EL	Date:	1/12/2015

1317 South 13th Avenue

Batch QC

NA

NA

1/5/2015

Kelso, Wa 98626

Method:	PSEP	Particle Size
	Pug	et Sound Protocol

Service Request	#:	K1413105
Sample #:		13106-014DUP

Sample Name:

Date Collected:

Date Received:

Date Analyzed:

Client:	Industrial Economics, Inc.
Project:	Portland Harbor 2014
Sample Matrix:	Sediment

I. Sieving Operation	Sieve #
Gravel 2.00 mm (g)	10
V.C. Sand, 1.00 mm (g)	18
C. Sand, 0.500 mm (g)	35
M. Sand, 0.250 mm (g)	60
F. Sand, 0.125 mm (g)	120
V.F. Sand, 0.0625 mm (g)	230
S/C <0.0625 mm (g)	Pan

Weight (g)	As Rec'd (g)
0.0000	N/A
0.0081	N/A
0.1564	N/A
9.6956	N/A
19.3458	N/A
8.7159	N/A
3.6335	N/A

Total (g) Recov'd	41.5553
Total (%) Recov'd	100.1

II. Dry Sieving of Gravel/Sand

Grams Gravel/Sand & Beaker	142.9901
Grams Beake(Tare)	101.4806
GramsGravel/Sand	41.5095

I. Sample Preparation

Grams As Received Sample	100.0933
Percent (%) Solids	49,1
Grams Oven Dried Sample	49.1458

21

Temperature:	
--------------	--

Thermometer IE C65669

	4	5	6	7	8	9	10	
Total Volume of Sample (mls)	1000	1000	1000	1000	1000	1000	1000	
Amount of Dispersant	10	10	10	10	10	10	10	
Volume of Aliquot (mls)	20	20	20	20	20	20	20	
Grams Sample, Dispersant & Tare	31.6392	29,3407	30.7631	27.9133	30.3312	29.4470	29.4136	
Grams of Tare	31.3192	29.1553	30.6591	27.8416	30.2800	29,4146	29.3936	
Grams of Dispersant Correction	0.0021	0.0021	0.0021	0.0021	0.0021	0.0021	0.0021	
Grams of Sample	0.3179	0,1833	0.1019	0.0696	0.0491	0.0303	0.0179	
Total Grams Sample X 50	6,7300	4.0700	1.6150	1,0265	0.9385	0.6200	0.8950	

Analyst; CC	Date:	1/5/2015
Reviewed by: EL	Date:	1/12/2015

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626 **T:** 1-360-577-7222 **F:** 1-360-636-1068 www.alsglobal.com

Analytical Report for Service Request No: K1413106

January 19, 2015

Rachel DelVecchio Industrial Economics, Inc. 2067 Massachusetts Ave. Cambridge, MA 02140

RE: Portland Harbor 2014/Ross

Dear Rachel:

Enclosed are the results of the sample(s) submitted to our laboratory on November 3, 2014. For your reference, these analyses have been assigned our service request number **K1413106**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3364. You may also contact me via email at howard.holmes@alsglobal.com.

Respectfully submitted,

ALS Group USA Corp. dba ALS Environmental

Howard B. Holnes

Howard Holmes Project Manager

Page 1 of ⁶¹

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
LUFT	Leaking Underground Fuel Tank
M MCL	Modified Maximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
ТРН	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEC UST	http://dec.alaska.gov/applications/eh/ehllabreports/USTLabs.aspx	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L14-51
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	Not available	_
Idaho DHW	http://www.healthandwelfare.idaho.gov/Health/Labs/CertificationDrinkingWaterLabs/tabid/1833/Default.aspx	-
ISO 17025	http://www.pjlabs.com/	L14-50
Louisiana DEQ	http://www.deq.louisiana.gov/portal/DIVISIONS/PublicParticipationandPer mitSupport/LouisianaLaboratoryAccreditationProgram.aspx	03016
Maine DHS	Not available	WA01276
Michigan DEQ	http://www.michigan.gov/deq/0,1607,7-135-3307_4131_4156,00.html	9949
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Montana DPHHS	http://www.dphhs.mt.gov/publichealth/	CERT0047
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/oqa/	WA005
North Carolina DWQ	http://www.dwqlab.org/	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator yAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/envserv/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wisconsin DNR	http://dnr.wi.gov/	998386840
Wyoming (EPA Region 8)	http://www.epa.gov/region8/water/dwhome/wyomingdi.html	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Case Narrative

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

ALS ENVIRONMENTAL

Client:Industrial Economics, Inc.Project:Portland harbor 2014/ RossSample Matrix:Sediment

 Service Request No.:
 K1413106

 Date Received:
 11/03/14

Case Narrative

All analyses were performed consistent with the quality assurance program of ALS Envi ronmental. This report contains analytical results for samples designated for Tier IV validation deliverables including summary forms and all of the associated raw data for each of the analyses. When a ppropriate to the method, method blank results have been reported with each analytical test.

Sample Receipt

Twenty-four sediment samples were received for analysis at ALS E nvironmental on 11/03/14. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

General Chemistry Parameters

Carbon Organic (TOC) by Method 9060:

Samples were received past their recommended holding time. The analysis was performed as soon as possible after receipt by the laboratory. The data was flagged to indicate the holding time anomaly.

The Relative Percent Difference (RPD) criterion for the replicate analysis of Carbon Organic (TOC) in sample 9206 was not applicable because the analyte concentration was not significantly greater than the Method Reporting Limit (MRL). Analytical values derived from measurements close to the detection limit are not subject to the same accuracy and precision criteria as results derived from measurements higher on the calibration range for the method.

Particle Size by PSEP:

Samples 6410, 5386, and 7434 were re-analyzed due to a percent of total weight recovered failure. Sample 6410 failed again for the rea nalysis. A duplicate was also a nalyzed and produced results within acceptance limits but similar to the sample (RPD<20%). Insufficient sample was available for a third analysis of sample 6410. The second analysis was reported.

No other anomalies associated with the analysis of these samples were observed.

Howard B. Holman

Approved by_

Chain of Custody

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Rachel DelVecchio Industrial Economics, Inc Portland Harbor 2014

K1413106

Tests Requested PSEP Particle Size 9060 TOC Total Solids Archive

Ross	8 oz Jai	[.] 4 oz Jar	PS	тос	TS	Archive	Date
3594	4oz	2oz	Y	Y	Y	Ν	9/25
1034	4	2	Y	Y	Y	Ν	9/25
1546	4	2	Y	Y	Y	Ν	9/25
2314	2	1	N	Y	Y	Ν	9/25
3062	Rocks	Rocks	Ν	Ν	Ν	Ν	9/25
5110	Rocks	Rocks	Ν	Ν	Ν	Ν	9/25
3338	2	2	Ν	Y	Y	Ν	9/25
3830	0	Rocks	N	Ν	Ν	Ν	9/25
9206	2	1	Ν	Y	Y	Ν	9/25
2038	0	1	Ν	Y	Y	Ν	9/25
8714	1	1	N	Y	Y	Ν	9/25
7926	Rocks	Rocks	Ν	Ν	Ν	Ν	9/25
7286	Rocks	Rocks	N	Ν	Ν	Ν	9/25
6410	4	2	Y	Y	Y	Ν	9/25
5494	2	1	Ν	Y	Y	Ν	9/25
5642	4	2	Y	Y	Y	Ν	9/25
5130	4	2	Y	Y	Y	Ν	9/25
7158	Rocks	Rocks	Ν	Ν	N	Ν	9/25
8458	4	2	Y	Y	Y	Ν	9/25
5386	4	2	Y	Y	Y	Ν	9/25
7434	4	2	Y	Y	Y	Ν	9/25
6134	0	2	Ν	Y	Y	Ν	9/25
9482	0	2	Ν	Y	Y	Ν	9/25
9590	0	2	Ν	Y	Υ	Ν	9/25

Read 11/3/2014

Page 1/2

A	LS)											PC	HI	1
Client / I	Project:	t of Fig	had wit		r Rec	eipt an			on Forn Request J		1310	6		
	d: <u>11-3-14</u>	i	Opened:	11.3.1	4	By	1)	*	ded: H-	3-14	By: be	<i>d</i>	
	oles were rec		Mail	Fed Ex	T	T PS	DHL	PDX	Cour	and the second se	nd Delivered			
	oles were rec			Cooler)	Ba		nvelope	Ľ	Other		<i>i D D D D D D D D D D</i>	Ņ	VA	
	e custody sea		6	NA	Y	N)	-		any and v	where?				
	esent, were c				5 Y	N			÷	signed an	d dated?		Y C	N
Raw	Corrected.	Raw	Corrected	Corr.	Th	ermomete	r Co	oler/CO			Tracking N	umber		
Cooler Ten	p Cooler Tem	<u>Temp Blank</u> 3.7	Temp Blank	Factor		10 139		Nation:					NA	File
<u>-1.0</u> 0.4	0.5	31	3.2	+01		\$40				·····				
														<u></u>
						\langle	and the second second							
	ing material	τ _{ον}	and the second designed in the second designed in the second designed and the				ts We	t Ice	Dry Ice	Sleeves				Lange and the second second
	e custody pa										C	Contraction of the local division of the loc	Y	N
	all bottles ar	•					he table	below.				NA	Υ (N
	all sample l											A STRATEGIC	Y	N
	ill sample lab	-	-		-		-	-		the table of	1 page 2. (NA	Y	N
	e appropriate											NA	Y	N
	the pH-pre								1? Inalca	te in the ta	ble below	NA	Y Y	N N
	re VOA vials s C12/Res ne		villiout neau	space: In	исте	in the tac	ne belov	<i>v</i> .			\sim	NA	Y	N
	5 C12/1008 lic					en organizzation (<u></u>	1	11
	Sample ID	on Bottle			Samp	ole ID on C	oc	n ar vel land og Star vel land og Star vel som			Identified by:			
-Au														
	b. Statute (1) of party equation deleters and the statute of th		Bottle	Count	Out of	Head-				Volume	Reagent Lo			
0	Sample I		Bottle	э Туре	Temp	space Br	oke pł	4 F	Reagent	added	Number	Initia	ls Tir	ne
KUSS	549	<u>4</u>					<u></u>							
1055	>>7										<u></u>			
<u>,</u>														

Notes, Discrepancies, & Resolutions: ABOVE SAMPLES CONTRINED IN YOZ JARS.

Page____of_

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Analytical Report

Client:Industrial Economics, Inc.Project:Portland Harbor 2014/RossSample Matrix:SedimentAnalysis Method:160.3 ModifiedPrep Method:None

Service Request: K1413106 **Date Collected:** 09/25/14 **Date Received:** 11/3/14

Units: Percent Basis: As Received

Solids, Total

Sample Name	Lab Code	Result	MRL	MDL	Dil.	Date Analyzed	Q
3594	K1413106-001	46.0	_	_	1	11/21/14 11:50	
1034	K1413106-002	60.6	-	-	1	11/21/14 11:50	
1546	K1413106-003	52.4	-	-	1	11/21/14 11:50	
2314	K1413106-004	51.9	-	-	1	11/21/14 11:50	
3338	K1413106-007	42.9	-	-	1	11/21/14 11:50	
9206	K1413106-009	47.8	-	-	1	11/21/14 11:50	
2038	K1413106-010	56.6	-	-	1	11/21/14 11:50	
8714	K1413106-011	63.2	-	-	1	11/21/14 11:50	
6410	K1413106-014	49.1	-	-	1	11/21/14 11:50	
5494	K1413106-015	60.0	-	-	1	11/21/14 11:50	
5642	K1413106-016	43.3	-	-	1	11/21/14 11:50	
5130	K1413106-017	62.0	-	-	1	11/21/14 11:50	
8458	K1413106-019	63.8	-	-	1	11/21/14 11:50	
5386	K1413106-020	61.3	-	-	1	11/21/14 11:50	
7434	K1413106-021	49.3	-	-	1	11/21/14 11:50	
6134	K1413106-022	64.6	-	-	1	11/21/14 11:50	
9482	K1413106-023	71.6	-	-	1	11/21/14 15:21	
9590	K1413106-024	67.2	-	-	1	11/21/14 15:21	

QA/QC Report

Client:	Industrial Economics, I	nc.				Service Request:	K1413	106
Project	Portland Harbor 2014/F	Ross				Date Collected:	09/25/1	4
Sample Matrix:	Sediment					Date Received:	11/03/1	4
						Date Analyzed:	11/21/1	4
]	Replicate Sa	mple Summa	ry			
		G	eneral Chem	nistry Parame	ters			
Sample Name:	3594					Units:	Percer	ıt
Lab Code:	K1413106-001					Basis:	As Re	ceived
				Sample	Duplicate Sample K1413106- 001DUP			
Analyte Name	Analysis Method	MRL	MDL	Result	Result	Average	RPD	RPD Limit
Solids, Total	160.3 Modified	-	-	46.0	45.5	45.8	1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Analytical Report

Carbon Organic (TOC)

Client:Industrial Economics, Inc.Project:Portland Harbor 2014/RossSample Matrix:SedimentAnalysis Method:9060Prep Method:Method

Service Request: K1413106 **Date Collected:** 09/25/14 **Date Received:** 11/3/14

Units: Percent Basis: Dry, per Method

Date Date MRL MDL Sample Name Lab Code Result Dil. Analyzed Extracted Q 3594 K1413106-001 2.56 0.10 0.02 1 12/19/14 10:06 12/18/14 * 1034 K1413106-002 0.27 0.10 0.02 1 * 12/19/14 10:06 12/18/14 1546 K1413106-003 0.39 0.10 0.02 1 12/19/14 10:06 12/18/14 * * 2314 0.27 0.10 0.02 1 K1413106-004 12/19/14 10:06 12/18/14 0.02 * 3338 K1413106-007 2.33 0.10 1 12/19/14 10:06 12/18/14 * 9206 K1413106-009 0.04 J 0.10 0.02 1 12/19/14 16:40 12/19/14 * 2038 0.45 0.10 0.02 1 K1413106-010 12/19/14 16:40 12/19/14 * 8714 K1413106-011 0.13 0.10 0.02 1 12/19/14 16:40 12/19/14 * 6410 K1413106-014 0.98 0.10 0.02 1 12/19/14 16:40 12/19/14 5494 0.23 0.10 0.02 * K1413106-015 1 12/19/14 16:40 12/19/14 * 3.51 1 5642 K1413106-016 0.10 0.02 12/19/14 16:40 12/19/14 5130 K1413106-017 0.41 0.10 0.02 1 12/19/14 16:40 12/19/14 * 8458 0.36 0.10 0.02 1 * K1413106-019 12/19/14 16:40 12/19/14 * 5386 K1413106-020 0.42 0.10 0.02 1 12/19/14 16:40 12/19/14 * 7434 K1413106-021 0.96 0.10 0.02 1 12/19/14 16:40 12/19/14 1 * 6134 K1413106-022 0.24 0.10 0.02 12/19/14 16:40 12/19/14 9482 * 0.15 0.10 0.02 1 K1413106-023 12/19/14 16:40 12/19/14 9590 0.28 0.10 * K1413106-024 0.02 1 12/19/14 16:40 12/19/14 Method Blank K1413106-MB1 ND U 0.10 0.02 1 12/19/14 10:06 12/18/14 Method Blank 0.02 1 K1413106-MB2 ND U 0.10 12/19/14 16:40 12/19/14

QA/QC Report

Client: Project Sample Matrix:	Industrial Economics, Portland Harbor 2014/ Sediment					Service Request Date Collected Date Received Date Analyzed	: 09/25/	14 14
		ļ	-	ample Summa nistry Param	·	Date Analyzeu	• 12/17/	17
Sample Name: Lab Code:	9206 K1413106-009						Percei	nt ber Method
Analyte Name	Analysis Method	MRL	MDL	Sample Result	Duplicate Sample K1413106- 009DUP Result	Average	RPD	RPD Limit
Carbon Organic (TOC)	9060	0.10	0.02	0.04 J	0.03 J	0.0355	25 *	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Project: Sample Matrix:	Industrial Economics, Inc. Portland Harbor 2014/Ross Sediment				Date	ce Request Collected: Received: Analyzed:	09/2 11/0	13106 25/14 03/14 9/14	
					Date	Extracted:	12/1	9/14	
		Duplicate M Carbo	Iatrix Spil n Organic		ry				
Sample Name:	9206					Units:	Perc	ent	
Lab Code:	K1413106-009					Basis:	Dry	, per Metł	nod
Analysis Method:	9060								
Prep Method:	Method								
		Matrix S K1413106-0	-	D	Duplicate Mat K1413106-0	-			
A	Sample Damik Damik	Spike	0/ D	D14	Spike	0/ D	% Rec	חחח	RPD
Analyte Name Carbon Organic (TO	Result Result C) 0.04 J 2.49	2.41	% Rec 102	Result 2.45	Amount 2.39	% Rec 101	Limits 70-122	RPD 2	Limit 20

Results flagged with an asterisk (\ast) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:	Industrial Economics, Inc.		Service Requ	est:	K1413106
Project:	Portland Harbor 2014/Ross		Date Analyze	d:	12/19/14
Sample Matrix:	Sediment		Date Extracte	ed:	12/18/14
	Ι	Lab Control Sample Summary			
		Carbon Organic (TOC)			
Analysis Method:	9060		Units:		Percent
Prep Method:	Method		Basis:		Dry, per Method
			Analysis Lot:		426764
			Spike		% Rec
Sample Name	Lab Code	Result	Amount	% Rec	Limits
Lab Control Sample	K1413106-LCS1	0.240	0.28	87	72-122

QA/QC Report

Client:	Industrial Economics, Inc.		Service Requ	est:	K1413106
Project:	Portland Harbor 2014/Ross		Date Analyze	ed:	12/19/14
Sample Matrix:	Sediment		Date Extracte	ed:	12/19/14
	L	ab Control Sample Summary			
		Carbon Organic (TOC)			
Analysis Method:	9060		Units:		Percent
Prep Method:	Method		Basis:		Dry, per Method
			Analysis Lot:	:	426765
			Spike		% Rec
Sample Name	Lab Code	Result	Amount	% Rec	Limits
Lab Control Sample	K1413106-LCS2	0.230	0.28	84	72-122

QA/QC Report

Client:Industrial Economics, Inc.Project:Portland Harbor 2014/Ross

Service Request: K1413106

Continuing Calibration Verification (CCV) Summary

Carbon Organic (TOC)

Analysis Method:	9060		Units: Percent				
	Analysis Lot	Lab Code	Date Analyzed	True Value	Measured Value	Percent Recovery	Acceptance Limits
CCV1	426764	KQ1416757-01	12/19/14 10:06	12.0	12.9	107	85-115
CCV2	426764	KQ1416757-02	12/19/14 10:06	12.0	13.0	109	85-115
CCV3	426764	KQ1416757-03	12/19/14 10:06	12.0	12.8	106	85-115
CCV4	426765	KQ1416759-01	12/19/14 16:40	12.0	12.4	103	85-115
CCV5	426765	KQ1416759-02	12/19/14 16:40	12.0	13.1	109	85-115
CCV6	426765	KQ1416759-03	12/19/14 16:40	12.0	13.0	108	85-115

QA/QC Report

Client:Industrial Economics, Inc.Project:Portland Harbor 2014/Ross

Continuing Calibration Blank (CCB) Summary

Carbon Organic (TOC)

Analysis Method: 9060

Units:Percent

	Analysis		Date				
	Lot	Lab Code	Analyzed	MRL	MDL	Result	Q
CCB1	426764	KQ1416757-04	12/19/14 10:06	0.10	0.02	ND	U
CCB2	426764	KQ1416757-05	12/19/14 10:06	0.10	0.02	ND	U
CCB3	426764	KQ1416757-06	12/19/14 10:06	0.10	0.02	ND	U
CCB4	426765	KQ1416759-04	12/19/14 16:40	0.10	0.02	ND	U
CCB5	426765	KQ1416759-05	12/19/14 16:40	0.10	0.02	ND	U
CCB6	426765	KQ1416759-06	12/19/14 16:40	0.10	0.02	ND	U

Service Request:K1413106

Client:Industrial Economics, Inc.Project:Portland Harbor 2014/RossSample Matrix:Sediment

Service Request:	K1413106
Date Collected:	9/25/2014
Date Received:	11/3/2014
Date Analyzed:	11/26/2014

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: 3594 Lab Code: K1413106-001

Sand Fraction: Dry Weight (Grams)12.3643Sand Fraction: Weight Recovered (Grams)12.3275Sand Fraction: Percent Recovery99.70

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel	<-1 Ø	0.0305	0.16
Very Coarse Sand	-1 to 0 Ø	0.0846	0.45
Coarse Sand	0 to 1 Ø	0.0633	0.33
Medium Sand	1 to 2 Ø	0.4132	2.19
Fine Sand	2 to 3 Ø	5.7660	30.51
Very Fine Sand	3 to 4 Ø	4.5545	24.10
62.5 μm	4 to 5 Ø	2.5400	13.44
31.3 μm	5 to 6 Ø	2.1300	11.27
15.6 μm	6 to 7 Ø	1.0400	5.50
7.8 μm	7 to 8 Ø	0.6550	3.47
3.9 μm	8 to 9 Ø	0.4700	2.49
1.95 μm	9 to 10 Ø	0.2350	1.24
0.98 μm	> 10 Ø	0.0150	0.08
		17.9971	95.22

Client:Industrial Economics, Inc.Project:Portland Harbor 2014/RossSample Matrix:Sediment

Service Request:	K1413106
Date Collected:	9/25/2014
Date Received:	11/3/2014
Date Analyzed:	11/26/2014

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: Lab Code:

ne: 1034 K1413106-002

Sand Fraction: Dry Weight (Grams)	33.4422
Sand Fraction: Weight Recovered (Grams)	33.3963
Sand Fraction: Percent Recovery	99.86

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel	<-1 Ø	0.0000	0.00
Very Coarse Sand	-1 to 0 Ø	0.0125	0.03
Coarse Sand	0 to 1 Ø	0.1853	0.51
Medium Sand	1 to 2 Ø	8.2959	22.75
Fine Sand	2 to 3 Ø	21.4584	58.85
Very Fine Sand	3 to 4 Ø	2.6720	7.33
62.5 μm	4 to 5 Ø	1.2500	3.43
31.3 μm	5 to 6 Ø	0.5400	1.48
15.6 μm	6 to 7 Ø	0.3850	1.06
7.8 μm	7 to 8 Ø	0.1800	0.49
3.9 μm	8 to 9 Ø	0.2150	0.59
1.95 μm	9 to 10 Ø	0.0450	0.12
0.98 μm	> 10 Ø	0.1400	0.38
		35.3791	97.03

Client:Industrial Economics, Inc.Project:Portland Harbor 2014/RossSample Matrix:Sediment

Service Request:	K1413106
Date Collected:	9/25/2014
Date Received:	11/3/2014
Date Analyzed:	11/26/2014

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: 1546 Lab Code: K141

K1413106-003 Sand Fraction: Sand Fraction:

Sand Fraction: Dry Weight (Grams)	13.1178
Sand Fraction: Weight Recovered (Grams)	13.2182
Sand Fraction: Percent Recovery	100.77

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel	<-1 Ø	0.0000	0.00
Very Coarse Sand	-1 to 0 Ø	0.0159	0.10
Coarse Sand	0 to 1 Ø	0.0104	0.06
Medium Sand	1 to 2 Ø	0.2103	1.27
Fine Sand	2 to 3 Ø	3.4063	20.50
Very Fine Sand	3 to 4 Ø	8.2712	49.78
62.5 μm	4 to 5 Ø	2.5050	15.08
31.3 μm	5 to 6 Ø	0.7950	4.78
15.6 μm	6 to 7 Ø	0.1950	1.17
7.8 μm	7 to 8 Ø	0.1750	1.05
3.9 μm	8 to 9 Ø	0.1300	0.78
1.95 μm	9 to 10 Ø	0.0450	0.27
0.98 µm	> 10 Ø	0.0900	0.54
		15.8491	95.39

Client:Industrial Economics, Inc.Project:Portland Harbor 2014Sample Matrix:Sediment

Service Request:	K1413106
Date Collected:	9/25/2014
Date Received:	11/3/2014
Date Analyzed:	1/5/2015

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: 6410 Lab Code: K1413106-014

Sand Fraction: Dry Weight (Grams)	44.4140
Sand Fraction: Weight Recovered (Grams)	44.2891
Sand Fraction: Percent Recovery	99.72

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel	<-1 Ø	0.2871	0.62
Very Coarse Sand	-1 to 0 Ø	0.0252	0.05
Coarse Sand	0 to 1 Ø	0.1367	0.30
Medium Sand	1 to 2 Ø	10.0132	21.72
Fine Sand	2 to 3 Ø	22.2367	48.23
Very Fine Sand	3 to 4 Ø	8.7247	18.92
62.5 μm	4 to 5 Ø	6.9800	15.14
31.3 μm	5 to 6 Ø	2.9600	6.42
15.6 μm	6 to 7 Ø	1.1500	2.49
7.8 μm	7 to 8 Ø	0.8100	1.76
3.9 μm	8 to 9 Ø	0.5000	1.08
1.95 μm	9 to 10 Ø	0.2450	0.53
0.98 μm	> 10 Ø	0.4650	1.01
· ·		54.5336	118.29

Client:Industrial Economics, Inc.Project:Portland Harbor 2014/RossSample Matrix:Sediment

Service Request:	K1413106
Date Collected:	9/25/2014
Date Received:	11/3/2014
Date Analyzed:	11/26/2014

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: Lab Code:

e: 5642 K1413106-016

Sand Fraction: Dry Weight (Grams)	9.7440
Sand Fraction: Weight Recovered (Grams)	9.7257
Sand Fraction: Percent Recovery	99.81

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel	<-1 Ø	0.0000	0.00
Very Coarse Sand	-1 to 0 Ø	0.0167	0.10
Coarse Sand	0 to 1 Ø	0.0223	0.14
Medium Sand	1 to 2 Ø	0.6919	4.20
Fine Sand	2 to 3 Ø	5.4984	33.41
Very Fine Sand	3 to 4 Ø	2.5974	15.78
62.5 μm	4 to 5 Ø	2.2550	13.70
31.3 μm	5 to 6 Ø	2.6800	16.28
15.6 µm	6 to 7 Ø	1.3800	8.39
7.8 μm	7 to 8 Ø	0.7600	4.62
3.9 μm	8 to 9 Ø	0.4350	2.64
1.95 μm	9 to 10 Ø	0.0650	0.39
0.98 μm	> 10 Ø	0.1350	0.82
		16.5367	100.48

Client:Industrial Economics, Inc.Project:Portland Harbor 2014/RossSample Matrix:Sediment

Service Request:	K1413106
Date Collected:	9/25/2014
Date Received:	11/3/2014
Date Analyzed:	11/26/2014

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: 5130 Lab Code: K1413106-017

Sand Fraction: Dry Weight (Grams)	39.8964
Sand Fraction: Weight Recovered (Grams)	40.0250
Sand Fraction: Percent Recovery	100.32

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel	<-1 Ø	0.0000	0.00
Very Coarse Sand	-1 to 0 Ø	0.0236	0.05
Coarse Sand	0 to 1 Ø	0.0842	0.20
Medium Sand	1 to 2 Ø	9.1836	21.38
Fine Sand	2 to 3 Ø	27.0318	62.94
Very Fine Sand	3 to 4 Ø	3.3062	7.70
62.5 μm	4 to 5 Ø	0.7100	1.65
31.3 μm	5 to 6 Ø	0.6200	1.44
15.6 µm	6 to 7 Ø	0.4200	0.98
7.8 μm	7 to 8 Ø	0.4400	1.02
3.9 µm	8 to 9 Ø	0.0900	0.21
1.95 μm	9 to 10 Ø	0.0650	0.15
0.98 μm	> 10 Ø	0.1300	0.30
		42.1044	98.03

Client:Industrial Economics, Inc.Project:Portland Harbor 2014/RossSample Matrix:Sediment

Service Request:	K1413106
Date Collected:	9/25/2014
Date Received:	11/3/2014
Date Analyzed:	11/26/2014

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: Lab Code:

me: 8458 K1413106-019

Sand Fraction: Dry Weight (Grams)	56.2612
Sand Fraction: Weight Recovered (Grams)	56.2673
Sand Fraction: Percent Recovery	100.01

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel	<-1 Ø	0.0000	0.00
Very Coarse Sand	-1 to 0 Ø	0.0781	0.12
Coarse Sand	0 to 1 Ø	1.0450	1.61
Medium Sand	1 to 2 Ø	22.7737	35.16
Fine Sand	2 to 3 Ø	26.7238	41.25
Very Fine Sand	3 to 4 Ø	4.7700	7.36
62.5 μm	4 to 5 Ø	1.5000	2.32
31.3 μm	5 to 6 Ø	0.5200	0.80
15.6 μm	6 to 7 Ø	0.4050	0.63
7.8 μm	7 to 8 Ø	0.2600	0.40
3.9 μm	8 to 9 Ø	0.1750	0.27
1.95 μm	9 to 10 Ø	0.1100	0.17
0.98 μm	> 10 Ø	0.0750	0.12
		58.4356	90.21

Client:Industrial Economics, Inc.Project:Portland Harbor 2014Sample Matrix:Sediment

Service Request:	K1413106
Date Collected:	9/25/2014
Date Received:	11/3/2014
Date Analyzed:	1/5/2015

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: Lab Code:

Name: 5386 e: K1413106-020

Sand Fraction: Dry Weight (Grams)	53.2511
Sand Fraction: Weight Recovered (Grams)	53.0839
Sand Fraction: Percent Recovery	99.69

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel	<-1 Ø	0.0065	0.01
Very Coarse Sand	-1 to 0 Ø	0.0128	0.02
Coarse Sand	0 to 1 Ø	0.0314	0.06
Medium Sand	1 to 2 Ø	5.8977	10.79
Fine Sand	2 to 3 Ø	32.5453	59.57
Very Fine Sand	3 to 4 Ø	11.9284	21.83
62.5 μm	4 to 5 Ø	3.2550	5.96
31.3 μm	5 to 6 Ø	0.9000	1.65
15.6 μm	6 to 7 Ø	0.3100	0.57
7.8 μm	7 to 8 Ø	0.2900	0.53
3.9 μm	8 to 9 Ø	0.2800	0.51
1.95 μm	9 to 10 Ø	0.1400	0.26
0.98 μm	> 10 Ø	0.3250	0.59
		55.9221	102.35

Client:Industrial Economics, Inc.Project:Portland Harbor 2014/RossSample Matrix:Sediment

Service Request:	K1413106
Date Collected:	9/25/2014
Date Received:	11/3/2014
Date Analyzed:	11/26/2014

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: 7434 Lab Code: K1413106-021

Sand Fraction: Dry Weight (Grams)21.0344Sand Fraction: Weight Recovered (Grams)21.0544Sand Fraction: Percent Recovery100.10

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel	<-1 Ø	0.0196	0.06
Very Coarse Sand	-1 to 0 Ø	0.0242	0.07
Coarse Sand	0 to 1 Ø	0.0162	0.05
Medium Sand	1 to 2 Ø	0.2115	0.63
Fine Sand	2 to 3 Ø	5.8647	17.36
Very Fine Sand	3 to 4 Ø	12.7372	37.71
62.5 μm	4 to 5 Ø	5.9150	17.51
31.3 μm	5 to 6 Ø	2.8250	8.36
15.6 μm	6 to 7 Ø	1.3050	3.86
7.8 μm	7 to 8 Ø	0.6800	2.01
3.9 μm	8 to 9 Ø	0.3600	1.07
1.95 μm	9 to 10 Ø	0.1750	0.52
0.98 μm	> 10 Ø	0.1900	0.56
		30.3234	89.77

Client: Industrial Economics, Inc. Project: Portland Harbor 2014/Ross Sample Matrix: Sediment

Service Request:	K1413106
Date Collected:	9/25/2014
Date Received:	11/3/2014
Date Analyzed:	11/26/2014

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: 5386 Lab Code: K1413106-020 DUP

Sand Fraction: Dry Weight (Grams)	25.7601
Sand Fraction: Weight Recovered (Grams)	25.9227
Sand Fraction: Percent Recovery	100.63

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel	<-1 Ø	0.0000	0.00
Very Coarse Sand	-1 to 0 Ø	0.0085	0.03
Coarse Sand	0 to 1 Ø	0.0196	0.06
Medium Sand	1 to 2 Ø	3.0617	9.43
Fine Sand	2 to 3 Ø	15.3446	47.25
Very Fine Sand	3 to 4 Ø	6.5215	20.08
62.5 μm	4 to 5 Ø	1.6400	5.05
31.3 μm	5 to 6 Ø	0.6900	2.12
15.6 μm	6 to 7 Ø	0.2300	0.71
7.8 μm	7 to 8 Ø	0.1150	0.35
3.9 µm	8 to 9 Ø	0.1050	0.32
1.95 μm	9 to 10 Ø	0.1300	0.40
0.98 μm	> 10 Ø	0.0800	0.25
		27.9459	86.06

Client: Industrial Economics, Inc. Project: Portland Harbor 2014/Ross Sample Matrix: Sediment

Service Request:	K1413106
Date Collected:	9/25/2014
Date Received:	11/3/2014
Date Analyzed:	11/26/2014

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: 5386 Lab Code: K1413106-020 TRP

Sand Fraction: Dry Weight (Grams)	25.6625
Sand Fraction: Weight Recovered (Grams)	25.8262
Sand Fraction: Percent Recovery	100.64

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel	<-1 Ø	0.0000	0.00
Very Coarse Sand	-1 to 0 Ø	0.0000	0.00
Coarse Sand	0 to 1 Ø	0.0000	0.00
Medium Sand	1 to 2 Ø	2.7039	7.73
Fine Sand	2 to 3 Ø	15.1629	43.32
Very Fine Sand	3 to 4 Ø	6.7107	19.17
62.5 μm	4 to 5 Ø	1.9600	5.60
31.3 μm	5 to 6 Ø	0.5550	1.59
15.6 μm	6 to 7 Ø	0.3700	1.06
7.8 μm	7 to 8 Ø	0.1550	0.44
3.9 μm	8 to 9 Ø	0.1500	0.43
1.95 μm	9 to 10 Ø	0.0450	0.13
0.98 μm	> 10 Ø	0.1750	0.50
- · ·		27.9875	79.97

Client:Industrial Economics, Inc.Project:Portland Harbor 2014Sample Matrix:Sediment

Service Request:	K1413106
Date Collected:	9/25/2014
Date Received:	11/3/2014
Date Analyzed:	1/5/2015

Particle Size Determination Puget Sound Estuary Program Protocol

Sample Name: 6410 Lab Code: K1413106-14 DUP

Sand Fraction: Dry Weight (Grams)	41.5095
Sand Fraction: Weight Recovered (Grams)	41.5553
Sand Fraction: Percent Recovery	100.11

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel	<-1 Ø	0.0000	0.00
Very Coarse Sand	-1 to 0 Ø	0.0081	0.02
Coarse Sand	0 to 1 Ø	0.1564	0.32
Medium Sand	1 to 2 Ø	9.6956	19.73
Fine Sand	2 to 3 Ø	19.3458	39.36
Very Fine Sand	3 to 4 Ø	8.7159	17.73
62.5 μm	4 to 5 Ø	6.7300	13.69
31.3 μm	5 to 6 Ø	4.0700	8.28
15.6 μm	6 to 7 Ø	1.6150	3.29
7.8 μm	7 to 8 Ø	1.0265	2.09
3.9 µm	8 to 9 Ø	0.9385	1.91
1.95 μm	9 to 10 Ø	0.6200	1.26
0.98 μm	> 10 Ø	0.8950	1.82
		53.8168	109.50

Raw Data

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Benchsheet

Service Request #:	K1412953, KQ1415300, K1413106	Run #:	422476
Test:	TS-Air Dried	Balance ID:	K-Balance-16
Method:	160.3 Modified		

Pan ID:	Lab Code:	Tare (g)	Wet Wt. (g)	Tare + Dry Wt. (g)	Dry Weight (g)	% Total Solids	RPD
	K1412953-001	1.33	11.32	11.85	10.5	92.9	
	K1412953-001DUP	1.34	11.00	11.56	10.2	92.9	<1
	K1412953-002	1.34	10.72	11.04	9.70	90.5	
	K1412953-003	1.33	9.82	10.33	9.00	91.6	
·	K1412953-004	1.33	10.15	10.95	9.62	94.8	
	K1413106-001	1.34	9.97	5.93	4.59	46.0	
	K1413106-001DUP	1.34	11.01	6.35	5.01	45.5	1
	K1413106-002	1.34	13.87	9.74	8.40	60.6	
	K1413106-003	1.34	10.72	6.96	5.62	52.4	T
	K1413106-004	1.32	9.60	6.30	4.98	51.9	
	K1413106-007	1.33	11.78	6.38	5.05	42.9	
	K1413106-009	1.32	12.24	7.17	5.85	47.8	
	K1413106-010	1.34	9.52	6.73	5.39	56.6	
M.,	K1413106-011	1.34	9.87	7.58	6.24	63.2	
	K1413106-014	1.34	10.45	6.47	5.13	49.1	
	K1413106-015	1.34	9.96	7.32	5.98	60.0	
	K1413106-016	1.34	9.90	5.63	4.29	43.3	
	K1413106-017	1.32	15.42	10.88	9.56	62.0	
	K1413106-019	1.34	13.41	9.90	8.56	63.8	
	K1413106-020	1.31	13.55	9.62	8.31	61.3	
	K1413106-021	1.33	10.82	6.66	5.33	49.3	
	K1413106-022	1.33	9.64	7.56	6.23	64.6	

Oven1	Oven ID K-OVEN 07	Temp In 105	Temp Out 105	Date In 11/21/2014		Date Out 1/24/2014	Time Out 08:02		Thermometer ID
Calibration	Cal E n1 K-Balar		Cal Start Value 1.00, 99.99	Cal End Value 1.00, 99.99	Start Date 11/21/2014	Start Time 09:23	End Date 11/21/2014	End Time 10:22	
Calibration	n2 K-Balar	nce-16	1.00, 99.99	1.00, 99.99	11/24/2014	08:17	11/24/2014	08:20	

W upulu

Comments: ZR

W	Z	11/21/14 11:50	1	45.5 Percent 1	11.01 g	45.50 Percent	Sediment	K1413106-001	DUP	Solids, Total	Q1415300-02
I	z	11/21/14 11:50	<u>_</u>	92.9 Percent 1	$11.00~{ m g}$	92.90 Percent	Solid Fuel	K1412953-001	DUP	Solids, Total	CQ1415300-01
W	z	11/21/14 11:50		64.6 Percent 1	9.64 g	64.60 Percent	Sediment		N/A	Solids, Total	(1413106-022
W	N	11/21/14 11:50		49.3 Percent 1	10.82 g	49.30 Percent	Sediment		N/A	Solids, Total	1413106-021
ধ্য	Z	11/21/14 11:50		61.3 Percent 1	13.55 g	61.30 Percent	Sediment		N/A	Solids, Total	<1413106-020
5₹	z	11/21/14 11:50		63.8 Percent 1	13.41 g	63.80 Percent	Sediment		N/A	Solids, Total	<1413106-019
N	z	11/21/14 11:50		62.0 Percent 1	15.42 g	62.00 Percent	Sediment		N/A	Solids, Total	(1413106-017
IV	Z	11/21/14 11:50		43.3 Percent 1	9.90 g	43.30 Percent	Sediment		N/A	Solids, Total	\$1413106-016
W	Z	11/21/14 11:50		60.0 Percent 1	9.96 g	60.00 Percent	Sediment		N/A	Solids, Total	(1413106-015
IV	z	11/21/14 11:50		49.1 Percent 1	10.45 g	49.10 Percent	Sediment		N/A	Solids, Total	<1413106-014
M	Z	11/21/14 11:50		63.2 Percent 1	9.87 g	63.20 Percent	Sediment		N/A	Solids, Total	\$1413106-011
VI	Z	11/21/14 11:50		56.6 Percent 1	9.52 g	56,60 Percent	Sediment		N/A	Solids, Total	(1413106-010
IV	Z	11/21/14 11:50		47.8 Percent 1	12.24 g	47.80 Percent	Sediment		N/A	Solids, Total	(1413106-009
N	Z	11/21/14 11:50		42.9 Percent 1	11.78 g	42.90 Percent	Sediment		N/A	Solids, Total	\$1413106-007
VI	Z	11/21/14 11:50		51.9 Percent 1	9.60 g	51.90 Percent	Sediment		N/A	Solids, Total	\$1413106-004
N	z	11/21/14 11:50		52.4 Percent 1	10.72 g	52.40 Percent	Sediment		N/A	Solids, Total	(1413106-003
IV	Z	11/21/14 11:50		60.6 Percent 1	13.87 g	60.60 Percent	Sediment		N/A	Solids, Total	\$1413106-002
IV	Z	11/21/14 11:50		46.0 Percent 1	9.97 g	46.00 Percent	Sediment		N/A	Solids, Total	<1413106-001
I	z	11/21/14 11:50		94.8 Percent 1	10.15 g	94.80 Percent	Solid Fuel		N/A	Solids, Total	(1412953-004
I	Z	11/21/14 11:50		91.6 Percent 1	9.82 g	91.60 Percent	Solid Fuel		N/A	Solids, Total	(1412953-003
I	Z	11/21/14 11:50		90.5 Percent 1	10.72 g	90.50 Percent	Solid Fuel		N/A	Solids, Total	\$1412953-002
<u>Tier</u>	ZC?	Date Analyzed 11/21/14 11:50	MDL PQL % Rec % RSD	<u>Final Result</u> <u>Dil</u> <u>M</u> 92.9 Percent 1	<u>Sample Amt.</u> 11.32 g	92.90 Percent	Matrix Solid Fuel	Parent Sample	NA OC	<u>Target Analytes</u> Solids, Total	<u>ab Code</u> (1412953-001
		ied/TS-Air Dried	Testcode: 160.	6	Analysis Lot:		IADDEN	Analyst: DMADDEN		Instrument Name: K-Balance-16	Instrument Na

,

A. L.

× .

Analytical Results Summary

rinted 11/24/14 9:29

Benchsneet

Service Request #:	K1413105, KQ1415336, K1413106, K1413085	Run #:	422563
Test:	TS	Balance ID:	K-Balance-16
Method:	160.3 Modified		

Pan ID:	Lab Code:	Tare (g)	Wet Wt. (g)	Tare + Dry Wt. (g)	Dry Weight (g)	% Total Solids	RPD
	K1413105-023	1.33	11.07	7.66	6.33	57.2	
	K1413105-023DUP	1.32	10.74	7.53	6.21	57.8	1
	K1413105-024	1.32	13.22	9.27	7.95	60.1	
	K1413105-026	1.33	10.03	8.77	7.44	74.2	
	K1413105-027	1.32	11.88	6.88	5.56	46.8	
	K1413105-028	1.33	10.67	9.22	7.89	73.9	
	K1413106-023	1.32	9.99	8.47	7.15	71.6	
	K1413106-024	1.32	11.55	9.08	7.76	67.2	
	K1413085-001	1.33	11.17	11.68	10.4	92.7	
	K1413085-001DUP	1.32	9.92	10.44	9.12	91.9	<1
	K1413085-002	1.33	10.92	11.49	10.2	93.0	
	K1413085-003	1.33	11.29	11.68	10.4	91.7	
	K1413085-004	1.33	9.55	10.06	8.73	91.4	
	K1413085-005	1.31	13.07	11.30	9.99	76.4	
	K1413085-006	1.32	10.69	10.37	9.05	84.7	
	K1413085-007	1.33	10.81	11.20	9.87	91.3	
	K1413085-008	1.33	11.39	11.54	10.2	89.6	
	K1413085-009	1.33	11.07	9.93	8.60	77.7	
	K1413085-010	1.33	10.80	11.22	9.89	91.6	
	K1413085-011	1.34	10.77	11.28	9.94	92.3	
	K1413085-012	1.32	11.58	12.08	10.8	92.9	
	K1413085-013	1.32	10.66	10.78	9.46	88.7	

Oven1	Oven ID K-OVEN 07	Temp In 105	Temp Out 105			ate Out /24/2014	Time Out 08:05		Thermometer ID
Calibration	Cal E		Cal Start Value 1.00, 99.99	Cal End Value 1.00, 99.99	Start Date 11/21/2014	Start Time 14:30	End Date 11/21/2014	End Time 15:21	
Calibration	n2 K-Balan	ice-16	1.00, 99.99	1.00, 99.99	11/24/2014	08:33	11/24/2014	08:36	

Kapellel

Comments: ZR

: :

in the second se
maj
ytical
ii Re
Results
Sun
n maj
Ĵ,

7.

.

, . 6.4

II	Z	11/21/14 15:21	[>	nt 1	91.9 Percent	9.92 g	91.90 Percent	Soil	K1413085-001	DUP	Solids, Total	21415336-02
M	z	11/21/14 15:21	1	nt	57.8 Percent	10.74 g	57,80 Percent	Sediment	K1413105-023	DUP	Solids, Total	21415336-01
M	Z	11/21/14 15:21		nt 1	67.2 Percent	11.55 g	67.20 Percent	Sediment		N/A	Solids, Total	413106-024
N	Z	11/21/14 15:21		nt l	71.6 Percent	9.99 g	71.60 Percent	Sediment		N/A	Solids, Total	413106-023
N3	z	11/21/14 15:21		nt l	73.9 Percent	10.67 g	73,90 Percent	Sediment		N/A	Solids, Total	413105-028
√ 7	Z	11/21/14 15:21		nt l	46.8 Percent	11.88 g	46.80 Percent	Sediment		N/A	Solids, Total	413105-027
IV	z	11/21/14 15:21		nt I	74.2 Percent	10.03 g	74.20 Percent	Sediment		N/A	Solids, Total	413105-026
W	z	11/21/14 15:21		nt 1	60.1 Percent	13.22 g	60.10 Percent	Sediment		N/A	Solids, Total	413105-024
N	Z	11/21/14 15:21		nt]	57.2 Percent	11.07 g	57.20 Percent	Sediment		N/A	Solids, Total	413105-023
п	z	11/21/14 15:21		nt 1	88.7 Percent	10.66 g	88,70 Percent	Soil		N/A	Solids, Total	413085-013
П	z	11/21/14 15:21		nt I	92.9 Percent	11.58 g	92.90 Percent	Soil		N/A	Solids, Total	413085-012
Π	Z	11/21/14 15:21		nt 1	92.3 Percent	10.77 g	92.30 Percent	Soil		N/A	Solids, Total	413085-011
II	z	11/21/14 15:21		nt 1	91.6 Percent	10.80 g	91.60 Percent	Soil		N/A	Solids, Total	413085-010
Π	Z	11/21/14 15:21		nt l	77.7 Percent	11.07 g	77.70 Percent	Soil		N/A	Solids, Total	413085-009
П	Z	11/21/14 15:21		nt 1	89.6 Percent	11.39 g	89.60 Percent	Soil		N/A	Solids, Total	413085-008
II	z	11/21/14 15:21		nt 1	91.3 Percent	10.81 g	91.30 Percent	Soil		N/A	Solids, Total	413085-007
Π	Z	11/21/14 15:21		nt l	84.7 Percent	10.69 g	84.70 Percent	Soil		N/A	Solids, Total	413085-006
II	Z	11/21/14 15:21		nt 1	76.4 Percent	13.07 g	76.40 Percent	Soil		N/A	Solids, Total	413085-005
II	z	11/21/14 15:21		nt l	91.4 Percent	9.55 g	91.40 Percent	Soil		N/A	Solids, Total	413085-004
Π	Z	11/21/14 15:21		nt l	91.7 Percent	11.29 g	91.70 Percent	Soil		N/A	Solids, Total	413085-003
II	Z	11/21/14 15:21		nt l	93.0 Percent	10.92 g	93,00 Percent	Soil		N/A	Solids, Total	413085-002
II		. 1		-	92.7 Percent	11.17 g	nf	Soil		N/A	Solids, Total	413085-001
Tier	0C;]	Date Analyzed	DL PQL % Rec % RSD	lit Dil MDL	Final Result	Sample Amt.	Raw Result	Matrix	Parent Sample	0C	Target Analytes	b Code
		ied/TS	Method/Testcode: 160.3 Modified/TS		: 422563	Analysis Lot:		ADDEN	Analyst: DMADDEN		nstrument Name: K-Balance-16	nstrument Na

ndicates Final Result is not yet adjusted for Solids because it has not yet been determined.

nted 11/24/14 9:33

Results Summary

Page 1 of 1

Work Request #	Original K1413105	13106
Tier:	Ī	I
Date Analyzed:	12/19/14	
Analyst:	AB	a in the constant
Analysis:	Toc Soil / 9000	Run # 426764

DATA QUALITY REPORT INORGANICS

Explain any "no" responses to questions below, and any corrective actions in the comments section below.

		2°	
1.	Is the method name and number correct and appropriate?	(yes/no/NA	
2.	Holding times met for all analyses and for all samples?	(yes/no/NA	
3.	Are calculations correct?	ves/no/NA	
4.	Is the reporting basis correct? (Dry Weight)	(yes/no/NA	
5.	All quality control criteria met?	(yes/no	
6.	Is the calibration curve correlation coefficient ≥ 0.995 ?	/yes/no/NA	
7.	MBs, CCVs, CCBs, LCSs, Dups, and Spikes, analyzed at proper frequency?	yes/no/NA	
8,	Are ICVs, CCVs, and CCBs all within acceptance limits?	ýes/no/NA	
9.	Are results for methods blanks all ND?	(yes/no/NA	
10.	Are all QC samples within acceptance criteria? (LCS % rec, MS/DMS % rec, DUP or MS/DMS RPDs, etc.)	(yes/no/NA	
11.	Are all exceptions explained?	yes/no/NA	
12.	Have all applicable service requests been reviewed?	yes/no/NA	
13.	Are all samples labeled correctly?	/yes/no/NA	
14.	Have all instructions on the service request been followed? (e.g. Special MRLs, QC on a specific sample, Form V)	(yes/no/NA	
15.	Are detection limits and units reported correctly?	yes/no/NA	
16.	Is the unused space on the benchsheet crossed out?	(yes/no/NA	
17.	Was analysis turned in by the due date? (n-2) (If not record SR#)	yes/no/NA	bate

COMMENTS:

Date: 12/23/14 DOREPORT Final Approved by:_____

Analytical Kesults Summary

N N	12/19/14 10:06:00 N 12/19/14 10:06:00 N	12) 12/		0.10 0.10	0.02 0.02	0.10 Percent U 1 0.10 Percent U 1	0.01 Percent 0.01 Percent	Sediment Sediment	Carbon Organic (TOC) CCB Carbon Organic (TOC) CCB	Q1416757-05 Q1416757-06
N	[2/19/14 10:06:00 N	12/		0.10	0.02	0.10 Percent U 1	0.01 Percent	Sediment	Carbon Organic (TOC) CCB	Q1416757-04
Ν	-	12/	105			12.8 Percent 1	12.77 Percent	Sediment	Carbon Organic (TOC) CCV	Q1416757-03
N		12/	109			13.0 Percent 1	13.04 Percent	Sediment	Carbon Organic (TOC) CCV	Q1416757-02
V	2/19/14 10:06:00 N	12/	107			12.9 Percent 1	12.85 Percent	Sediment	Carbon Organic (TOC) CCV	Q1416757-01
N	_	12/		0.10	0.02	0.10 Percent U 1	0.01 Percent	Sediment	Carbon Organic (TOC) MB	Q1416756-05
N	-	12/	87	0.10	0.02	0.240 Percent 1	0.24 Percent	Sediment	Carbon Organic (TOC) LCS	Q1416756-04
No.	(2/19/14 10:06:00 N	8 12/	100	0.10	0.02	2.56 Percent 1	2.56 Percent	K1413105-018 Sediment	Carbon Organic (TOC) DMS	Q1416756-03
<u>}</u> 9⋜				0.10	0.02	2.77 Percent 1	2.77 Percent	K1413105-018 Sediment	Carbon Organic (TOC) MS	Q1416756-02
W		<1 12/		0.10	0.02	0.18 Percent 1	0.18 Percent	K1413105-018 Sediment	Carbon Organic (TOC) DUP	Q1416756-01
N	12/19/14 10:06:00 N	12/		0.10	0.02	2.33 Percent 1	2.33 Percent	Sediment	Carbon Organic (TOC) N/A	1413106-007
W	12/19/14 10:06:00 N	12/		0.10	0.02	0.27 Percent 1	0.27 Percent	Sediment	Carbon Organic (TOC) N/A	1413106-004
N	.2/19/14 10:06:00 N	12/		0.10	0.02	0.39 Percent 1	0.39 Percent	Sediment	Carbon Organic (TOC) N/A	1413106-003
N	2/19/14 10:06:00 N	12/		0.10	0.02	0.27 Percent 1	0.27 Percent	Sediment	Carbon Organic (TOC) N/A	1413106-002
Ν		12/		0.10	0.02	2.56 Percent 1	2.56 Percent	Sediment	Carbon Organic (TOC) N/A	1413106-001
N	12/19/14 10:06:00 N	12/		0.10	0.02	0.13 Percent 1	0.13 Percent	Sediment	Carbon Organic (TOC) N/A	1413105-028
N	12/19/14 10:06:00 N	12/		0.10	0.02	14.2 Percent 1	14.23 Percent	Sediment	Carbon Organic (TOC) N/A	1413105-027
N		12/		0.10	0.02	0.19 Percent 1	0.19 Percent	Sediment	Carbon Organic (TOC) N/A	1413105-026
N		12/		0.10	0.02	3.61 Percent 1	3.61 Percent	Sediment	Carbon Organic (TOC) N/A	1413105-024
V	12/19/14 10:06:00 N	12/		0.10	0.02	1.44 Percent 1	1_44 Percent	Sediment	Carbon Organic (TOC) N/A	413105-023
Ν	12/19/14 10:06:00 N	12/		0.10	0.02	0.12 Percent 1	0.12 Percent	Sediment	Carbon Organic (TOC) N/A	1413105-022
N	2/19/14 10:06:00 N	12/		0.10	0.02	0.20 Percent 1	0.20 Percent	Sediment	Carbon Organic (TOC) N/A	1413105-021
W	2/19/14 10:06:00 N	12/		0.10	0.02	2.65 Percent	2.65 Percent	Sediment	Carbon Organic (TOC) N/A	1413105-020
W	12/19/14 10:06:00 N	12/		0.10	0.02	0.73 Percent 1	0.73 Percent	Sediment		1413105-019
? <u>Tier</u> N	Date Analyzed OC? [2/19/14 10:06:00 N	% RSD	% Rec	0.10	0.02	Final Result Dil 0.18 Percent 1	Raw Result Sample Amt.	Parent Sample Matrix Sediment	Target AnalytesOCCarbon Organic (TOC)N/A	<u>ab Code</u> 1413105-018
		50/TOC	de: 90(Festco	Method/Testcode: 9060/TOC	426764	Analysis Lot:	Analyst: DBRADBURY	me: K-TOC-04	Instrument Name: K-TOC-04

hlecks and

inted 12/23/14 11:58

indicates Final Result is not yet adjusted for Solids because it has not yet been determined.

Results Summary

Page 1 of 1

aj-analyzer multi EA 4000; multiWin 5.2; Serial number: N4-138/M % TOTAL ORGANIC CARBON

AnalysisGroup

AnalysisGroup:	% TOC
Remark:	% Total Organic Carbon
Created on: Last modification:	3/16/2013 11:53:50 AM 12/19/2014 3:06:57 PM
State:	solid

Analysis name	Result (average)	Sample quantity	Time of analysis
CCV	TC: 12.85%		12/19/2014 10:06:38 AM
ССВ	TC: 0.012%	250.000mg	12/19/2014 10:20:20 AM
LCS	TC: 0,24%	252.100mg 2 RE= \$7	12/19/2014 10:28:32 AM
MB	TC: 0.012%	250.000mg	12/19/2014 10:38:34 AM
K1413105-018	TC: 0.18%	250.700mg	12/19/2014 10:46:46 AM
K1413105-018d	TC: 0.18%	251.100mg	12/19/2014 10:56:54 AM
K1413105-018ms	TC: 2.77%	127.100mg	12/19/2014 11:07:04 AM
K1413105-018msd	TC: 2.56%	127.700mg	12/19/2014 11:24:11 AM
K1413105-019	TC: 0.73%	252.700mg	12/19/2014 11:38:12 AM
K1413105-020	TC: 2.65%	251.600mg	12/19/2014 11:48:42 AM
K1413105-021	TC: 0.20%	251.800mg	12/19/2014 12:02:15 PM
K1413105-022	TC: 0.12%	251.900mg	12/19/2014 12:12:21 PM
CCV	TC: 13.04%	25.100mg 2 KEc = 107	12/19/2014 12:22:37 PM
ССВ	TC: 0.012%	250.000mg	12/19/2014 12:37:31 PM
K1413105-023	TC: 1.44%	251.800mg	12/19/2014 12:45:47 PM
K1413105-024	TC: 3.61%	250.900mg	12/19/2014 12:57:32 PM
K1413105-026	TC: 0.19%	251.700mg	12/19/2014 1:13:36 PM
K1413105-027	TC: 14.23%	251.800mg	12/19/2014 1:23:42 PM
K1413105-028	TC: 0.13%	251.900mg	12/19/2014 1:40:22 PM
К1413106-001	TC: 2.56%	250.900mg	12/19/2014 1:50:40 PM
K1413106-002	TC: 0.27%	252.500mg	12/19/2014 2:01:56 PM
K1413106-003	TC: 0.39%	251.600mg	12/19/2014 2:12:01 PM
K1413106-004	TC: 0.27%	252,900mg	12/19/2014 2:22:04 PM
K1413106-007	TC: 2.33%	252.500mg	12/19/2014 2:32:07 PM
CCV	TC: 12.77%	25.100mg % RE== /06	12/19/2014 2:45:15 PM
ССВ	TC: 0.012%	250.000mg	12/19/2014 2:59:11 PM

Run # 426764

Service Request: K1413105, K1413106

Date Weighed: 12/18/14

Analyst: AB

Sample Position	Sample ID	Weight (mg)
1	Clean	NA
2	CCV	25.2
3	ССВ	250.0
4	LCS	252.1
5	MB	250.0
6	K1413105-018	250.7
7	K1413105-018d	251,1
8	K1413105-018ms	127.1
9	K1413105-018msd	127.7
10	K1413105-019	252.7
11	K1413105-020	251.6
12	K1413105-021	251.8
13	K1413105-022	251.9
14	CCV	25.1
15	ССВ	250.0
16	K1413105-023	257.8
17	K1413105-024	250,9
18	K1413105-026	251.7
19	K1413105-027	751.8
20	K1413105-028	751.9
21	K1413106-001	250,9
22	K1413106-002	252.5
23	K1413106-003	251.6
24	K1413106-004	252.9

Prop # + + + + 1 / 1 / Run # 42-6764

Method: EPA 9060

Analysis: Total Organic Carbon in Soil

Reviewed By:

Sample Position	Sample ID	Weight (mg)
25	K1413106-007	252.5
26	CCV	25.1
27	ССВ	250.0
28	and the second secon	2010-000 C / Designed We Clie of the Arm (100 Pre-science of the Arms (100 Pre-science of the Arms (100 Pre-
29		
30		
31		
32		
33		
34		
35		
36		
37	/	Y
38	/	
39	//	
40	/	
41		
42		
43	/	
44		
45		
46		
47		
48		

MS CaCO3 (mg)	K1413105-018ms	25.4
MSD CaCO3 (mg)	K1413105-018msd	25.4

Balance ID: K-BALANCE-38 HCL ID: TOC/2-81-C

Oven ID: K-OVEN-01 Thermometer ID: K31316

CCV: CaCO3, Alfa Aesar, ID: 13-TOC-01-1C, Lot # J05X011, TV = 12.0% LCS: Nutrients in Soil, ERA, ID: TOCS/1-17-D, Lot # D076-542, TV = 0.275%

MS: (mg CCV)(% TV CCV) / (mg sample) = (1)(35.4) / 127.1 = 2.40 % REC = 108 MSD: (mg CCV)(% TV CCV) / (mg sample) = (1)(35.4) / 127.7 = 2.39 % REC = 100

% REC = <u>107, 109, 106</u> % REC = <u>87</u>

Work Request #	Original K1413108	14133	
Tier:	I	I.	
Date Analyzed:	13/19/14		
Analyst:	AB		Run # 426765
Analysis:	TOC 5:1/9060		NUN # 120/63

DATA QUALITY REPORT INORGANICS

Explain any "no" responses to questions below, and any corrective actions in the comments section below.

1.	Is the method name and number correct and appropriate?	(yes/no/NA
2.	Holding times met for all analyses and for all samples?	(yes/no/NA
3.	Are calculations correct?	(yes/no/NA
4.	Is the reporting basis correct? (Dry Weight)	ves/no/NA
5.	All quality control criteria met?	(yes/no
6.	Is the calibration curve correlation coefficient $\geq 0.995?$	(yes/no/NA
7.	MBs, CCVs, CCBs, LCSs, Dups, and Spikes, analyzed at proper frequency?	ves/no/NA
8.	Are ICVs, CCVs, and CCBs all within acceptance limits?	ýes/no/NA
9.	Are results for methods blanks all ND?	ves/no/NA
10,	Are all QC samples within acceptance criteria? (LCS % rec, MS/DMS % rec, DUP or MS/DMS RPDs, etc.)	ves/no/NA
11.	Are all exceptions explained?	yes/no(NA)
12.	Have all applicable service requests been reviewed?	(yes/no/NA
13.	Are all samples labeled correctly?	yes/no/NA
14.	Have all instructions on the service request been followed? (e.g. Special MRLs, QC on a specific sample, Form V)	(yes/no/NA
15.	Are detection limits and units reported correctly?	tyes/no/NA
16.	Is the unused space on the benchsheet crossed out?	(yes/no/NA
17.	Was analysis turned in by the due date? (n-2) (If not record SR#)	yes/no/NA Late

COMMENTS:

Date: DA3/14 Final Approved by:_____

Analytical Kesuits Summary

ab Code Target Anal	ne: K-TOC-04 Target Analytes OC Carbon Organic (TOC) N/A	Analyst: DBRADBURY Parent Sample Matrix Sediment	ADBURY <u>Matrix</u> Sediment	Raw Result S	Analysis Lot: <u>Sample Amt.</u>	: 426765 <u>Final Result</u> <u>Dil</u> 0.04 Percent J 1	Method/Testcode: 9060/TOC MDL POL % Rec % RS 0.02 0.10 0 0 0	restcod 0.10	le: 9060 <u>% Rec</u>)/TOC <mark>% RSD</mark>	2 Date Analyzed OC? 12/19/14 16:40:00 N	
1413106-010 1413106-011			Sediment Sediment	0.45 Percent 0.13 Percent		0.45 Percent 1 0.13 Percent 1	0.02 0.02	0.10 0.10			12/19/14 16:40:00 12/19/14 16:40:00	10:00 N
1413106-014	Carbon Organic (TOC) N/A		Sediment	0.98 Percent		0.98 Percent 1	0.02	0.10			12/19/14 16:40:00	
1413106-015 1413106-016	Carbon Organic (10C) N/A Carbon Organic (TOC) N/A		Sediment	3.51 Percent		3.51 Percent 1	0.02 0.02	0.10 0.10			12/19/14 16:40:00	10:00 N
1413106-017	Carbon Organic (TOC) N/A		Sediment	0.41 Percent		0.41 Percent 1	0.02	0.10			12/19/14 16:40:00	
1413106-019	Carbon Organic (TOC) N/A		Sediment	0.36 Percent		0.36 Percent 1	0.02	0.10			12/19/14 16:40:00	
1413106-020	Carbon Organic (TOC) N/A		Sediment	0.42 Percent		0.42 Percent 1	0.02	0.10			12/19/14 16:40:00	\$0:00 N
1413106-021	Carbon Organic (TOC) N/A		Sediment	0,96 Percent		0.96 Percent 1	0.02	0.10			12/19/14 16:40:00	
1413106-022	Carbon Organic (TOC) N/A		Sediment	0.24 Percent		0.24 Percent 1	0.02	0.10			12/19/14 16:40:00	10:00 N
1413106-023	Carbon Organic (TOC) INVA		Jennien				0.00					
1413106-024 1414188-001	Carbon Organic (TOC) N/A Carbon Organic (TOC) N/A		Sediment Misc. Solid	0.28 Percent 59,43 Percent		0.28 Percent 1 59.4 Percent 1	0.02 0.02	0.10	·		12/19/14 16:40:00 12/19/14 16:40:00	
Q1416758-01	Carbon Organic (TOC) DUP	K1413106-009	Sediment	0.03 Percent		0.03 Percent J 1	0.02	0.10		2.5*	12/19/14 16:40:00	N 00:01
Q1416758-02	Carbon Organic (TOC) MS	K1413106-009	Sediment	2.49 Percent		2.49 Percent 1	0.02	0.10	102		12/19/14 16:40:00	10:00 N
Q1416758-03	Carbon Organic (TOC) DMS	K1413106-009	Sediment	2.45 Percent		2.45 Percent 1	0.02	0.10	101	2	12/19/14 16:40:00	_
Q1416758-04	Carbon Organic (TOC) LCS		Sediment	0.23 Percent		0.230 Percent 1	0.02	0.10	84		12/19/14 16:40:00	N 00:01
Q1416758-05	Carbon Organic (TOC) MB		Sediment	0.01 Percent		0.10 Percent U 1	0.02	0.10)		12/19/14 16:40:00	_
Q1416759-01	Carbon Organic (TOC) CCV		Sediment	12.36 Percent		12.4 Percent 1			103		12/19/14 16:40:00	_
Q1416759-02	Carbon Organic (TOC) CCV		Sediment	13.05 Percent		13.1 Percent 1			107		12/19/14 16:40:00	40:00 N
Q1416759-03	Carbon Organic (TOC) CCV	ar ba sa na	Sediment	12.97 Percent		13.0 Percent 1			108		12/19/14 16:40:00	10:00 N
O1416759-04			Sediment	0.01 Percent		0.10 Percent U 1	0.02	0.10			12/19/14 16:40:00	10:00 N
Q1416759-05	Carbon Organic (TOC) CCB		Sediment	0.01 Percent		0.10 Percent U 1	0.02	0.10			12/19/14 16:40:00	0:00 N
Q1416759-06	Carbon Organic (TOC) CCB		Sediment	0.01 Percent		0.10 Percent U I	0.02	0.10			12/19/14 16:40:00	10:00 N

41/26/21 8A

inted 12/23/14 12:03

indicates Final Result is not yet adjusted for Solids because it has not yet been determined.

Results Summary

Page 1 of 1

aj-analyzer multi EA 4000; multiWin 5.2; Serial number: N4-138/M % TOTAL ORGANIC CARBON

AnalysisGroup

AnalysisGroup:	% ТОС
Remark:	% Total Organic Carbon
Created on: Last modification: State:	3/16/2013 11:53:50 AM 12/19/2014 9:16:31 PM solid

Analysis name	Result (average)	Sample quantity	Time of analysis
ČCV	TC: 12.36%	25.300mg 2 RE<= 103	12/19/2014 4:40:21 PM
CCB	TC: 0.012%	250.000mg	12/19/2014 4:52:59 PM
LCS	TC: 0.23%	253.000mg 7 REC = 84	
MB	ТС: 0.012%	250.000mg	12/19/2014 5:11:06 PM
K1413106-009	TC: 0.040%	251.600mg	12/19/2014 5:19:22 PM
K1413106-009d	TC: 0.031%	252.300mg	12/19/2014 5:29:33 PM
K1413106-009ms	TC: 2.49%	127.000mg	12/19/2014 5:39:52 PM
K1413106-009msd	TC: 2.45%	127.500mg	12/19/2014 5:53:37 PM
K1413106-010	TC: 0.45%	253,100mg	12/19/2014 6:06:11 PM
K1413106-011	TC: 0.13%	251.600mg	12/19/2014 6:16:13 PM
K1413106-014	TC: 0.98%	251.600mg	12/19/2014 6:26:21 PM
K1413106-015	TC: 0.23%	251.900mg	12/19/2014 6:37:23 PM
CCV	TC: 13,05%	25.200mg % RE< - 109	12/19/2014 6:47:31 PM
ССВ	TC: 0.012%	250.000mg	12/19/2014 7:02:41 PM
K1413106-016	TC: 3.51%	250.900mg	12/19/2014 7:10:54 PM
K1413106-017	TC: 0.41%	253.300mg	12/19/2014 7:26:25 PM
K1413106-019	TC: 0.36%	250.500mg	12/19/2014 7:36:26 PM
K1413106-020	TC: 0.42%	251.000mg	12/19/2014 7:46:21 PM
K1413106-021	TC: 0,96%	252.700mg	12/19/2014 7:56:29 PM
K1413106-022	TC: 0.24%	252.600mg	12/19/2014 8:07:47 PM
K1413106-023	TC: 0.15%	251.700mg	12/19/2014 8:17:47 PM
K1413106-024	TC: 0.28%	252.300mg	12/19/2014 8:27:52 PM
K1414188-001	TC: 59.43%	25.400mg	12/19/2014 8:37:50 PM
CCV	TC: 12.97%	25.100mg % REC = 108	12/19/2014 8:54:33 PM
CCB	TC: 0.012%	250.000mg	12/19/2014 9:08:48 PM

Run # 426765

Service Request: K1413106, K1414188

Date Weighed: 12/19/14

Analyst: AB

Sample Position	Sample ID	Weight (mg)
1	Clean	NA
2	CCV	25.3
3	CCB	250.0
4	LCS	253.0
5	MB	250.0
6	K1413106-009	251.6
7	K1413106-009d	252.3
8	K1413106-009ms	127.0
9	K1413106-009msd	127.5
10	K1413106-010	253.1
11	K1413106-011	251.6
12	K1413106-014	251.6
13	K1413106-015	251.9
14	CCV	75.2
15	CCB	250.0
16	K1413106-016	250.9
17	K1413106-017	253,3
18	K1413106-019	250.5
19	K1413106-020	251.0
20	K1413106-021	252.7
21	K1413106-022	252.6
22	K1413106-023	251.7
23	K1413106-024	252.3
24	K1414188-001	75.4

Method: EPA 9060

Analysis: Total Organic Carbon in Soil

Reviewed By:

Sample Position	Sample ID	Weight (mg)
25	CCV	25.1
26	ССВ	250.0
27	ana a an initia da initia a mana andri a 100 anna - 100 anna 100 ang	
28		
29		
30		
31		
32		
33		
34		
35		/
36		/
37	/	
38	/	
39	/	
40	/	
41		
42	/	
43		
44		
45		
46		
47	/	
48		۲. ۲۰۰ ۲. ۲۰۰ ۲. ۲۰۰ ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲

MS CaCO3 (mg)	K1413106-009ms	25.5
MSD CaCO3 (mg)	K1413106-009msd	25.4

Balance ID: K-BALANCE-38 HCL ID: TOC/2-81-C

Oven ID: K-OVEN-01 Thermometer ID: K31316

 CCV: CaCO3, Alfa Aesar, ID: 13-TOC-01-1C, Lot # J05X011, TV = 12.0%
 % REC = 103, 109, 103

 LCS: Nutrients in Soil, ERA, ID: TOCS/1-17-D, Lot # D076-542, TV = 0.275%
 % REC = 84

MS: (mg CCV)(% TV CCV) / (mg sample) = (55.5)(12) / 127.0 = 2.4/1MSD: (mg CCV)(% TV CCV) / (mg sample) = (55.9)(12) / 127.5 = 2.39

% REC =
$$102$$

% REC = 101

Work Request #	Ougmal () <u>K 141306</u>)
Tier:		
Date Analyzed:	1126/14, 1/5/	¹ 147
Analyst:	ER/cc/cs	
Analysis:	G.S .	10900
		423701

DATA QUALITY REPORT INORGANICS

Explain any "no" responses to questions below, and any corrective actions in the comments section below.

1. Is the method name and number correct and appropriate? ýes/ho/NA 2. Holding times met for all analyses and for all samples? ves/no/ 3. Are calculations correct? vesmo/NA 4. Is the reporting basis correct? (Dry Weight) 5/ho/NA 5. All quality control criteria met? 'nó 6. Is the calibration curve correlation coefficient ≥ 0.995 ? 7. MBs, CCVs, CCBs, LCSs, Dups, and Spikes, analyzed at proper frequency? Are JCVs, CCVs, and CCBs all within acceptance limits? 8. yes/no. 9. Are results for methods blanks all ND? yes/nc 10. Are all QC samples within acceptance criteria? (LCS % rec, MS/DMS % rec, DUP or MS/DMS RPDs, etc.) Are all exceptions explained? 11. vesmo/NA 12. Have all applicable service requests been reviewed? yes/no/NA 13. Are all samples labeled correctly? yes/no/NA 14. Have all instructions on the service request been followed? ves/no/NA (e.g. Special MRLs, QC on a specific sample, Form V) 15. Are detection limits and units reported correctly? es/no/NA 16. Is the unused space on the benchsheet crossed out? 'no/NA 17. Was analysis turned in by the due date? (n-2) (If not record SR#) COMMENTS: wall6 Final Approved by: Date:

1317 South 13th Avenue

3594

9/25/2014

11/3/2014

11/26/2014

Kelso, Wa 98626

Method: PSEP Particle Size	Method:	PSEP	Particle	Size
----------------------------	---------	------	----------	------

Puget Sound Protocol

 Service Request
 #:
 K1413106

 Sample
 #:
 K1413106-001

Client:	Industrial Economics, Inc.
Project:	Portland Harbor 2014/Ross
Sample Matrix:	Sediment

I. Sieving Operation	Sieve #
Gravel 2.00 mm (g)	10
V.C. Sand, 1.00 mm (g)	18
C. Sand, 0.500 mm (g)	35
M. Sand, 0.250 mm (g)	60
F. Sand, 0.125 mm (g)	120
V.F. Sand, 0.0625 mm (g)	230
S/C <0.0625 mm (g)	Pan

Weight (g)	As Rec'd (g)
0.0305	N/A
0.0846	N/A
0.0633	N/A
0.4132	N/A
5.7660	N/A
4.5545	N/A
1.4154	N/A

Total (g) Recov'd	12.3275
Total (%) Recov'd	99.7

II. Dry Sieving of Gravel/Sand

Sample Name:

Date Collected:

Date Received:

Date Analyzed:

Grams Gravel/Sand & Beaker	113.2311
Grams Beaker(Tare)	100.8668
GramsGravel/Sand	12.3643

I. Sample Preparation

Grams As Received Sample	41.0883
Percent (%) Solids	46.0
Grams Oven Dried Sample	18.9006

III. Determination of Silt/Clay Fraction

21

Temperature:

Thermometer IE C65669

	4	5	6	7	8	9	10
Total Volume of Sample (mls)	1000	1000	1000	1000	1000	1000	1000
Amount of Dispersant	10	10	10	10	10	10	10
Volume of Aliquot (mls)	20	20	20	20	20	20	20
Grams Sample, Dispersant & Tare	30.7569	40.4038	34.1489	44.8813	30.7358	41,9895	41.5748
Grams of Tare	30.6130	40.3107	34.0984	44.8516	30.7192	41.9823	41.5723
Grams of Dispersant Correction	0.0022	0.0022	0.0022	0.0022	0.0022	0.0022	0.0022
Grams of Sample	0.1417	0,0909	0.0483	0.0275	0.0144	0.0050	0.0003
Total Grams Sample X 50	2.5400	2.1300	1.0400	0.6550	0.4700	0.2350	0.0150

Analyst:	ER	Date:	11/26/2014	
Reviewed by:	EL	Date:	1/12/2015	

1317 South 13th Avenue

1034

9/25/2014

11/3/2014

11/26/2014

Kelso, Wa 98626

Service Request	#:	K1413106
Sample #:	K14	13106-002

Client:	Industrial Economics, Inc.	Sample Name:
Project:	Portland Harbor 2014/Ross	Date Collected:
Sample Matrix:	Sediment	Date Received:
		Date Analyzed:

I. Sieving Operation	Sieve #
Gravel 2.00 mm (g)	10
V.C. Sand, 1.00 mm (g)	18
C. Sand, 0.500 mm (g)	35
M. Sand, 0.250 mm (g)	60
F. Sand, 0.125 mm (g)	120
V.F. Sand, 0.0625 mm (g)	230
S/C <0.0625 mm (g)	Pan

Method: PSEP Particle Size

Puget Sound Protocol

Weight (g)	As Rec'd (g)
0.0000	N/A
0.0125	N/A
0.1853	N/A
8.2959	N/A
21.4584	N/A
2.6720	N/A
0.7722	N/A

Total (g) Recov'd	33.3963	
Total (%) Recov'd	100	

II. Dry Sieving of Gravel/Sand

Grams Gravel/Sand & Beaker	138.2521
Grams Beakei(Tare)	104.8099
GramsGravel/Sand	33.4422

I. Sample Preparation

Grams As Received Sample	60.1697
Percent (%) Solids	60.6
Grams Oven Dried Sample	36.4628

III. Determination of Silt/Clay Fraction

Temperature:

Thermometer IE C65669

	4	5	6	7	8	9	10
Total Volume of Sample (mls)	1000	1000	1000	1000	1000	1000	1000
Amount of Dispersant	10	10	10	10	10	10	10
Volume of Aliquot (mls)	20	20	20	20	20	20	20
Grams Sample, Dispersant & Tare	30.9390	40,5091	33.6282	31.2317	29.7078	30,5613	34.0664
Grams of Tare	30.8817	40.4768	33.6067	31.2179	29.6976	30.5554	34.0614
Grams of Dispersant Correction	0.0022	0.0022	0.0022	0.0022	0.0022	0.0022	0.0022
Grams of Sample	0.0551	0.0301	0.0193	0.0116	0.0080	0.0037	0.0028
Total Grams Sample X 50	1.2500	0.5400	0.3850	0.1800	0.2150	0.0450	0.1400

Analyst:	ER	Date:	11/26/2014
Reviewed by:	EL	Date:	1/12/2015

1317 South 13th Avenue

1546 9/25/2014 11/3/2014 11/26/2014

Kelso, Wa 98626

Service Request	#:	K1413106
Sample #:		13106-003

Client:	Industrial Economics, Inc.	Sample Name:
Project:	Portland Harbor 2014/Ross	Date Collected:
Sample Matrix:	Sediment	Date Received:
		Date Analyzed:

I. Sieving Operation	Sieve #
Gravel 2.00 mm (g)	10
V.C. Sand, 1.00 mm (g)	18
C. Sand, 0.500 mm (g)	35
M. Sand, 0.250 mm (g)	60
F. Sand, 0.125 mm (g)	120
V.F. Sand, 0.0625 mm (g)	230
S/C <0.0625 mm (g)	Pan

Method: PSEP Particle Size

Puget Sound Protocol

Weight (g)	As Rec'd (g)
0.0000	N/A
0.0159	N/A
0.0104	N/A
0.2103	N/A
3.4063	N/A
8.2712	N/A
1.3041	N/A

Total (g) Recov′d	13.2182
Total (%) Recov'd	100.8

II. Dry Sieving of Gravel/Sand

Grams Gravel/Sand & Beaker	115.4153
Grams Beaker(Tare)	102.2975
GramsGravel/Sand	13.1178

I. Sample Preparation

Grams As Received Sample	44.1903
Percent (%) Solids	37.6
Grams Oven Dried Sample	16.6156

III. Determination of Silt/Clay Fraction

_		
Tom	perature:	
1 0111	pulaturo.	

Thermometer IC C65669

·			•				
	4	5	6	7	8	9	10
Total Volume of Sample (mls)	1000	1000	1000	1000	1000	1000	1000
Amount of Dispersant	10	10	10	10	10	10	10
Volume of Aliquot (mls)	20	20	20	20	20	20	20
Grams Sample, Dispersant & Tare	31.3305	31.9696	30.0009	33.6335	40.0032	28.6443	30.2843
Grams of Tare	31.2496	31.9388	29.9860	33,6225	39.9957	28.6394	30,2803
Grams of Dispersant Correction	0.0022	0.0022	0.0022	0.0022	0.0022	0.0022	0.0022
Grams of Sample	0.0787	0.0286	0.0127	0.0088	0.0053	0.0027	0.0018
Total Grams Sample X 50	2.5050	0.7950	0.1950	0.1750	0.1300	0.0450	0.0900

Analyst:	ER	Date:	11/26/2014	
Reviewed by:	EL	Date:	1/12/2015	

1317 South 13th Avenue

6410

9/25/2014

11/3/2014

1/5/2015

Kelso, Wa 98626

Service Request	#:	K1413106
Sample #:	K14113106-	014

Sample Name:

Date Collected:

Date Received:

Date Analyzed:

Client:	Industrial Economics, Inc.
Project:	Portland Harbor 2014
Sample Matrix:	Sediment

Puget Sound Protocol

Method: PSEP Particle Size

I. Sieving Operation	Sieve #
Gravel 2.00 mm (g)	10
V.C. Sand, 1.00 mm (g)	18
C. Sand, 0.500 mm (g)	35
M. Sand, 0.250 mm (g)	60
F. Sand, 0.125 mm (g)	120
V.F. Sand, 0.0625 mm (g)	230
S/C <0.0625 mm (g)	Pan

Weight (g)		As Rec'd (g)
0.2871		N/A
0.0252		N/A
0.1367		N/A
10.0132		N/A
22.2367		N/A
8.7247		N/A
2.8655	:	N/A

Total (g) Recov'd	44.2891	
Total (%) Recov'd	99.7	

II. Dry Sieving of Gravel/Sand

Grams Gravel/Sand & Beaker	150.0059
Grams Beake(Tare)	105.5919
GramsGravel/Sand	44.4140

I. Sample Preparation

Grams As Received Sample	93.8945
Percent (%) Solids	49 <u>.</u> 1
Grams Oven Dried Sample	46.1022

III. Determination of Silt/Clay Fraction

21

Temperature:

Thermometer IE C65669

	4	5	6	7	8	9	10
Total Volume of Sample (mls)	1000	1000	1000	1000	1000	1000	1000
Amount of Dispersant	10	10	10	10	10	10	10
Volume of Aliquot (mls)	20	20	20	20	20	20	20
Grams Sample, Dispersant & Tare	29.7911	31.9162	31.4044	31.1490	28.0432	30.7517	31.3358
Grams of Tare	29.5268	31.7915	31.3389	31.1065	28.0169	30.7354	31.3244
Grams of Dispersant Correction	0.0021	0.0021	0.0021	0.0021	0.0021	0.0021	0.0021
Grams of Sample	0.2622	0.1226	0.0634	0.0404	0.0242	0.0142	0.0093
Total Grams Sample X 50	6.9800	2.9600	1.1500	0.8100	0.5000	0.2450	0.4650

Analyst: CC/CS Reviewed by: ____EL Date: 1/5/2015

Date: 1/12/2015

K1413106wet.cc1

1317 South 13th Avenue

Kelso, Wa 98626

Service Request	#:	K1413106
Sample #:	K1413106-14	DUP

Client:	Industrial Economics, Inc.
Project:	Portland Harbor 2014
Sample Matrix:	Sediment

Puget Sound Protocol

Method: PSEP Particle Size

6410	
9/25/2014	
11/3/2014	
1/5/2015	

I. Sieving Operation	Sieve #
Gravel 2.00 mm (g)	10
V.C. Sand, 1.00 mm (g)	18
C. Sand, 0.500 mm (g)	35
M. Sand, 0.250 mm (g)	60
F. Sand, 0.125 mm (g)	120
V.F. Sand, 0.0625 mm (g)	230
S/C <0.0625 mm (g)	Pan

W	eight (g)	As Rec'd (g)
(0000.	N/A
).0081	N/A
).1564	N/A
6	9.6956	N/A
1	9.3458	N/A
8	3.7159	N/A
	3.6335	N/A

Total (g) Recov'd	41.5553
Total (%) Recov'd	100.1

II, Dry Sieving of Gravel/Sand

Grams Gravel/Sand & Beaker	142.9901
Grams Beake(Tare)	101,4806
GramsGravel/Sand	41.5095

I. Sample Preparation

Grams As Received Sample	100.0933
Percent (%) Solids	49.1
Grams Oven Dried Sample	49.1458

III. Determination of Silt/Clay Fraction

Temperature:

Thermometer IE C65669

	4	5	6	7	8	9	10
Total Volume of Sample (mls)	1000	1000	1000	1000	1000	1000	1000
Amount of Dispersant	10	10	10	10	10	10	10
Volume of Aliquot (mls)	20	20	20	20	20	20	20
Grams Sample, Dispersant & Tare	31.6392	29.3407	30.7631	27.9133	30.3312	29.4470	29.4136
Grams of Tare	31.3192	29.1553	30.6591	27.8416	30.2800	29,4146	29,3936
Grams of Dispersant Correction	0.0021	0.0021	0.0021	0.0021	0,0021	0.0021	0.0021
Grams of Sample	0.3179	0,1833	0.1019	0.0696	0.0491	0.0303	0.0179
Total Grams Sample X 50	6.7300	4.0700	1.6150	1.0265	0.9385	0.6200	0.8950

Analyst:	<u> </u>
Reviewed by:	EL

1317 South 13th Avenue

K1413106

6410

9/25/2014

11/3/2014

11/26/2014

N/A N/A N/A/ N∕A N/A N/A N/A

Kelso, Wa 98626

Method:	PSEP	Particle Size
	Pug	et Sound Protocol

Client:	Industrial Economics, Inc.
Project:	Portland Harbor 2014/Ross
Sample Matrix:	Sediment

I. Sieving Operation	Sieve #
Gravel 2.00 mm (g)	10
V.C. Sand, 1.00 mm (g)	18
C. Sand, 0.500 mm (g)	35
M. Sand, 0.250 mm (g)	60
F. Sand, 0,125 mm (g)	120
V.F. Sand, 0.0625 mm (g)	230
S/C <0.0625 mm (g)	Pan

Weight (g)	L
0.0000	
0.0000	
0.0000	
1.3930	
3.8920	
2.8938	
1.1894	
	0,0000 0.0000 1.3930 3.8920 2.8938

Service Request #:

Sample Name:

Date Collected:

Date Received:

Date Analyzed:

Sample #: K1413106-014

As Rec'd (g)	
N/A	Z.
N/A /	
N/A	
N/A	4
/ / N/A	
/ N/A	
1	

Total (g) Recov'd	9.3682
Total (%) Recov'd	100.2

II. Dry Sieving of Gravel/Sand

Grams Gravel/Sand & Beaker	114.3255
Grams Beaker(Tare)	104.9785
GramsGravel/Sand	9.3470

I. Sample Preparation

Grams As Received Sample	39.9681
Percent (%) Solids	49.1
Grams Oven Dried Sample	19.6243

III. Determination of Silt/Clay Fraction

21

	4 /	5	6	7	8	9	10
Total Volume of Sample (mls)	1000	1000	1000	1000	1000	1000	1000
Amount of Dispersant	10	10	10	10	10	10	10
Volume of Aliquot (mls)	/ 20	20	20	20	20	20	20
Grams Sample, Dispersant & Tare	41.6043	34.7397	41.9586	33.8132	39.6212	31.5515	31.7956
Grams of Tare	41.4789	34.6603	41.9176	33.7891	39.6075	31.5430	31.7902
Grams of Dispersant Correction	0.0022	0.0022	0.0022	0.0022	0.0022	0.0022	0.0022
Grams of Sample	0.1232	0.0772	0.0388	0.0219	0.0115	0.0063	0.0032
Total Grams Sample X 50	2.3000	1.9200	0.8450	0.5200	0.2600	0.1550	0.1600
//							

Analyst:	ÉR	Date:	11/26/2014
Reviewed by:	EL	Date:	1/12/2015

1317 South 13th Avenue

K1413106

Kelso, Wa 98626

Method: PSEP Particle Size	Service Request	#:	ĸ
Puget Sound Protocol	Sample #:		13106-016

Client:	Industrial Economics, Inc.	Sample Name:	5642
Project:	Portland Harbor 2014/Ross	Date Collected:	9/25/2014
Sample Matrix:	Sediment	Date Received:	11/3/2014
		Date Analyzed:	11/26/2014

I. Sieving Operation	Sieve #
Gravel 2.00 mm (g)	10
V.C. Sand, 1.00 mm (g)	18
C. Sand, 0.500 mm (g)	35
M. Sand, 0.250 mm (g)	60
F. Sand, 0.125 mm (g)	120
V.F. Sand, 0.0625 mm (g)	230
S/C <0.0625 mm (g)	Pan

Weight (g)	As Rec'd (g)
0.0000	N/A
0.0167	N/A
0.0223	N/A
0.6919	N/A
5.4984	N/A
2.5974	N/A
0.8990	N/A

Total (g) Recov'd	9.7257	
Total (%) Recov'd	100	

II. Dry Sieving of Gravel/Sand

Grams Gravel/Sand & Beaker	122.1405
Grams Beakei(Tare)	112.3965
GramsGravel/Sand	9.7440

I. Sample Preparation

Grams As Received Sample	38.0085
Percent (%) Solids	43.3
Grams Oven Dried Sample	16.4577

III. Determination of Silt/Clay Fraction

Thermometer IE C65669

	4	5	6	7	8	9	10
Total Volume of Sample (mls)	1000	1000	1000	1000	1000	1000	1000
Amount of Dispersant	10	10	10	10	10	10	10
Volume of Aliquot (mls)	20	20	20	20	20	20	20
Grams Sample, Dispersant & Tare	31.2147	29.9145	30.5042	31.4429	30.9534	39.5720	31.7214
Grams of Tare	31.0583	29.8032	30.4465	31,4128	30.9385	39.5658	31.7165
Grams of Dispersant Correction	0,0022	0.0022	0.0022	0.0022	0.0022	0.0022	0.0022
Grams of Sample	0.1542	0,1091	0.0555	0.0279	0.0127	0.0040	0.0027
Total Grams Sample X 50	2.2550	2.6800	1.3800	0.7600	0.4350	0.0650	0.1350

Analyst:ER	Date:	11/26/2014
Reviewed by: EL	Date:	1/12/2015

1317 South 13th Avenue

Kelso, Wa 98626

Method: PSEP Particle Size	Service Request #:	K1413106
Puget Sound Protocol	Sample #: K1413106-0)17

Client:	Industrial Economics, Inc.	Sample Name:	5130
Project:	Portland Harbor 2014/Ross	Date Collected:	9/25/2014
Sample Matrix:	Sediment	Date Received:	11/3/2014
		Date Analyzed:	11/26/2014

I. Sieving Operation	Sieve #
Gravel 2,00 mm (g)	10
V.C. Sand, 1.00 mm (g)	18
C. Sand, 0.500 mm (g)	35
M. Sand, 0.250 mm (g)	60
F. Sand, 0.125 mm (g)	120
V.F. Sand, 0.0625 mm (g)	230
S/C <0.0625 mm (g)	Pan

Weight (g)	As Rec'd (g)
0.0000	N/A
0.0236	N/A
0.0842	N/A
9.1836	N/A
27.0318	N/A
3,3062	N/A
0.3956	N/A

Total (g) Recov'd	40.0250
Total (%) Recov'd	100.3

II. Dry Sieving of Gravel/Sand

Grams Gravel/Sand & Beaker	151.3492
Grams Beakei(Tare)	111.4528
GramsGravel/Sand	39.8964

I. Sample Preparation

Grams As Received Sample	78,6661
Percent (%) Solids	54.6
Grams Oven Dried Sample	42.9517

III. Determination of Silt/Clay Fraction

21

Temperature:

	4	5	6	7	8	9	10
Total Volume of Sample (mls)	1000	1000	1000	1000	1000	1000	1000
Amount of Dispersant	10	10	10	10	10	10	10
Volume of Aliquot (mls)	20	20	20	20	20	20	20
Grams Sample, Dispersant & Tare	27.5582	30.7458	40.2127	33.6781	28.5306	31.5802	30.0956
Grams of Tare	27.5065	30.7083	40.1876	33.6614	28.5227	31,5741	30.0908
Grams of Dispersant Correction	0.0022	0.0022	0.0022	0.0022	0.0022	0.0022	0.0022
Grams of Sample	0.0495	0.0353	0.0229	0.0145	0.0057	0.0039	0.0026
Total Grams Sample X 50	0.7100	0.6200	0.4200	0.4400	0.0900	0.0650	0.1300

Analyst:	ER	Date:	11/26/2014	
Reviewed by:	EL	Date:	1/12/2015	

1317 South 13th Avenue

8458

9/25/2014

11/3/2014 11/26/2014

Kelso, Wa 98626

Service Request	#:	K1413106
Sample #:	K14	13106-019

Client:	Industrial Economics, Inc.	Sample Name:
Project:	Portland Harbor 2014/Ross	Date Collected:
Sample Matrix:	Sediment	Date Received:
		Date Analyzed:

I. Sieving Operation	Sieve #
Gravel 2.00 mm (g)	10
V.C. Sand, 1.00 mm (g)	18
C. Sand, 0.500 mm (g)	35
M. Sand, 0.250 mm (g)	60
F. Sand, 0.125 mm (g)	120
V.F. Sand, 0.0625 mm (g)	230
S/C <0.0625 mm (g)	Pan

Method: PSEP Particle Size

Puget Sound Protocol

Weight (g)	As Rec'd (g)
0.0000	N/A
0.0781	N/A
1.0450	N/A
22.7737	N/A
26.7238	N/A
4.7700	N/A
0.8767	N/A

Total (g) Recov'd	56.2673	
Total (%) Recov'd	100.0	

II. Dry Sieving of Gravel/Sand

Grams Gravel/Sand & Beaker	161.0987
Grams Beakei(Tare)	104.8375
GramsGravel/Sand	56.2612

I. Sample Preparation

Grams As Received Sample	101.5317
Percent (%) Solids	63.8
Grams Oven Dried Sample	64.7772

III. Determination of Silt/Clay Fraction

Temperature:

Thermometer IC C65669

	4	5	6	7	8	9	10
Total Volume of Sample (mls)	1000	1000	1000	1000	1000	1000	1000
Amount of Dispersant	10	10	10	10	10	10	10
Volume of Aliquot (mls)	20	20	20	20	20	20	20
Grams Sample, Dispersant & Tare	30.5441	31.1657	42.0445	30.2879	30.3441	42.5524	29.0100
Grams of Tare	30.4810	31,1326	42.0218	30.2733	30.3347	42.5465	29.0063
Grams of Dispersant Correction	0.0022	0.0022	0.0022	0.0022	0.0022	0.0022	0.0022
Grams of Sample	0.0609	0.0309	0.0205	0.0124	0.0072	0.0037	0.0015
Total Grams Sample X 50	1,5000	0.5200	0.4050	0.2600	0,1750	0.1100	0.0750

Analyst:	ER	Date:	11/26/2014	
Reviewed by:	EL	Date:	1/12/2015	

1317 South 13th Avenue

Kelso, Wa 98626

Method: PSEP Particle Size	Service Request	#: K1413106
Puget Sound Protocol	Sample #:	K14113106-020

Client:	Industrial Economics, Inc.	Sample Name:	5386
Project:	Portland Harbor 2014	Date Collected:	9/25/2014
Sample Matrix:	Sediment	Date Received:	11/3/2014
	, ,, _, _, , , , , , , , , ,	Date Analyzed:	1/5/2015

I. Sieving Operation	Sieve #
Gravel 2.00 mm (g)	10
V.C. Sand, 1.00 mm (g)	18
C. Sand, 0.500 mm (g)	35
M. Sand, 0.250 mm (g)	60
F. Sand, 0.125 mm (g)	120
V.F. Sand, 0.0625 mm (g)	230
S/C <0.0625 mm (g)	Pan

Weight (g)		As Rec'd (g)
0.0065		N/A
0.0128		N/A
0.0314		N/A
5.8977		N/A
32.5453		N/A
11.9284	 	N/A
2.6618		N/A

Total (g) Recov'd	53.0839
Total (%) Recov'd	100

II. Dry Sieving of Gravel/Sand

Grams Gravel/Sand & Beaker	159.0825
Grams Beake(Tare)	105.8314
GramsGravel/Sand	53.2511

I. Sample Preparation

Grams As Received Sample	89.1315
Percent (%) Solids	61.3
Grams Oven Dried Sample	54.6376

III. Determination of Silt/Clay Fraction

Temperature: 21	Thermometer II	C C65669	-				
	4	5	6	7	8	9	10
Total Volume of Sample (mls)	1000	1000	1000	1000	1000	1000	1000
Amount of Dispersant	10	10	10	10	10	10	10
Volume of Aliquot (mls)	20	20	20	20	20	20	20
Grams Sample, Dispersant & Tare	31.3972	31,3649	41.7399	34.3714	30.9915	40.8236	30.0382
Grams of Tare	31.2851	31.3179	41,7109	34,3486	30.9745	40.8122	30.0296
Grams of Dispersant Correction	0.0021	0.0021	0.0021	0.0021	0.0021	0.0021	0.0021
Grams of Sample	0.1100	0.0449	0.0269	0,0207	0.0149	0.0093	0.0065
Total Grams Sample X 50	3.2550	0.9000	0.3100	0.2900	0.2800	0.1400	0.3250

Analyst:	<u>cc</u>	 	
Reviewed by:	EL		

Date: 1/5/2015

Date: 1/12/2015

1317 South 13th Avenue

Kelso, Wa 98626

Method: PSEP Particle	Size	Service Request #:	K1413106
Puget Sound	Protocol	Sample #: K14131	06-020
Client: Indus	strial Economics, Inc.	Sample Name:	5386
Project: Portl	and Harbor 2014/Ross	Date Collected:	9/25/2014
Sample Matrix: Sedi	ment	Date Received:	11/3/2014
		Date Analyzed:	11/26/2014
I. Sieving Operation	Sieve #	Weight (g)	As Rec'd (g
Gravel 2.00 mm (g)	10	0.0000	N/A
	····		···· · · · · · · · · · · · · · · · · ·
V.C. Sand, 1.00 mm (g)	18	0.0000	N/A
V.C. Sand, 1.00 mm (g) C. Sand, 0.500 mm (g)	18 35	0.0000	N/A N/A
· · · · · · · · · · · · · · · · · · ·			
C. Sand, 0.500 mm (g)	35	0.0346	N/A
C. Sand, 0.500 mm (g) M. Sand, 0.250 mm (g)	35 60 120	0.0346 3.2983	N/A N/A

2014	
c'd (g)	I A A A A A A A A A A A A A A A A A A A
A	
A	
Ά	
A	
A	
'A /	0.
'A /	

Total (g) Recov'd	25.9992
Total (%) Recov'd	100

11.	Dry	Sieving	of	Gravel/Sand

Grams Gravel/Sand & Beaker	121.9797
Grams Beaker(Tare)	96.0813
GramsGravel/Sand	25.8984

I. Sample Preparation

Grams As Received Sample	51.1258
Percent (%) Solids	61.3
Grams Oven Dried Sample	31.3401

III. Determination of Silt/Clay Fraction

21

Temperature:

	4	5	6	7	8	9	10
Total Volume of Sample (mls)	1000	/ 1000	1000	1000	1000	1000	1000
Amount of Dispersant	10 /	10	10	10	10	10	10
Volume of Aliquot (mls)	20 /	20	20	20	20	20	20
Grams Sample, Dispersant & Tare	28.6628	40.8624	26.4524	31.2231	42.5015	29.9963	40.6674
Grams of Tare	28.6016	40.8394	26.4362	31.2117	42.4931	29.9905	40.6631
Grams of Dispersant Correction	0,0022	0.0022	0.0022	0.0022	0.0022	0.0022	0.0022
Grams of Sample	0.0590	0.0208	0.0140	0.0092	0,0062	0.0036	0.0021
Total Grams Sample X 50	1.9100	0.3400	0.2400	0.1500	0.1300	0.0750	0,1050

Analyst:	ER	Date:	11/26/2014
Reviewed by:	EL	Date:	1/12/2015

1317 South 13th Avenue

Kelso, Wa 98626

Service Request	#:	K1413106
Sample #:	K14	

Client:	Industrial Economics, Inc.		
Project:	Portland Harbor 2014/Ross	Ī	
Sample Matrix:	Sediment		

Puget Sound Protocol

Sample Name:	7434
Date Collected:	9/25/2014
Date Received:	11/3/2014
Date Analyzed:	11/26/2014

I. Sieving Operation	Sieve #
Gravel 2.00 mm (g)	10
V.C. Sand, 1.00 mm (g)	18
C. Sand, 0.500 mm (g)	35
M. Sand, 0.250 mm (g)	60
F. Sand, 0.125 mm (g)	120
V.F. Sand, 0.0625 mm (g)	230
S/C <0.0625 mm (g)	Pan

Method: PSEP Particle Size

Weight (g)	As Rec'd (g)
0.0196	N/A
0.0242	N/A
0.0162	N/A
0.2115	N/A
5.8647	N/A
12.7372	N/A
2.1810	N/A

Total (g) Recov'd	21.0544	
Total (%) Recov'd	100.1	

II. Dry Sieving of Gravel/Sand

Grams Gravel/Sand & Beaker	123.9973
Grams Beakei(Tare)	102.9629
GramsGravel/Sand	21,0344

I. Sample Preparation

Grams As Received Sample	68.5198
Percent (%) Solids	49.3
Grams Oven Dried Sample	33.7803

III. Determination of Silt/Clay Fraction

_____21

Thermometer IC ____C65669

	4	5	6	7	8	9	10
Total Volume of Sample (mls)	1000	1000	1000	1000	1000	1000	1000
Amount of Dispersant	10	10	10	10	10	10	10
Volume of Aliquot (mls)	20	20	20	20	20	20	20
Grams Sample, Dispersant & Tare	40.4842	40.6622	28.8445	29.8537	31.6905	30.4038	40.4269
Grams of Tare	40.2530	40.5493	28.7881	29.8234	31.6738	30.3943	40.4209
Grams of Dispersant Correction	0.0022	0.0022	0.0022	0.0022	0.0022	0.0022	0.0022
Grams of Sample	0.2290	0.1107	0.0542	0.0281	0.0145	0.0073	0.0038
Total Grams Sample X 50	5.9150	2.8250	1.3050	0.6800	0.3600	0.1750	0.1900

Analyst:	ER	Date:	11/26/2014	
Reviewed by:	EL	Date:	1/12/2015	

1317 South 13th Avenue

K1413106

/ 7434 9/25/2014 11/3/2014 1/5/2015

As Rec'd (g) N/A N/A N/A N/A N/A N/A N/A

Kelso, Wa 98626

Method: PSEP Par	rticle Size	Service Request #: K
Puget S	ound Protocol	Sample #: <u>K14113106-021</u>
Client:	Industrial Economics	, Inc. Sample Name:
Project:	Portland Harbor 2014	Date Collected:
Sample Matrix:	Sediment	Date Received:
		Date Analyzed:
I. Sieving Operation	n Sieve #	Weight (g) A
Gravel 2.00 mm (g)	10	0.0053
		0.0053
V.C. Sand, 1.00 mm	(g) 18	
V.C. Sand, 1.00 mm C. Sand, 0.500 mm ((g) 18 (g) 35	0.0226
Gravel 2.00 mm (g) V.C. Sand, 1.00 mm C. Sand, 0.500 mm (M. Sand, 0.250 mm F. Sand, 0.125 mm ((g) 18 (g) 35 (g) 60	0.0226
V.C. Sand, 1.00 mm C. Sand, 0.500 mm M. Sand, 0.250 mm	(g) 18 (g) 35 (g) 60 (g) 120	0.0226 0.0087 0.1899

Total (g) Recov'd	24.8701
Total (%) Recov'd	100.2

II. Dry Sieving of Gravel/Sand

	Grams Gravel/Sand & Beaker	151.6695
E.	Grams Beake(Tare)	126.8607
	GramsGravel/Sand	24.8088

I. Sample Preparation

	Ľ.
Grams As Received Sample	93.3972
Percent (%) Solids	49.3
Grams Oven Dried Sample	46.0448
· · · · · · · · · · · · · · · · · · ·	Ĭ

III. Determination of Silt/Clay Fraction

Temperature:	Thermometer II	C65669					
	4	5	6	7	8	9	10
Total Volume of Sample (mls) /	1000	1000	1000	1000	1000	1000	1000
Amount of Dispersant	10	10	10	10	10	10	10
Volume of Aliquot (mls)	20	20	20	20	20	20	20
Grams Sample, Dispersant & Tare	30.7728	30.1795	30.2175	28.6429	31,0101	39.3143	30.1017
Grams of Tare	30.5619	30.0946	30.1825	28.6233	30,9983	39.3085	30.0962
Grams of Dispersant Correction	0.0021	0.0021	0.0021	0.0021	0.0021	0.0021	0.0021
Grams of Sample	0.2088	0.0828	0.0329	0.0175	0.0097	0.0037	0.0034
Total Grams Sample X 50	6.3000	2,4950	0.7700	0.3900	0,3000	0.0150	0.1700
/							
Analyst: CC		Date:	1/5/2015				

Reviewed by: EL

Date: 1/12/2015

K1413106wet.cc1

1317 South 13th Avenue

Kelso, Wa 98626

Service Request	#:	K1413106
Sample #:	K14	13106-020 DUP

Client:	Industrial Economics, Inc.	Sa
Project:	Portland Harbor 2014/Ross	Da
Sample Matrix:	Sediment	Da

Puget Sound Protocol

	Sample Name:	5386
s	Date Collected:	9/25/2014
	Date Received:	11/3/2014
	Date Analyzed:	11/26/2014

I. Sieving Operation	Sieve #
Gravel 2.00 mm (g)	10
V.C. Sand, 1.00 mm (g)	18
C. Sand, 0.500 mm (g)	35
M. Sand, 0.250 mm (g)	60
F. Sand, 0.125 mm (g)	120
V.F. Sand, 0.0625 mm (g)	230
S/C <0.0625 mm (g)	Pan

Method: PSEP Particle Size

Weight (g)	 As Rec'd (g)
0.0000	N/A
0.0085	N/A
0.0196	N/A
3.0617	N/A
15.3446	N/A
6.5215	N/A
0.9668	N/A

Total (g) Recov'd	25.9227	
Total (%) Recov'd	100.6	

II. Dry Sieving of Gravel/Sand

Grams Gravel/Sand & Beaker	133,9066
Grams Beaker(Tare)	108.1465
GramsGravel/Sand	25.7601

I. Sample Preparation

Grams As Received Sample	52.9745
Percent (%) Solids	61.3
Grams Oven Dried Sample	32.4734

III. Determination of Silt/Clay Fraction

21

Tem	pera	ture:

	4	5	6	7	8	9	10
Total Volume of Sample (mls)	1000	1000	1000	1000	1000	1000	1000
Amount of Dispersant	10	10	10	10	10	10	10
Volume of Aliquot (mls)	20	20	20	20	20	20	20
Grams Sample, Dispersant & Tare	41.0316	31,6780	29.9419	31.8607	42.6991	39.5106	30.8018
Grams of Tare	40.9696	31.6488	29.9265	31,8499	42.6906	39,5042	30.7980
Grams of Dispersant Correction	0.0022	0.0022	0.0022	0.0022	0.0022	0.0022	0.0022
Grams of Sample	0.0598	0.0270	0.0132	0.0086	0.0063	0.0042	0.0016
Total Grams Sample X 50	1,6400	0.6900	0.2300	0.1150	0.1050	0.1300	0.0800

Analyst:	ER	Date:	11/26/2014
Reviewed by:	EL	Date:	1/12/2015

1317 South 13th Avenue

Kelso, Wa 98626

Method: PSEP Particle Size	Service Request	#: K1413106
Puget Sound Protocol	Sample #:	K1413106-020 TRP

Client:	Industrial Economics, Inc.	Sample Name:	5386
Project:	Portland Harbor 2014/Ross	Date Collected:	9/25/2014
Sample Matrix:	Sediment	Date Received:	11/3/2014
		Date Analyzed:	11/26/2014

I. Sieving Operation	Sieve #
Gravel 2.00 mm (g)	10
V.C. Sand, 1.00 mm (g)	18
C. Sand, 0.500 mm (g)	35
M. Sand, 0.250 mm (g)	60
F. Sand, 0.125 mm (g)	120
V.F. Sand, 0.0625 mm (g)	230
S/C <0.0625 mm (g)	Pan

Weigl	nt (g)	-	As Rec'd (g)
0.00	000		N/A
0.00	000		N/A
0.00	000		N/A
2.7()39		N/A
15.1	629		N/A
6.7	107		N/A
1.24	487		N/A

Total (g) Recov'd	25.8262
Total (%) Recov'd	101

II. Dry Sieving of Gravel/Sand

Grams Gravel/Sand & Beaker	143.3883
Grams Beakei(Tare)	117.7258
GramsGravel/Sand	25.6625

I. Sample Preparation

Grams As Received Sample	57.0940
Percent (%) Solids	61.3
Grams Oven Dried Sample	34.9986

III. Determination of Silt/Clay Fraction

21

Temperature:	
--------------	--

	4	5	6	7	8	9	10
Total Volume of Sample (mls)	1000	1000	1000	1000	1000	1000	1000
Amount of Dispersant	10	10	10	10	10	10	10
Volume of Aliquot (mls)	20	20	20	20	20	20	20
Grams Sample, Dispersant & Tare	30.7849	35.2516	31.5710	32.0784	31.7355	42.7587	30,8837
Grams of Tare	30.7145	35.2204	31.5509	32.0657	31.7259	42.7521	30.8780
Grams of Dispersant Correction	0,0022	0.0022	0.0022	0.0022	0.0022	0.0022	0.0022
Grams of Sample	0.0682	0.0290	0.0179	0.0105	0.0074	0.0044	0.0035
Total Grams Sample X 50	1.9600	0.5550	0.3700	0.1550	0.1500	0.0450	0.1750

Analyst:	ER	Date:	11/26/2014	
Reviewed by:	EL	Date:	1/12/2015	